陳光宇,吳文龍,戴則梅,徐曉春,張仰飛,郝思鵬
(1. 南京工程學院電力工程學院,江蘇省南京市 211167;2. 南瑞集團有限公司(國網(wǎng)電力科學研究院有限公司),江蘇省南京市 211106;3. 國網(wǎng)淮安供電公司,江蘇省淮安市 223400)
無功儲備是電力系統(tǒng)實現(xiàn)安全穩(wěn)定的重要保障,對無功儲備進行優(yōu)化是提高電網(wǎng)安全水平的有效手段[1]。近年來,隨著新能源滲透率的不斷增加,傳統(tǒng)火電機組開機減少,電網(wǎng)運行機理正發(fā)生改變,電壓控制難度加大。因此,利用風電、光伏、儲能等多類型可調(diào)資源參與電網(wǎng)無功電壓協(xié)調(diào)控制,充分發(fā)揮多類型可調(diào)資源的無功調(diào)節(jié)能力,提高區(qū)域電網(wǎng)故障場景下的無功儲備水平,對電網(wǎng)安全穩(wěn)定運行具有重要意義。
在無功儲備定義方面,傳統(tǒng)無功儲備被定義為:無功源最大無功出力與當前無功出力之差[2]。但該定義對系統(tǒng)無功儲備估計過于樂觀,為更準確地衡量系統(tǒng)總無功儲備,部分學者將無功儲備進一步定義為:各個無功源無功儲備的加權之和[3]。近年來,隨著電網(wǎng)規(guī)模的不斷壯大,電網(wǎng)無功電壓區(qū)域耦合特性備受關注,而無功儲備對節(jié)點電壓的支撐能力被認為是無功儲備的核心。因此,基于分區(qū)的大電網(wǎng)無功儲備計算正逐漸得到更多研究人員的青睞[4]。
在無功儲備優(yōu)化領域,文獻[5]通過優(yōu)化系統(tǒng)的發(fā)電機無功儲備提高系統(tǒng)靜態(tài)電壓穩(wěn)定裕度,構建了以系統(tǒng)無功儲備最大化為目標的優(yōu)化模型,并采用Benders 分解加速求解。仿真結果表明,該方法能有效提高系統(tǒng)電壓穩(wěn)定裕度。文獻[6]提出了一種基于電壓分區(qū)的區(qū)域發(fā)電機無功儲備定義,建立了區(qū)域發(fā)電機無功儲備優(yōu)化的模型。仿真結果表明,分區(qū)優(yōu)化方法在計算效率和容錯率上都優(yōu)于整體優(yōu)化方案。以上文獻對傳統(tǒng)電網(wǎng)無功儲備優(yōu)化的建模和求解進行了深入研究,但隨著風電等新能源占比的逐年增加,新能源出力的隨機性對電網(wǎng)的影響已不容忽視。近年來,新能源背景下的電網(wǎng)無功儲備問題得到了眾多學者和研究人員的關注。針對風電的不確定性問題,文獻[7]采用一種新的無功儲備評估方法,并提出電力系統(tǒng)隨機無功儲備優(yōu)化模型,該方法有效降低了新能源背景下系統(tǒng)的運行風險。文獻[8]提出了一種考慮發(fā)電機重調(diào)度的區(qū)間最優(yōu)無功儲備優(yōu)化模型,采用間隔模型描述新能源的不確定性,算例表明該方法對新能源的不確定性表現(xiàn)出更好的穩(wěn)健性。此外,傳統(tǒng)的無功儲備優(yōu)化以確定型的負荷增長方式為基礎,而新能源的隨機性對負荷增長方式的確定具有負面作用。因此,文獻[9]建立了無功儲備兩層優(yōu)化模型,采用內(nèi)外層迭代求解無功儲備問題,結果表明該方法可在考慮負荷增長不確定性時提升系統(tǒng)的無功儲備水平。
以上文獻對新能源接入背景下的無功電壓問題進行了深入探討,并取得了較好的效果。但研究大多只考慮了新能源并網(wǎng)后正常工況下的無功電壓問題。隨著特高壓直流輸電的發(fā)展,受端電網(wǎng)直流饋入下的區(qū)域無功儲備不足問題日益突出。當系統(tǒng)發(fā)生故障時,傳統(tǒng)電網(wǎng)無功儲備及優(yōu)化方案難以支撐電網(wǎng)安全穩(wěn)定運行。因此,為了提高故障下區(qū)域電網(wǎng)無功儲備,應對故障下電壓穩(wěn)定裕度不足等情況,研究故障下區(qū)域無功儲備優(yōu)化問題具有重要的理論和實際意義。
針對以上問題,本文在前述研究的基礎上,考慮通過深挖風光儲等多類型資源的無功調(diào)節(jié)能力,構建故障下區(qū)域無功儲備優(yōu)化模型,進一步提高故障下電網(wǎng)電壓安全水平?;谶@一思想,本文提出了一種計及故障場景集的風光儲混合系統(tǒng)區(qū)域無功儲備多目標優(yōu)化方法。首先,提出一種考慮新能源波動性的典型故障場景縮減方法,基于有效無功源篩選策略構建故障場景的特征向量,在此基礎上建立典型故障場景集,實現(xiàn)對故障場景的降維。其次,給出一種基于改進聚類算法的電網(wǎng)分區(qū)方法,進一步降低問題的維度,提高求解效率,從空間角度對模型進行降維。最后,提出一種基于典型故障場景的分區(qū)無功儲備優(yōu)化方法,構建故障下區(qū)域無功儲備多目標優(yōu)化模型,采用改進多模態(tài)多目標進化算法(下文簡稱MMEA-NSGA-Ⅱ)得到Pareto 前沿,并通過模糊理論得到折中最優(yōu)解,實現(xiàn)對故障下電網(wǎng)電壓穩(wěn)定裕度的提高。算例采用IEEE 39 系統(tǒng)和真實電網(wǎng)進行仿真分析。仿真結果表明,本文提出的故障下區(qū)域無功儲備優(yōu)化方法能夠有效提高故障下系統(tǒng)的電壓安全水平,降低系統(tǒng)的運行風險。
故障場景和無功源自身狀態(tài)的變化都將對區(qū)域內(nèi)電壓的穩(wěn)定性產(chǎn)生影響。本章通過對電網(wǎng)穩(wěn)態(tài)場景下不同類型可調(diào)資源的無功儲備計算,得到故障下區(qū)域無功儲備。
1.1.1 風電場無功儲備
隨著由雙饋風電機組成的風電場接入電網(wǎng)的數(shù)量不斷增加,該類風電場的可調(diào)無功資源可充分利用。對于大型風電場,本文采用風電場集總模型[10],整個風電場的無功儲備如式(1)所示。
式中:QWF,res為風電場無功儲備;Qgres,g為第g臺風電機組提供的無功容量;n為該風電場內(nèi)的雙饋風電機組數(shù)。
1.1.2 分布式光伏無功儲備
通常,光伏系統(tǒng)都以最大功率發(fā)電,可調(diào)節(jié)其功率因數(shù)參與無功調(diào)節(jié)。光伏系統(tǒng)的無功儲備表達式[11]為:
式中:PPV,j和QPV,j分別為節(jié)點j注入的光伏有功和無功功率;QPV,max,j為節(jié)點j處光伏的無功調(diào)節(jié)范圍上 限;QPV,res,j為 節(jié) 點j處 光 伏 的 無 功 儲 備;SPV,j為 節(jié)點j處的光伏逆變器容量。
1.1.3 儲能系統(tǒng)無功儲備
單時間斷面下儲能系統(tǒng)的無功儲備表達式[12]為:
式中:PESS,j為儲能系統(tǒng)在節(jié)點j處注入的有功功率,PESS,max,j為其上限;QESS,j為節(jié)點j處儲能系統(tǒng)可注入的 無 功 出 力,QESS,max,j為 其 上 限;QESS,res,j為 節(jié) 點j處儲能系統(tǒng)的無功儲備;SESS,max,j為節(jié)點j處儲能系統(tǒng)逆變器的最大視在功率。
本文通過選取合適的主導節(jié)點以反映所處區(qū)域電壓穩(wěn)定程度。在此基礎上,通過故障場景下該區(qū)域內(nèi)無功源對主導節(jié)點的電壓支撐能力表示故障下區(qū)域無功儲備。
故障場景k下區(qū)域無功儲備Qkr,RES的表達式為:
式中:Qkri,res為故障場景k下區(qū)域電網(wǎng)r中無功源i的無功儲備;Nr為區(qū)域電網(wǎng)r中無功源數(shù)目;kkri為故障場景k下區(qū)域電網(wǎng)r中的無功源i對區(qū)域電網(wǎng)r主導節(jié)點的無功/無功靈敏度[13],用以表征無功源的無功儲備對區(qū)域電網(wǎng)電壓安全的貢獻度。
由于新能源的波動性,電網(wǎng)故障掃描產(chǎn)生的故障集通常較為龐大,給優(yōu)化計算帶來不便[14]。為提高無功儲備優(yōu)化的效率,本文提出一種考慮新能源波動性的典型故障場景縮減方法。首先,對全場景集進行場景縮減得到典型場景集。其次,構建電壓關聯(lián)指標以篩選出有效無功源,基于場景內(nèi)有效無功源無功儲備構建場景特征向量,并通過預想故障掃描得到故障場景集,根據(jù)場景特征向量進行聚類,得到各類故障場景集。最后,根據(jù)電壓穩(wěn)定指標從場景集中篩選出典型故障場景。典型故障場景縮減的整體框架如附錄A 圖A1 所示。
新能源的波動性導致全場景集的規(guī)模十分龐大,本節(jié)從多類型資源無功儲備中提取特征,通過計算不同場景間的相似度,對全場景集進行場景縮減[15],最終得到典型場景集,具體步驟如下:
1)根據(jù)上文的多類型資源無功儲備指標,將不同場景下多類型資源無功儲備映射為標量,由無功儲備Qxres構成該場景的特征向量QFitzxres,表達式為:
2)采用歐氏距離計算故障場景間的相似度;相似度計算示意圖如附錄A 圖A2 所示。
3)根據(jù)相似度對全場景集進行場景縮減,得到典型場景集。
通過衡量無功源個體在電網(wǎng)中的“地位”(即無功源對電網(wǎng)電壓的無功調(diào)節(jié)能力),篩選出對薄弱節(jié)點電壓影響較大的有效無功源,以減少場景特征向量的維數(shù),提高計算效率。具體步驟如下:
1)采用電網(wǎng)薄弱環(huán)節(jié)辨識方法[16]辨識出故障下電網(wǎng)的薄弱節(jié)點;
2)計算電網(wǎng)內(nèi)無功源對薄弱節(jié)點的電壓/無功靈敏度α,得到電壓/無功靈敏度集合K;
3)采用最大類間方差(OTSU)算法對電壓/無功靈敏度集合K進行分割,得到分割閾值kth;
4)基于分割閾值kth判斷無功源與薄弱節(jié)點間是否存在關系,若α≥kth,則判斷無功源與節(jié)點間存在關系;若α 5)基于無功源與節(jié)點間關系,得到電壓關聯(lián)指標集合; 6)基于電壓關聯(lián)指標篩選出所有薄弱節(jié)點的有效無功源; 7)將所有薄弱節(jié)點的有效無功源聚合,得到電網(wǎng)的有效無功源集合。 2.2.1 考慮新能源波動性的靈敏度計算 在風光儲混合電網(wǎng)中,計算節(jié)點間的電壓/無功靈敏度需考慮新能源波動性的影響。因此,本文引入修正系數(shù)[17]計算典型場景下節(jié)點間的電壓/無功靈敏度,量化新能源波動對于靈敏度的影響。 薄弱節(jié)點m對無功源i的電壓/無功靈敏度的計算公式為: 式中:kim為考慮新能源波動性下節(jié)點m對無功源i的電壓/無功靈敏度;kiwm為在典型場景w下節(jié)點m對無功源i的電壓/無功靈敏度;λiw為無功源i在典型場景w下的修正系數(shù);Kd為典型場景數(shù)目。 2.2.2 基于OTSU 算法的分割閾值計算 本文引入OTSU 算法對無功源與節(jié)點的電壓/無功靈敏度進行分割,以得到用于判斷無功源與薄弱節(jié)點的電壓之間是否存在關系的分割閾值。具體流程如附錄B 所示。 2.2.3 電壓關聯(lián)指標構建 根據(jù)分割閾值kth可判斷無功源i與薄弱節(jié)點m的電壓之間是否存在關系,得到無功源電壓關聯(lián)指標,如式(7)所示。 式中:Xim為0-1 變量,表示無功源i與節(jié)點m的電壓之間是否存在關系,存在關系則取1,否則取0。 2.2.4 有效無功源篩選 計算無功源電壓關聯(lián)指標,篩選出薄弱節(jié)點m的有效無功源,有效無功源集合SmNy的表達式為: 式中:SN為無功源的集合。 將所有薄弱節(jié)點的有效無功源集合聚合,得到該電網(wǎng)的有效無功源集合SNy。 對于預想故障掃描所得的故障場景集,受限于極大的場景數(shù)目,需要對數(shù)據(jù)信息進行提取。本文首先根據(jù)有效無功源的無功儲備構建故障場景特征向量,并引入t分布-隨機鄰近嵌入(t-distributed stochastic neighbor embedding,t-SNE)算法對特征向量進行降維。其次,采用層次聚類方法將故障場景集劃分為若干個子場景集。最后,基于鄧恩指數(shù)(Dunn validity index,DVI)對聚類方案進行評價,得到最佳聚類方案。 2.3.1 場景特征向量 在不同故障場景下,系統(tǒng)電壓和電網(wǎng)結構都會發(fā)生變化,為維持電網(wǎng)電壓穩(wěn)定,無功源會受到影響,其無功儲備發(fā)生變化。因此,本節(jié)采用2.1 節(jié)方法,根據(jù)有效無功源的無功儲備構建故障場景k的特征向量。 2.3.2 場景特征向量降維 為去除特征向量集噪聲并在低維空間內(nèi)反映樣本特性,本節(jié)引入t-SNE 算法對故障場景特征向量進行降維。具體步驟如附錄C 所示。 故障集內(nèi)各斷面對無功儲備的影響較為相似,因此,在故障下進行區(qū)域無功儲備優(yōu)化時,僅需考慮故障場景集中典型場景的作用。本文引入局部電壓穩(wěn)定指標[18]以構建故障場景下電網(wǎng)的電壓穩(wěn)定指標,通過對各類故障場景集中的場景進行評估,篩選出典型故障場景。 故障場景k的電壓穩(wěn)定指標Lk為: 式中:Styp為典型故障場景集;Sq為故障場景集中的第q個典型故障場景;A為典型故障場景數(shù),該數(shù)值等于最佳聚類數(shù)。 在無功儲備優(yōu)化前進行分區(qū)可以提高求解效率,降低解決問題的難度[19]。因此,以第2 章典型場景為基礎,本文構建考慮新能源波動性的主導節(jié)點控制空間,將基于密度的有噪空間聚類(DBSCAN)算法與K-means 聚類算法有機結合形成改進聚類算法(下文簡稱改進D-K 聚類算法)[20],給出一種基于改進聚類算法的電網(wǎng)分區(qū)方法。 基于改進D-K 聚類算法的電網(wǎng)分區(qū)過程主要分為主導節(jié)點控制空間構建和基于改進D-K 聚類算法的電網(wǎng)分區(qū),具體流程如附錄D 圖D1 所示。 為表征新能源波動導致電網(wǎng)節(jié)點間電壓靈敏度的變化情況,本文引入考慮新能源波動性的電氣距離期望矩陣[17],在此基礎上構建主導節(jié)點控制空間。 計算電氣距離期望矩陣D,公式如附錄D 式(D1)所示。選取D中元素構建主導節(jié)點控制空間。對于電網(wǎng)節(jié)點j,根據(jù)電氣距離期望矩陣,構建表示該主導節(jié)點對負荷節(jié)點的控制能力的向量lj: 式中:djl為電氣距離期望矩陣D中第j行第l列的元素,即電網(wǎng)節(jié)點j與負荷節(jié)點l之間的電氣距離;Nl為電網(wǎng)中負荷節(jié)點的數(shù)量,考慮到新能源的無功調(diào)節(jié)能力,新能源所在節(jié)點不作為負荷節(jié)點參與本節(jié)劃分。 在此基礎上獲得主導節(jié)點控制空間L=[l1,l2,…,lN],是一個N維的坐標空間,由表示主導節(jié)點對負荷節(jié)點控制能力的列向量lj組成,行向量表示電網(wǎng)中負荷節(jié)點受不同主導節(jié)點的電壓控制能力的影響程度。主導節(jié)點控制空間L包含主導節(jié)點對于負荷節(jié)點電壓調(diào)節(jié)的相關信息。 由于傳統(tǒng)K-means 聚類算法得到的聚類結果波動性較大。因此,本文引入改進D-K 聚類算法[20]進行電網(wǎng)分區(qū),并通過OTSU 算法對密度聚類部分進行改進,在獲取初始聚類中心等參數(shù)后,通過Kmedoids 聚類算法進行進一步的聚類分析。 基于主導節(jié)點控制空間,計算任意兩節(jié)點間的平均距離、每個節(jié)點的密度參數(shù)和平均類間最大相似度(average inter-class max similarity,AMS)指標。 采用2.2.2 節(jié)中的OTSU 算法,根據(jù)密度參數(shù)將節(jié)點劃分為兩部分,選取密度參數(shù)大的部分加入備選集E。從備選點集E中選擇點作為初始聚類中心,經(jīng)過劃分后計算此時的AMS 值,通過比較AMS值,不斷更新聚類中心以確定最佳聚類數(shù)目o,以此時的o個聚類中心作為K-medoids 算法的初始聚類中心對電網(wǎng)進行分區(qū),最終得到電網(wǎng)中負荷節(jié)點分區(qū)方案。 以上文所得典型故障場景集和電網(wǎng)分區(qū)方案為基礎,為提高故障下電網(wǎng)電壓穩(wěn)定性和區(qū)域內(nèi)主導節(jié)點對負荷及無功源節(jié)點的電壓控制能力。本章建立了以典型故障場景下區(qū)域無功儲備最大化和區(qū)域電網(wǎng)內(nèi)主導節(jié)點可控性最大化為目標的多目標優(yōu)化模型,采用模糊理論融合MMEA-NSGA-Ⅱ進行求解。圖1 展示了故障下區(qū)域無功儲備優(yōu)化流程。 圖1 故障下區(qū)域無功儲備優(yōu)化流程圖Fig.1 Flow chart of regional reactive power reserve optimization with fault 4.1.1 目標函數(shù) 1)典型故障場景下區(qū)域無功儲備目標 在穩(wěn)態(tài)運行期間,為電網(wǎng)預留充足的無功儲備有利于電網(wǎng)的安全穩(wěn)定運行,且考慮到無功功率分層分區(qū)平衡的要求,電網(wǎng)任意區(qū)域的區(qū)域無功儲備不足可能會導致系統(tǒng)失穩(wěn)。因此,當故障場景下各分區(qū)中區(qū)域無功儲備最小值較大時,可以保證各區(qū)域內(nèi)故障下電壓穩(wěn)定裕度較大。根據(jù)第1 章中故障下區(qū)域無功儲備定義建立指標,表達式如下: 式中:kqri為典型故障場景q下區(qū)域電網(wǎng)r中無功源i無功儲備的修正系數(shù),用以表征多類型可調(diào)資源無功儲備對系統(tǒng)主導節(jié)點電壓安全的貢獻度;Qqi,res為典型故障場景q下動態(tài)無功源i的無功儲備。 2)區(qū)域主導節(jié)點對其內(nèi)部節(jié)點的可控性目標 本文中,區(qū)域無功儲備的計算是通過以故障下無功源對主導節(jié)點的無功/無功靈敏度為權重因子來獲得的。因此,選擇的主導節(jié)點需要最大程度反映電網(wǎng)該區(qū)域內(nèi)的電壓穩(wěn)定程度,本文根據(jù)區(qū)域內(nèi)主導節(jié)點的可控性建立指標。 區(qū)域主導節(jié)點可控性目標指分區(qū)主導節(jié)點對其內(nèi)部負荷或無功源節(jié)點的最小電壓/電壓靈敏度,當該目標充分大時,可以保證分區(qū)主導節(jié)點對區(qū)域內(nèi)所有負荷和無功源節(jié)點的電壓控制能力充分強。主導節(jié)點可控性指標表達式為: 式中:Tr為區(qū)域電網(wǎng)r中負荷或無功源所在節(jié)點集合;αrj為區(qū)域電網(wǎng)r主導節(jié)點對節(jié)點j的電壓/電壓靈敏度,根據(jù)1.2 節(jié)中方法獲得;NA為電網(wǎng)中區(qū)域電網(wǎng)數(shù)目。 4.1.2 約束條件 約束條件包括區(qū)域內(nèi)無功平衡、區(qū)域內(nèi)部無功源數(shù)量約束、區(qū)域耦合等條件。 1)區(qū)域內(nèi)部無功源和負荷節(jié)點的數(shù)量約束:要求區(qū)域電網(wǎng)內(nèi)的無功源和負荷節(jié)點數(shù)量都必須分別大于等于1。 2)各分區(qū)的連通性約束:區(qū)域電網(wǎng)內(nèi)各節(jié)點具有連通性。 3)變量約束:穩(wěn)態(tài)情況下的潮流約束、電壓約束等約束條件如附錄E 式(E1)所示。 由于缺乏對于決策空間多樣性的維護,傳統(tǒng)多目標優(yōu)化算法在求解多模態(tài)多目標優(yōu)化問題時性能較差。因此,本文提出一種改進多模態(tài)多目標優(yōu)化進化算法對多目標優(yōu)化模型進行求解,算法以帶精英策略的非支配排序遺傳算法(non-dominated sorting genetic algorithms-Ⅱ,NSGA-Ⅱ)為基礎,通過引入加權指標和收斂空間[21]進一步提高種群的多樣性和逼近Pareto 最優(yōu)前沿,考慮到加權指標計算量較大,給出一種兩階段自適應群體更新策略以提高收斂效率,通過模糊理論選取折中最優(yōu)解。MMEA-NSGA-Ⅱ框架如附錄E 圖E1 所示。 4.2.1 加權指標 為了保證決策空間多樣性和目標空間收斂性之間的平衡,引入加權指標以評估解決方案的潛在收斂質(zhì)量,該指標可以保證解決方案分布在多個最優(yōu)解而非一個最優(yōu)解。 通過使用個體所有解的指標之和以及個體到其他所有個體在決策空間中的歐氏距離,獲得個體的加權指標。加權指標的表達式見附錄E 式(E2)。 4.2.2 收斂空間 為了逼近Pareto 最優(yōu)前沿,提高目標空間的收斂性,采用收斂空間以存儲已獲得的非支配解,引入改進擁擠距離以更新收斂空間,從而平衡每個目標值對應的等價解數(shù)量。改進擁擠距離的表達式如附錄E 式(E3)所示。 當收斂空間中解的數(shù)目超過規(guī)定的數(shù)值后,計算收斂空間中全部解的改進擁擠距離,選擇擁擠距離大的解組成新的收斂空間。 4.2.3 兩階段自適應群體更新策略 為了保證算法的收斂效率和決策空間的多樣性,給出一種兩階段自適應群體更新策略,采用自適應算子以提高不同階段下算法的全局和局部搜索能力。 群體更新策略分為兩個階段: 1)第1 階段,當收斂空間中解集數(shù)小于所需的Pareto 解集數(shù)目時,從決策空間中選擇父代。在該階段對解的加權指標進行評估以保持決策空間中解的多樣性。為提高搜索全體解,接近Pareto 最優(yōu)解的速度,該階段采用較大的交叉概率。自適應交叉算子的表達式如附錄E 式(E4)所示。 2)第2 階段,當收斂空間中解集數(shù)大于等于所需的Pareto 解集數(shù)目時,根據(jù)概率p從收斂空間中選擇父代,將收斂空間中父代與決策空間中父代合并形成新的父代。更大的概率p易導致更好的收斂性,但解的多樣性會變差。一般情況下p為0.4。為了避免陷入局部最優(yōu)的問題,該階段采用較大的變異概率。自適應變異算子的表達式如附錄E 式(E5)所示。 4.2.4 基于模糊理論的最優(yōu)解選取 為了更客觀且全面地做出決策,通常需要全面考慮各方面的因素以充分挖掘Pareto 中所包含的信息。本文采用模糊理論計算目標的隸屬度函數(shù),以反映目標函數(shù)最大值和最小值之間的相對距離,獲得一個相對最優(yōu)的Pareto 最優(yōu)解[22]。Pareto 最優(yōu)解集的總隸屬度函數(shù)表達式如附錄E 式(E6)所示。 計算各Pareto 解集的總隸屬度后,以總隸屬度最大的解集為折中最優(yōu)解,得到該最優(yōu)解下的所有等價解。將所有等價解分別代入電網(wǎng)模型計算潮流分布,以網(wǎng)損最小的解為最優(yōu)解。 為了驗證本文所提模型和方法的有效性和合理性,在改進的IEEE 39 節(jié)點系統(tǒng)上進行仿真并引入真實電網(wǎng)數(shù)據(jù)作為分析對象。采用MATLAB R2018b 實現(xiàn)故障場景縮減、電網(wǎng)分區(qū)和多目標優(yōu)化。 對于改進IEEE 39 節(jié)點系統(tǒng),通過接入風電場、光伏系統(tǒng)及儲能系統(tǒng),構成含多類型可調(diào)資源并涉及不同概率特征的電網(wǎng)系統(tǒng)。其中,IEEE 39 節(jié)點系統(tǒng)詳細參數(shù)見MATPOWER 工具包,本文在此基礎上接入風電場、光伏系統(tǒng)及儲能系統(tǒng)。系統(tǒng)結構見附錄F 圖F1,在節(jié)點3 和39 裝設200 MW 的風電場,節(jié)點32 和33 裝設200 MW 的光伏電站,節(jié)點35裝設儲能系統(tǒng),儲能系統(tǒng)額定容量為100 kW ?h,額定功率為100 kW,放電深度可達80%。 5.1.1 改進IEEE 39 節(jié)點系統(tǒng)的典型故障場景縮減分析 1)典型場景 新能源的波動性會對電網(wǎng)運行狀態(tài)造成影響,從而產(chǎn)生大量的場景數(shù)據(jù)。根據(jù)真實電網(wǎng)全場景集中數(shù)據(jù),本文采用場景縮減方法得到典型場景集。典型場景集數(shù)為4,典型場景集中新能源有功出力如附錄F 圖F2 所示。 2)故障場景聚類及典型故障場景選擇合理性分析 為了驗證t-SNE 降維方法的合理性,分別采用t-SNE 算法和主成分分析(principal component analysis,PCA)算法將故障場景的特征向量集降維到二維子空間,困惑度取30。t-SNE 算法和PCA 算法降維所得結果、降維可視化結果如附錄F 圖F3 所示。由圖F3 可知,與PCA 算法相比,t-SNE 算法可以在低維空間內(nèi)更直觀地反映故障場景樣本的特性,去除故障場景特征集的噪聲。 對于降維后的故障場景特征向量集,通過層次聚類算法進行劃分。聚類結果如附錄F 圖F4 所示。采用余弦距離和DVI 對各場景間的相似性和聚類方案進行評估,得到最佳聚類數(shù)為12。 通過電壓穩(wěn)定指標對故障場景進行評估,篩選出典型故障場景集。典型故障場景選擇結果如附錄F 圖F5 所示,紅叉處為典型故障場景中故障所發(fā)生的位置。場景集合如附錄F 表F1 所示。 3)典型故障場景縮減方法效果分析 為驗證本文所提典型故障場景縮減方法的有效性,設計了以下3 種方案進行對比分析: 方案1:采用全場景集合; 方案2:采用本文場景縮減法得到的場景集合; 方案3:采用文獻[23]的故障篩選方法得到的場景集合。 在以上3 種方案下,針對改進IEEE 39 節(jié)點系統(tǒng),采用非支配排序的遺傳算法(non-dominated sorting genetic algorithm,NSGA)求解故障下區(qū)域無功儲備多目標優(yōu)化模型,優(yōu)化結果如表1 所示。 表1 IEEE 39 節(jié)點系統(tǒng)典型故障場景縮減前后優(yōu)化對比Table 1 Optimization comparison before and after reduction of typical failure scenarios in IEEE 39-bus system 由表1 中方案1 和2 的比較可知,方案1 和2 所得的故障下區(qū)域無功儲備最小值優(yōu)化結果相近,而方案2 中計算所需考慮的故障場景數(shù)目較少、優(yōu)化所需時間較短且優(yōu)化效率較高,驗證了本文場景縮減方法的合理性,該方法可以在保證優(yōu)化精度的同時,縮短優(yōu)化所需的時間。由方案2 和3 的對比可知,方案2 中故障場景數(shù)目較少、優(yōu)化所需時間較短且優(yōu)化結果在精度上也要高于方案3 所得結果。因此,本文所提場景縮減方法在提高模型計算效率和精度方面均具有明顯優(yōu)勢。 采用本文的典型故障場景縮減方法可以減少在故障下進行區(qū)域無功儲備優(yōu)化時需要考慮的故障場景數(shù)目。同時,在篩選過程中,由于僅需要考慮典型故障場景及與其電網(wǎng)電壓穩(wěn)定性緊密相關的有效無功源的作用,可以有效減少迭代所需要的時間,提高優(yōu)化速度。相比之下,在篩選前,由于需要考慮所有故障場景下全部無功源及區(qū)域電網(wǎng)的無功儲備,會影響優(yōu)化時的計算速度、降低優(yōu)化效率。 5.1.2 改進IEEE 39 節(jié)點系統(tǒng)的電網(wǎng)分區(qū)結果分析 為了驗證基于改進D-K 聚類算法的電網(wǎng)分區(qū)方法的有效性,分別采用改進D-K 聚類算法、傳統(tǒng)K-methods 算法、louvain 層次聚類算法進行電網(wǎng)分區(qū),并采用模塊度[24]指標對分區(qū)結果進行評價??紤]到改進D-K 聚類算法可以自動確定最佳聚類數(shù)而傳統(tǒng)K-methods 算法需要手動確定聚類數(shù),該算例中傳統(tǒng)K-methods 算法同樣選取最佳聚類數(shù)為o值。 改進D-K 聚類算法在聚類數(shù)為5 時所得分區(qū)方案的模塊度最大,為0.617,具體分區(qū)方案如圖2 所示。louvain 層次聚類算法所得分區(qū)方案的分區(qū)數(shù)為7,模塊度為0.481;傳統(tǒng)K-methods 算法所得分區(qū)方案的分區(qū)數(shù)為5,模塊度為0.541。 圖2 IEEE 39 節(jié)點系統(tǒng)分區(qū)方案Fig.2 Partition scheme of IEEE 39-bus system 在不同聚類算法得到的分區(qū)方案下,本文分區(qū)方法所得分區(qū)方案的模塊度略高于基于傳統(tǒng)Kmethods 聚類算法和louvain 層次聚類算法獲得的分區(qū)方案,區(qū)域內(nèi)電氣距離聯(lián)系更加緊密。同時,考慮到本文方法可以自動確定最佳聚類數(shù)。因此,本文基于D-K 聚類算法的電網(wǎng)分區(qū)方法相比其他分區(qū)方法更具優(yōu)勢。 5.1.3 改進IEEE 39 節(jié)點系統(tǒng)的故障下區(qū)域無功儲備優(yōu)化結果分析 為了驗證所提優(yōu)化算法的有效性,將所提多目標優(yōu)化方法應用到改進IEEE 39 節(jié)點系統(tǒng)進行仿真分析。 1)不同目標下優(yōu)化結果對比 本文分區(qū)方案中所得到的主導節(jié)點對于負荷節(jié)點的可控性較高,但對于無功源節(jié)點的可控性較低,因此,有必要把各分區(qū)中的主導節(jié)點可控性作為目標函數(shù)加入其中,將主導節(jié)點位置作為控制變量,使得主導節(jié)點處電壓能夠充分反映該區(qū)域內(nèi)負荷及無功源所在節(jié)點的電壓穩(wěn)定性,從而更加準確地評估故障下區(qū)域無功儲備。 采用NSGA-Ⅱ分別對單目標模型和多目標模型進行求解并對比不同目標下得到的最優(yōu)解,優(yōu)化結果如附錄F 表F2 所示。由表F2 可知,單目標函數(shù)求得的目標值較大于多目標函數(shù)中對應的目標值,但其他目標值明顯低于多目標函數(shù)中對應的值。這驗證了構建多目標模型進行求解的合理性。 2)多目標優(yōu)化算法對比 為衡量本文所用算法保持決策空間多樣性的能力,在種群參數(shù)相同的情況下,分別采用NSGA、NSGA-Ⅱ和MMEA-NSGA-Ⅱ求解優(yōu)化模型,3 種算法獨立運行后所得的Pareto 最優(yōu)解集如附錄F 圖F6 所 示。 采 用Pareto 解 集 近 似(Pareto set proximity,PSP)[25]對優(yōu)化算法保持決策空間多樣性的能力進行評估。該值越大,算法所得的等價解越多,保持決策空間多樣性的能力越好。不同算法的PSP 指 標 如 表F3 所 示。 結合附錄F 圖F6 和表F3 可知,在相同因素下,MMEA-NSGA-Ⅱ搜索到的Pareto 最優(yōu)前沿與真實的最優(yōu)前沿更加相近。同時,加權指標和兩階段自適應群體更新策略提高了進化后期種群的多樣性,避免陷入局部最優(yōu),提高了全局尋優(yōu)能力。 采用4.2.4 節(jié)中的方法計算Pareto 最優(yōu)解集中各解集的總隸屬度,選取其中總隸屬度最大的解集作為折中最優(yōu)解。分別選取折中最優(yōu)解下的等價解代入電網(wǎng)模型進行潮流計算,以網(wǎng)損最小的解為最優(yōu)解。不同優(yōu)化算法所得最優(yōu)解結果如附錄F 表F4 所示。由表F4 可知,本文的MMEA-NSGA-Ⅱ所得仿真結果的主導節(jié)點可控性和故障下區(qū)域無功儲備均大于其他算法。 3)優(yōu)化結果 改進IEEE 39 節(jié)點系統(tǒng)中,在考慮多類型資源無功調(diào)節(jié)能力的情況下,采用本文所提算法對優(yōu)化模型進行求解。將優(yōu)化前后故障下系統(tǒng)節(jié)點電壓最低幅值進行對比,對比結果如圖3 所示。 圖3 優(yōu)化前后故障下系統(tǒng)節(jié)點處電壓最低幅值對比Fig.3 Comparison of the lowest voltage amplitude at system nodes before and after optimization 由圖3 可知,無功優(yōu)化前,節(jié)點15、20 的電壓幅值均低于0.95 p.u.,其中,節(jié)點15 在N-1 故障下的最低電壓幅值僅為0.936 p.u.,不滿足安全運行約束。電壓幅值原本較低的節(jié)點在優(yōu)化后,其電壓幅值均獲得提高,保持在0.96 p.u.以上,電壓質(zhì)量獲得改善,保證了系統(tǒng)電壓安全。 4)多類型資源參與無功調(diào)節(jié)對比分析 為了驗證多類型資源的無功調(diào)節(jié)能力能夠有效增強電網(wǎng)電壓穩(wěn)定程度,在考慮多類型資源無功調(diào)節(jié)能力和不考慮多類型資源無功調(diào)節(jié)能力的情況下分別采用本文方法進行優(yōu)化求解。不同情況下改進IEEE 39 節(jié)點系統(tǒng)的故障下區(qū)域無功儲備最低值如附錄F 圖F7 所示。由圖F7 可知,優(yōu)化前電壓裕度較差區(qū)域的故障下區(qū)域無功儲備的最小值經(jīng)過優(yōu)化后有所增加,且在考慮多類型資源的無功儲備后,故障下區(qū)域無功儲備要高于不考慮多類型資源無功儲備時對應的數(shù)值,有利于電網(wǎng)電壓穩(wěn)定裕度的提高。 采用真實電網(wǎng)數(shù)據(jù)對本文所提優(yōu)化方法的有效性和合理性進行仿真驗證。真實電網(wǎng)有65 個節(jié)點、71 條線路、33 個變壓器,15 個電廠(其中2 個光伏電站、2 個風電站、1 個儲能電站)。風光新能源電站的概率特征如5.1.1 節(jié)所示。真實電網(wǎng)結構示意圖如附錄F 圖F8 所示,包含電壓等級為110 kV 及以上的電網(wǎng)節(jié)點。 5.2.1 真實電網(wǎng)的典型故障場景縮減分析 為檢驗本文典型故障場景縮減方法的可行性,在真實電網(wǎng)模型中分別在4 個典型場景下進行N-1 預想故障掃描,得到的故障場景集有284 個。在典型場景集中,采用電壓關聯(lián)指標篩選出有效無功源后,根據(jù)故障場景集中信息構建故障場景的特征向量,采用t-SNE 算法對特征向量進行降維。結果如附錄F 圖F9 所示。由圖F9 可知,t-SNE 算法提取出真實電網(wǎng)的故障場景特征向量的主要特征,實現(xiàn)了故障場景特征向量的可視化。 對于降維后的故障場景特征向量集,采用層次聚類算法對故障場景進行聚類。聚類結果如附錄F圖F10 所示。采用DVI 評估聚類效果,得到最佳聚類數(shù)為26,數(shù)量最多的4 個故障場景集的樣本數(shù)量如表F5 所示。 采用電壓穩(wěn)定指標評估故障場景下電網(wǎng)穩(wěn)定狀態(tài),篩選出典型故障場景集。典型故障場景在真實電網(wǎng)中的地理位置如附錄F 圖F11 所示,真實電網(wǎng)的典型故障場景集如表F6 所示。 為驗證本文所提場景縮減方法對于真實電網(wǎng)的可行性,分別在故障場景篩選前后對真實電網(wǎng)中的故障下區(qū)域無功儲備多目標優(yōu)化模型進行求解,對比結果如附錄F 表F7 所示。由表F7 可知,當采用典型故障場景縮減方法后,隨著有效無功源和故障場景數(shù)的減少,優(yōu)化所需的計算時間和迭代次數(shù)都有所下降,但優(yōu)化結果相差極小。算例結果表明,所提場景縮減方法在保持較高計算精度的同時,能夠有效提高求解速度。 5.2.2 真實電網(wǎng)的電網(wǎng)分區(qū)結果分析 采用改進D-K 聚類算法對真實電網(wǎng)模型進行分區(qū),并采用模塊度指標對分區(qū)結果進行評價?;诟倪MD-K 聚類算法的真實電網(wǎng)分區(qū)結果如附錄F圖F12 所示。改進D-K 聚類算法所得分區(qū)方案的模塊度為0.451,說明電網(wǎng)劃分出的社區(qū)結構強度較好,區(qū)域內(nèi)電氣距離聯(lián)系緊密。 5.2.3 真實電網(wǎng)的故障下區(qū)域無功儲備優(yōu)化結果分析 將本文優(yōu)化方法應用到真實電網(wǎng)模型進行仿真分析。 1)優(yōu)化結果 在考慮多類型資源無功調(diào)節(jié)能力的情況下采用本文算法對多目標優(yōu)化模型進行求解,對比優(yōu)化前電壓幅值較低節(jié)點的變化情況,優(yōu)化前后該類節(jié)點的故障下電壓幅值最小值對比如附錄F 表F8 所示。由表F8 可知,優(yōu)化后薄弱節(jié)點的故障下電壓幅值最小值均有所增加,且能保持在0.96 p.u.以上,有效提高了故障下電網(wǎng)電壓安全水平。 2)多類型資源參與無功調(diào)節(jié)前后的優(yōu)化結果為比較多類型資源對于真實電網(wǎng)電壓穩(wěn)定程度的影響,將多類型資源作為無功源加入多目標優(yōu)化模型的控制變量中,采用本文算法對優(yōu)化模型進行求解。優(yōu)化前后故障下的區(qū)域無功儲備最低值見表2。 表2 優(yōu)化前后故障區(qū)域無功儲備最低值對比Table 2 Comparison of the lowest value of reactive power reserve in fault area before and after optimization 由表2 可知,原本故障下電壓穩(wěn)定裕度較低的區(qū)域經(jīng)過優(yōu)化后,對應的故障區(qū)域無功儲備最小值均有所增加。且當多類型資源作為無功源參與優(yōu)化后,電網(wǎng)各故障區(qū)域無功儲備最小值得到有效增加。 由此可知,優(yōu)化方案能夠有效保證電網(wǎng)在故障下的電壓穩(wěn)定性,且當多類型資源參與無功調(diào)節(jié)后,優(yōu)化方案顯著提高了故障下電網(wǎng)電壓安全水平,改善了故障下電網(wǎng)電壓穩(wěn)定裕度。 本文提出一種計及故障場景集的風光儲混合系統(tǒng)區(qū)域無功儲備多目標優(yōu)化方法。針對復雜模型提出場景縮減和電網(wǎng)分區(qū)技術進行降維,采用改進算法求解多目標模型,主要特點如下: 1)提出一種考慮新能源波動性的典型故障場景縮減方法:構建一種電壓關聯(lián)指標,并基于關聯(lián)指標通過故障場景劃分策略獲得典型故障場景集,實現(xiàn)對故障場景的降維,在模型優(yōu)化精度基本不變的情況下有效減少了計算時間; 2)給出一種基于改進D-K 聚類算法的電網(wǎng)分區(qū)方法:通過構建一種區(qū)域主導節(jié)點控制空間,并引入改進D-K 聚類算法進行電網(wǎng)分區(qū),進一步提升了分區(qū)質(zhì)量,從空間維度實現(xiàn)對模型的降維; 3)提出一種基于典型故障場景的分區(qū)無功儲備多目標優(yōu)化方法;構建了一種新的故障下區(qū)域無功儲備多目標優(yōu)化模型,實現(xiàn)了故障下電網(wǎng)電壓穩(wěn)定裕度的提升; 4)給出一種MMEA-NSGA-Ⅱ對模型進行優(yōu)化求解,進一步提高了多目標模型優(yōu)化的收斂性和求解效率。 本文主要對輸電網(wǎng)故障下的無功儲備優(yōu)化問題進行了研究,但并未涉及輸配協(xié)同情況下的無功儲備需求問題,這將是后續(xù)值得深入研究的問題。 附錄見本刊網(wǎng)絡版(http://www.aeps-info.com/aeps/ch/index.aspx),掃英文摘要后二維碼可以閱讀網(wǎng)絡全文。2.3 故障場景的聚類方法
2.4 典型故障場景的選擇方法
3 基于改進聚類算法的電網(wǎng)分區(qū)
3.1 主導節(jié)點控制空間構建
3.2 基于改進D-K 聚類算法的電網(wǎng)分區(qū)
4 基于典型故障場景的分區(qū)無功儲備優(yōu)化
4.1 多目標優(yōu)化模型
4.2 改進多模態(tài)多目標進化算法
5 算例分析
5.1 改進IEEE 39 節(jié)點系統(tǒng)
5.2 真實電網(wǎng)
6 結語