汪國(guó)海, 董佩佩, 韋麗娟, 黃秋嬋, 韓巧, 唐創(chuàng)斌,*
城市綠地中鳥(niǎo)類對(duì)海南蒲桃的取食和傳播作用
汪國(guó)海1, 董佩佩1, 韋麗娟2, 黃秋嬋1, 韓巧1, 唐創(chuàng)斌1,*
1. 廣西民族師范學(xué)院 化學(xué)與生物工程學(xué)院, 廣西崇左 532200 2. 廣西民族師范學(xué)院 數(shù)理與電子信息工程學(xué)院廣西崇左 532200
海南蒲桃()是亞熱帶地區(qū)城市綠地中常見(jiàn)的綠化植物, 其果實(shí)數(shù)量多、果期長(zhǎng), 可為鳥(niǎo)類提供大量食物資源。2020年6月—8月借助 Safari 10×26 變焦雙筒望遠(yuǎn)鏡, 采用焦點(diǎn)掃描法對(duì)訪問(wèn)海南蒲桃果實(shí)(種子)的鳥(niǎo)類行為進(jìn)行觀察, 詳細(xì)記錄鳥(niǎo)類的種類、取食基質(zhì)、訪問(wèn)頻次、取食時(shí)間、取食數(shù)量和取食方式等信息, 探討鳥(niǎo)類在海南蒲桃種子傳播及種群更新中的生態(tài)作用。結(jié)果表明: 成熟的海南蒲桃能吸引7種食果鳥(niǎo)類對(duì)其種子進(jìn)行取食,其中白頭鵯()、紅耳鵯()、白喉紅臀鵯()和黃臀鵯()4種鳥(niǎo)類以整吞的方式取食海南蒲桃的種子, 屬于種子潛在傳播者。不同種鳥(niǎo)類對(duì)海南蒲桃果實(shí)的取食頻次間存在顯著差異(t=4.310,=6,< 0.01), 平均訪問(wèn)只數(shù)、平均取食時(shí)間和平均取食量間存在極顯著差異(< 0.001)。食果鳥(niǎo)類的形態(tài)特征(體長(zhǎng)、體重和嘴峰大小)與取食數(shù)量間均呈正相關(guān)。鳥(niǎo)類主要以嘔吐的方式傳播海南蒲桃的種子, 觀察期間在鳥(niǎo)類取食后停歇的樹(shù)木下方地面上常散落著較多表面潔凈、無(wú)果肉包裹的裸露種子, 且有大量的海南蒲桃幼苗成功更新, 說(shuō)明城市綠地中的植物是可以借助鳥(niǎo)類的取食和傳播來(lái)實(shí)現(xiàn)其種群的更新。
海南蒲桃; 食果鳥(niǎo)類; 種子傳播; 城市綠地
種子傳播是決定植物種群空間分布、結(jié)構(gòu)組成及遺傳多樣性的一個(gè)重要過(guò)程[1-2]。許多研究表明, 大約70%—90%熱帶和亞熱帶區(qū)域中的植物種子都是依靠陸生脊椎動(dòng)物進(jìn)行取食和傳播[3-4], 尤其是數(shù)量和種類眾多的鳥(niǎo)類。由于鳥(niǎo)類具有較強(qiáng)的飛翔能力且能同時(shí)取食和傳播多種植物, 加之不同鳥(niǎo)類間的形態(tài)特征、取食方式、活動(dòng)模式和取食后的生境選擇偏好等存在明顯差異[5], 這些生態(tài)功能差異性能提高不同傳播者間的互補(bǔ)性[6-7], 提高種子到達(dá)適宜萌發(fā)微生境中的機(jī)會(huì)以占據(jù)新的生態(tài)位[8-9]。同時(shí)避免后代因母樹(shù)周邊高強(qiáng)度的種內(nèi)競(jìng)爭(zhēng)和自然天敵(病原體、微生物、食草動(dòng)物和種子捕食者)而造成的高密度死亡率, 從而影響后期植物種群的空間分布和群落多樣性的維系[10]。
海南蒲桃()又稱烏墨、烏楣, 隸屬于桃金娘科(Myrtaceae)、蒲桃屬()的常綠喬木, 主要分布于馬來(lái)西亞、印度、印度尼西亞等國(guó)家[11], 而我國(guó)主要分布于臺(tái)灣、福建、廣東、廣西和云南等地。海南蒲桃果實(shí)為橢圓形漿果, 果實(shí)期為6—9月[12]; 研究期間對(duì)成熟的海南蒲桃果實(shí)和種子特征進(jìn)行了測(cè)量, 具體參數(shù)如下: 果實(shí)的長(zhǎng)度(14.583±0.155) mm、寬度(11.472±0.109) mm和重量(1.419±0.038) g, 種子的長(zhǎng)度(10.892±0.119) mm、寬度(8.760±0.675) mm和重量(0.491±0.014) g (=100)。較大的外形和重量使其難以借助風(fēng)力和重力作用離開(kāi)母樹(shù)到達(dá)較遠(yuǎn)的地方, 同時(shí)其果實(shí)成熟后會(huì)由青色變?yōu)樽虾谏? 這符合吸引食果鳥(niǎo)類取食后傳播的特征[13-14], 但目前還未見(jiàn)有關(guān)鳥(niǎo)類在其種子傳播中作用的相關(guān)報(bào)道。因此, 本研究以分布在城市綠地中的海南蒲桃為研究對(duì)象, 通過(guò)觀察鳥(niǎo)類對(duì)海南蒲桃種子的取食行為, 探討鳥(niǎo)類在其種子傳播和種群更新中的生態(tài)作用, 以期為城市生態(tài)系統(tǒng)中的動(dòng)植物協(xié)同進(jìn)化取食網(wǎng)絡(luò)的研究及綠地建設(shè)提供基礎(chǔ)數(shù)據(jù)參考。
研究區(qū)域位于崇左市境內(nèi)的廣西民族師范學(xué)院校園內(nèi)(22°23'N, 107°23'E)。該區(qū)域?qū)儆趤啛釒Ъ撅L(fēng)氣候區(qū), 氣候溫和、雨量充沛, 常年光熱充足。年平均溫度為22 ℃, 7月最高溫度為36 ℃, 1月最低溫度為 1 ℃; 年降雨量為1200 mm, 有明顯的旱季和雨季之分(雨季: 4—9月, 旱季: 10月至翌年3月), 其中80%的降雨量都集中在雨季; 年無(wú)霜期達(dá)340 d, 年日照時(shí)數(shù)高達(dá)1600 h。校園內(nèi)種植有大量的果實(shí)植物包括海南蒲桃、秋楓()、桂花()、萍婆()、假萍婆()、香樟樹(shù)()、斜葉榕()和海桐()等。
2020年6月底至8月中旬, 對(duì)取食海南蒲桃果實(shí)的鳥(niǎo)類行為進(jìn)行連續(xù)觀察。選取結(jié)實(shí)率高且易于觀察的5株母樹(shù)作為目標(biāo)觀察樹(shù), 每天上午6:30— 10:30和下午15:30—17:30 時(shí)借助 Safari10×26 變焦雙筒望遠(yuǎn)鏡(產(chǎn)地: 德國(guó))采用焦點(diǎn)動(dòng)物掃描法對(duì)訪問(wèn)目標(biāo)母樹(shù)的鳥(niǎo)類取食行為進(jìn)行觀察, 并詳細(xì)記錄鳥(niǎo)類種類、訪問(wèn)頻次、取食時(shí)間、取食數(shù)量、取食基質(zhì)(樹(shù)上或地面)和取食方式(整吞或啄食), 直至其離開(kāi)觀察樹(shù)為止[15-16]。若一群同種鳥(niǎo)類同時(shí)訪問(wèn)目標(biāo)母樹(shù), 又無(wú)法對(duì)所有鳥(niǎo)類的取食行為進(jìn)行同步觀察時(shí), 則選擇最適宜觀察的一只個(gè)體進(jìn)行記錄[17]。將以整吞的方式取食海南蒲桃果實(shí)的鳥(niǎo)類定義為種子傳播者[18]。觀察周期為種子開(kāi)始成熟至種子完全掉落, 所有的觀察都在晴朗的天氣中進(jìn)行。
采用 One-Sample T-test 對(duì)鳥(niǎo)類的訪問(wèn)頻次、平均訪問(wèn)只數(shù)、平均取食時(shí)間及平均取食數(shù)量差異進(jìn)行分析; 鳥(niǎo)類形態(tài)特征(體重、體長(zhǎng)和嘴峰)的所有參數(shù)來(lái)自《中國(guó)鳥(niǎo)類野外手冊(cè)》[19]和《中國(guó)鳥(niǎo)類志》[20], 并對(duì)鳥(niǎo)類形態(tài)特征與取食量間的關(guān)系進(jìn)行相關(guān)性分析。所有數(shù)據(jù)的分析均在SPSS 20.00上完成, 并將顯著水平設(shè)定為< 0.05。采用R語(yǔ)言(3.6.1)進(jìn)行作圖[21]。
研究期間共觀察到7種鳥(niǎo)類(1目4科)訪問(wèn)目標(biāo)母樹(shù)308次, 不同種鳥(niǎo)類對(duì)海南蒲桃果實(shí)的訪問(wèn)頻次存在顯著差異(t=4.310,=6,< 0.01), 而平均訪問(wèn)只數(shù)(t=10.478,=6,< 0.001)、平均取食時(shí)間(t=12.846,=6,< 0.001)和平均取食量(t=8.817,=6,< 0.001)都存在極顯著差異 (表 1)。
從訪問(wèn)頻次上來(lái)看, 白頭鵯()、暗綠繡眼鳥(niǎo)()和紅耳鵯() 3種鳥(niǎo)類的訪問(wèn)頻次最高, 分別占總訪問(wèn)頻次的21.75%、21.10%和19.81%(表1)。
從取食方式上來(lái)看, 4種鵯科鳥(niǎo)類同時(shí)以啄食和整吞的方式取食海南蒲桃的果實(shí), 對(duì)海南蒲桃的種子具有潛在的傳播作用; 而其余3種鳥(niǎo)類僅啄食果肉, 不起傳播作用(表1; 圖1)。從取食基質(zhì)上來(lái)看, 僅1種鳥(niǎo)類即鵲鴝()在地面上取食海南蒲桃的果實(shí)。在鳥(niǎo)類常停歇的樹(shù)木下方地面上散落著大量表面潔凈、無(wú)果肉包裹的海南蒲桃種子, 但在鳥(niǎo)糞中未發(fā)現(xiàn)海南蒲桃的種子, 因此推斷這些整吞的食果鳥(niǎo)類均以嘔吐的方式傳播海南蒲桃的種子。
相關(guān)分析表明, 食果鳥(niǎo)類的體長(zhǎng)、體重和嘴峰長(zhǎng)與果實(shí)平均取食量間均呈正相關(guān), 說(shuō)明鳥(niǎo)類的形態(tài)越大, 取食的果實(shí)數(shù)量越多(圖2)。
自然界中的植物為盡可能的吸引更多的食果鳥(niǎo)類對(duì)其果實(shí)或種子進(jìn)行取食和傳播, 會(huì)不斷的進(jìn)化出一系列的適應(yīng)特征, 如顏色、大小、形狀、營(yíng)養(yǎng)組成和成熟時(shí)間等[22-23], 其中顏色尤其是紅色和黑色是植物最常用的視覺(jué)吸引劑[24]。本研究中, 海南蒲桃果實(shí)成熟后由青色轉(zhuǎn)變?yōu)樽虾谏? 使其能與周?chē)参锏木G色背景形成強(qiáng)烈的視覺(jué)反差, 從而對(duì)空中飛行的鳥(niǎo)類起著強(qiáng)烈的視覺(jué)吸引作用[25]。此外, 鳥(niǎo)類對(duì)植物果實(shí)或種子的取食方式常會(huì)隨果實(shí)或種子尺寸的大小而發(fā)生改變[16]。如鳥(niǎo)類會(huì)直接整吞小型種子后以糞便的形式將其排出體外, 而常以嘔吐的方式傳播尺寸較大的種子, 從而有利于植物種子到達(dá)適宜萌發(fā)的生境中以實(shí)現(xiàn)其種群的自然更新[26]。本研究中, 4種鵯科鳥(niǎo)類均以整吞的方式取食海南蒲桃的果實(shí), 屬于種子潛在傳播者(表1; 圖1)。大多數(shù)鳥(niǎo)類取食完海南蒲桃的果實(shí)后, 會(huì)直接停歇在母樹(shù)周邊的木棉()、海桐和假萍婆等樹(shù)上, 待消化完果肉部分后再以嘔吐的方式將種子排出體外; 同時(shí)在鳥(niǎo)類停歇的樹(shù)木下方也發(fā)現(xiàn)有大量表面潔凈、無(wú)果肉包裹的種子和少量的更新幼苗, 說(shuō)明鳥(niǎo)類的取食行為的確能促進(jìn)海南蒲桃種群的更新, 二者間能形成穩(wěn)定的互利互惠關(guān)系。
表1 取食海南蒲桃果實(shí)的鳥(niǎo)類種類
注: 取食方式: P表示啄食; S表示整吞; 所有數(shù)據(jù)均為平均值±標(biāo)準(zhǔn)誤(Mean±SE)。
注: 按其訪問(wèn)頻次的比例從小到大依次排列; 中間線條的粗細(xì)表示兩者間對(duì)應(yīng)關(guān)系的強(qiáng)度; a.白頭鵯; b.紅耳鵯; c.白喉紅臀鵯; d.黃臀鵯; e.暗綠繡眼鳥(niǎo); f.白腰文鳥(niǎo); g.鵲鴝。
Figure 1 Foraging network between frugivorous birds andfruits
圖 2 取食量與鳥(niǎo)類形態(tài)特征的相關(guān)性
Figure 2 Relationship between foraging quantity and morphological characteristics of birds
鳥(niǎo)類的形態(tài)特征(體重、體長(zhǎng)和嘴峰)會(huì)影響其對(duì)植物果實(shí)或種子的取食數(shù)量[27]。許多研究表明, 鳥(niǎo)類對(duì)種子的取食數(shù)量與其形態(tài)特征間呈顯著正相關(guān)[28-29]。這是因?yàn)轼B(niǎo)類的形態(tài)越大意味著其具有更大的腸道容量, 能一次性取食更多的植物種子, 加之大型鳥(niǎo)類具有較強(qiáng)的飛行能力和活動(dòng)范圍, 能將植物種子傳播到不同的生境中, 從而提高植物種群的空間分布[30]。本研究中, 鳥(niǎo)類的體重、體長(zhǎng)和嘴峰與鳥(niǎo)類的取食數(shù)量間都呈正相關(guān)關(guān)系(圖2), 說(shuō)明形態(tài)特征數(shù)據(jù)越大, 鳥(niǎo)類的取食數(shù)量越多。
本研究結(jié)果表明, 城市綠地中的海南蒲桃是有能力與當(dāng)?shù)伉B(niǎo)類形成穩(wěn)定的協(xié)同進(jìn)化關(guān)系, 這為后期研究城市綠地中的動(dòng)植物協(xié)同進(jìn)化網(wǎng)絡(luò)及綠地建設(shè)具有重要意義。同時(shí), 成熟的海南蒲桃果實(shí)富含大量的營(yíng)養(yǎng), 除了鳥(niǎo)類外是否有其他動(dòng)物(嚙齒動(dòng)物、螞蟻等)對(duì)其果實(shí)進(jìn)行取食和搬運(yùn)還需進(jìn)一步研究。
[1] HELENO R H, RAMOSJ A, MEMMOTT J. Integration of exotic seeds into an Azorean seed dispersal network [J]. Biological Invasions, 2013, 15: 1143–1154.
[2] FONTURBRL F E, JORDANO P, MEDEL R. Scale- dependent responses of pollination and seed dispersal mutualisms in a habitat transformation scenario [J]. Journal of Ecology, 2015, 103: 1334–1343.
[3] ARROYO R V, AGUILAR B E, GONZALEZ Z A, et al. Parent-parent and parent-offspring distances inseeds suggest long-distance pollen and seed dispersal: evidence from latrines of the spider monkey [J]. Journal of Tropical Ecology, 2017, 33(2): 95–106.
[4] CARLO T A, TEWKSBURY J J, REES M. Directness and tempo of avian seed dispersal increases emergence of wild chiltepins in desert grasslands [J]. Journal of Ecology, 2014, 102(1): 248–255.
[5] LI N, BAI B, Li X H, et al. Dispersal of remnant endangered trees in a fragmented and disturbed forest by frugivorous birds [J]. Journal of Plant Research, 2017, 130: 669–676.
[6] BREGMAN T P, LEES A C, MACGREGOR H E A, et al. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests [J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283: 20161289.
[7] SAAVEDRA F, HENSEN I, BECK S G, et al. Functional importance of avian seed dispersers changes in response to human-induced forest edges in tropical seed-dispersal networks [J]. Oecologia, 2014, 176(3): 837–848.
[8] BECKMAN N G, ROGERS H S. Consequences of seed dispersal for plant recruitment in tropical forests: interactions within the seedscape [J]. Biotropica, 2013, 45(6): 666–681.
[9] DURON Q, GARCIA I O, BRESCIA F, et al. Comparative effects of native frugivores and introduced rodents on seed germination in New-Caledonian rainforest plants [J]. Biological Invasions, 2017, 19(1): 351–363.
[10] COMITA L S, QUEENBOROUGH S A, MURPHY S J, et al. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance-and density-dependent seed and seedling survival [J]. Journal of Ecology, 2014, 102(4): 845–856.
[11] AZIZ A, BANERJEE S. Phytochemical Screening and Antibacterial Activity study of(Myrtaceae) Seed Extracts[J]. Pharma Tutor, 2018, 6(4): 70–73.
[12] 周菊珍, 杜鈴, 林榕庚. 海南蒲桃的栽培技術(shù) [J]. 廣西林業(yè)科學(xué), 2001, 30(2): 99–100.
[13] DUAN Q, QUAN R. The effect of color on fruit selection in six Tropical Asian birds [J]. The Condor, 2013, 115(3): 623–629.
[14] DU Y J, MI X C, Liu X J, et al. Seed dispersal phenology and dispersal syndromes in a subtropical broad-leaved forest of China [J]. Forest Ecology and Management, 2009, 258(7): 1147–1152.
[15] 陸彩虹, 魯長(zhǎng)虎. 南京中山植物園鳥(niǎo)類對(duì)香樟果實(shí)(種子)的取食 [J]. 動(dòng)物學(xué)雜志, 2019, 54(6): 784–792.
[16] 潘揚(yáng), 徐丹, 魯長(zhǎng)虎, 等. 食果鳥(niǎo)類對(duì)紅楠種子的傳播作用[J]. 生態(tài)科學(xué), 2017, 36(2): 63–67.
[17] 李寧, 王征, 魯長(zhǎng)虎, 等. 斑塊生境中食果鳥(niǎo)類對(duì)南方紅豆杉種子的取食和傳播 [J]. 生態(tài)學(xué)報(bào), 2014, 34(7): 1681–1689.
[18] BREITBACH N, LAUBE I, STEFFAN D I, et al. Bird diversity and seed dispersal along a human land-use gradient: high seed removal in structurally simple farmland [J]. Oecologia, 2010, 162(4): 965–976.
[19] 約翰.馬敬能, 卡倫.菲利普斯,等. 中國(guó)鳥(niǎo)類野外手冊(cè) [M]. 長(zhǎng)沙: 湖南教育出版社, 2000.
[20] 趙正階. 中國(guó)鳥(niǎo)類志 [M]. 長(zhǎng)春: 吉林科學(xué)技術(shù)出版社, 2001.
[21] R Core team. R: A language and environment for Statistical Comupting [M]. R Foundation for Statistical computing, Vienna, Austria, 2019.
[22] BURNS K C, DALEN J L. Foliage color contrasts and adaptive fruit color variation in a bird-dispersed plant community [J]. Oikos, 2002, 96: 463–469.
[23] HERRERA C M. Plant-vertebrate seed dispersal systems in the Mediterranean: ecological, evolutionary, and historical determinants [J]. Annual Review of Ecology and Syste-matics, 1995: 705–727.
[24] SCHAEFER H M, MCGRAW K, CATONI C. Birds use fruit color as honest signal of dietary antioxidant rewards [J]. Functional Ecology, 2008, 22: 303–310.
[25] DUAN Q, GOODALE E, QUAN R C. Bird fruit preferences match the frequency of fruit colours in tropical Asia [J]. Scientific Reports, 2014, 4: 5627.
[26] JORDANO P, GARCIA C, GODOY J A, et al. Differential contribution of frugivores to complex seed dispersal patterns [J]. Proceedings of the National Academy of Sciences, 2007, 104(9): 3278–3282.
[27] SIMMONS B I, SUTHERLAND W J, DICKS L V, et al. Moving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant-frugivore networks [J]. Journal of Animal Ecology, 2018, 87(4): 995–1007.
[28] DONOSO I, SCHLEUNING M, GARCIA, et al. Defaunation effects on plant recruitment depend on size matching and size trade-offs in seed-dispersal networks [J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1855): 20162664.
[29] LI N, WANG Z, Li X H, et al. Bird functional traits affect seed dispersal patterns of China's endangered trees across different disturbed habitats [J]. Avian Research, 2018, 9(1): 13.
[30] PEREZ M N, JORDANO P, VALIDO A. Downsized mutualisms: Consequences of seed dispersers' body-size reduction for early plant recruitment [J]. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17(2): 151–159.
Fruit foraging and dispersal ofby frugivorous birds in urban green space
WANG Guohai1, DONG Peipei1, WEI Lijuan2, HUANG Qiuchan1, HAN Qiao1, TANG Chuangbin1,*
1. College of Chemistry and Bioengineering, Guangxi Normal University for Nationalities, Chongzuo 532200, Guangxi, China 2. College of Mathematics, Physics and Electronic Information Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, Guangxi, China
Jambolan jam () is a common greening plant in urban green space with abundant fruits and a long fruit period, which is widely distributed in subtropical area. With Safari l0×26 zoom binoculars, the focus scanning method was adopted to observe the bird behavior of visiting Jambolan jam from June to August 2020. The information of bird species, foraging substrates, visiting frequency, foraging time, foraging amount and foraging methods was recorded to explore the ecological role of birds on seed dispersal and population regeneration of Jambolan jam. The results showed that Jambolan jam cloud attracted 7 species of frugivorous birds to feed on its fruit, and there were significant differences in the visiting frequency among different bird species (t=4.310,=6,<0.01). There were significant differences in the average number of visitors, average foraging time andaverage foraging amount among different birds (<0.001). Chinese Bulbul (), Red-whiskered Bulbul (),Sooty-headed Bulbul () and Brown-breasted Bulbul () swallowed the whole fruit, which were considered the potential seed dispersers of Jambolan jam. The morphological characteristics (body weight, body length and bill length) of birds were positively correlated with the foraging amount of the fruits. These birds dispersed seeds primarily by regurgitating them to the ground, many seeds with clean surface and no pulp wrapped, and regeneration seedlings were found under the trees acting as roosting site of birds during the observation period, which indicated that the plants in urban green space could realize the population regeneration by feeding and dispersal of birds.
Jambolan jam (); frugivorous bird; seed dispersal;urban green space
10.14108/j.cnki.1008-8873.2022.06.012
Q958.1
A
1008-8873(2022)06-100-05
2020-09-30;
2020-12-05
廣西民族師范學(xué)院博士科研啟動(dòng)項(xiàng)目(2018FG008, 2021BS002); 珍稀瀕危動(dòng)植物生態(tài)與環(huán)境保護(hù)重點(diǎn)實(shí)驗(yàn)室研究基金(20201125);廣西壯族自治區(qū)教育廳第四批民族院校特色學(xué)科建設(shè)立項(xiàng)建設(shè)學(xué)科項(xiàng)目(民族生態(tài)學(xué))
汪國(guó)海(1986—), 男, 博士, 主要從事動(dòng)植物協(xié)同進(jìn)化研究, E-mail:1016729581@qq.com
通信作者:唐創(chuàng)斌, 男, 博士, 講師, 主要從事野生動(dòng)物生態(tài)與保護(hù)研究, E-mail: 1198407963@qq.com
汪國(guó)海, 董佩佩, 韋麗娟, 等. 城市綠地中鳥(niǎo)類對(duì)海南蒲桃的取食和傳播作用[J]. 生態(tài)科學(xué), 2022, 41(6): 100–104.
WANG Guohai, DONG Peipei, WEI Lijuan, et al. Fruit foraging and dispersal ofby frugivorous birds in urban green space[J]. Ecological Science, 2022, 41(6): 100–104.