亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于乘客超越行為建模的航空登機效率分析

        2022-08-30 02:41:22馬劍廖偉屹陳娟王巧唐鐵橋原志路
        關鍵詞:效率策略模型

        馬劍,廖偉屹,陳娟,王巧,唐鐵橋,原志路

        (1.西南交通大學,a.交通運輸與物流學院,b.地球科學與環(huán)境工程學院,成都 610031;2.北京航空航天大學,交通科學與工程學院,北京 100191;3.深圳大學,智慧城市研究院,廣東深圳 518060)

        0 引言

        航空運輸作為遠距離運輸?shù)闹匾绞剑哂锌焖?、機動、成本高的特點。2019年,全球民用航空客運量已接近4億人次,中國航空公司2017年搭載的旅客數(shù)量比35年前多出140 倍。客運量的飛速增長造成航空運輸成本成倍增加,其中延誤成本高達每年290 億美元[1]。延誤原因包括機械故障、天氣惡劣、航空周轉時間過長。航空周轉過程中耗時最長的是乘客登機過程[2],且伴隨乘客行李增多、乘客對航空服務要求提高[3],乘客登機時間(以A319、B737為例)已長達30 min[1]。因此,多年來研究學者的關鍵目標是優(yōu)化乘客登機過程,進而縮短乘客登機時間。

        運籌優(yōu)化方面研究的主要目的是通過優(yōu)化管理手段、策略算法等,為航空公司設計并提供更行之有效的登機策略,以實現(xiàn)航空公司損耗成本最小化與乘客登機效率最大化的雙贏目標[4]。2008年Steffen[5]提出的優(yōu)化方法是:乘客從靠窗經中間位置再到過道,每隔12 個座位(2 排)由后往前登機。而后Milne 等[6]在Steffen 策略的基礎上,提出行李數(shù)量均勻分配到各排,繼而分配到每排各座位,最終乘客遵循Steffen策略登機?;谧环峙渌枷耄琈ilne通過建立混合整數(shù)規(guī)劃模型(MILP)進一步證實增設停機坪巴士的數(shù)量也可提高登機效率[7]。實際上,早在Bazargan 的研究中,就已實現(xiàn)通過混合整數(shù)模型來最小化登機方案的登機延誤[8]。

        建立能夠精確描述實際乘客登機過程的登機模型是保證研究可靠的關鍵。通過建立乘客登機微觀行為模型模擬登機過程的研究方法近年來受到研究人員的廣泛關注。Notomista 等[9]為乘客引入敏捷度系數(shù)與攜帶行李系數(shù),刻畫Steffen策略中乘客登機群體與個體差異。唐鐵橋等[10]考慮群體行為與行李數(shù)量兩種重要因素,建立行人跟隨模型仿真登機過程。強生杰等[11]通過元胞自動機模擬乘客登機過程,賦予個體速度變化的規(guī)則和閾值,設計了不同登機時間間隔,又將登機仿真模型嵌入模擬退火算法中,求解出具有最小登機時間的乘客登機序列[12]。同樣也有基于社會力模型、幾何模型、模糊邏輯模型的建模與仿真,模擬出更為復雜、緊急的情況。Schultz[13]將考慮乘客行為和運營約束的登機模型應用于不同登機場景,并展示了側滑式座椅額外縮短登機時間的優(yōu)勢。Gwynne等[14]聚焦于登機時小規(guī)模乘客的微行為(使用廁所、系安全帶等),將登機過程細化到具體動作。用干擾時間和干擾次數(shù)表征總登機時間也是學者常用的方法,任新惠等[15]在干擾時間閾值的基礎上求解出不同行李數(shù)量比例下的動態(tài)登機策略,并組織現(xiàn)場實驗驗證了模型的可行性。

        以往研究的模型多假設客艙過道內僅允許乘客保持單列行走,忽視乘客側身超越這一特殊行為。實際上,根據(jù)民航法規(guī)CCAR25.815 規(guī)定:大于20座的民用航空飛機客艙(如A30、A321)的過道寬度必須在20 英寸(508 mm)以上。乘客按單列依次登機時,客艙通道將會形成較長的阻塞隊列,而阻塞隊列的兩側會留有空隙。事實上,乘客在登機過道中經常采用側身從空隙超越的情況,從而擺脫阻塞,降低登機過程中阻塞不前的時間占比。但是,乘客超越行為對不同登機策略實際登機效率的影響缺乏研究。

        本文將通過建立考慮超越行為的登機模型重新刻畫乘客登機過程,并基于不同登機策略下乘客登機過程的仿真結果,研究不同登機情景下各登機策略的效率表現(xiàn),最終得出相應結論與建議。

        1 考慮超越行為的乘客登機模型

        本文研究的登機過程為從第1 名乘客進入單通道窄體機經濟艙的入口開始,到最后一名乘客落座結束,不考慮通過休息室、檢票口到艙門的過程。實際上,乘客從進入經濟艙入口到落座會經歷3個過程:過道中行走、放置行李、等待讓座并進入座位。因此,首先分析登機時間的組成,然后考慮乘客攜帶行李的特征,構建乘客運動速度模型和乘客超越行為模型,最終通過模型計算乘客登機時間。

        1.1 登機時間分析

        乘客的登機時間為

        式中:Tst、Tbt分別為乘客落座時間、乘客登機開始(進入經濟艙入口)時間,Tm、Td分別為行走時間、干擾延誤時間,干擾延誤時間又可細分為行走干擾延誤時間Tmd、行李干擾延誤時間Tld、座位干擾延誤時間Tsd,即

        式中:Tmd為乘客因為在過道行走過程中前方阻塞不前(可能是前方乘客正放置行李或是前方乘客等待更前方的乘客放置行李)而延誤的時間;Tld為乘客在其座位對應的行李架前放置行李所延誤的時間;Tsd為當靠過道(中間)的座位已有乘客落座時,座位在中間和靠窗(靠窗)的乘客要落座,因靠過道和中間座位上的乘客起身讓行產生的時間。

        參考尚華艷等[16]的行李干擾模型,行李干擾延誤為

        式中:τ為乘客放置行李的基本時間;λ為調整系數(shù);ne、np分別為行李架上已有行李數(shù)量、乘客所攜帶行李數(shù)量;nc為行李架容量,即可放置的最大行李數(shù)。

        座位干擾延誤大小主要取決于讓座乘客的數(shù)量。在一次讓座過程中將已落座乘客起身出來和待落座乘客進入座位這兩個過程時間視作相等,即

        式中:μ取值代表出(進)座位的過程時間;nbs為需要讓座的乘客數(shù)量。

        1.2 客艙描述

        在航空登機過程中,過道中行走乘客的兩側各有一條空隙道Il和Ir,可提供給乘客超越后側身行走,當乘客不發(fā)生超越行為時會在過道中間的走道行走。乘客在登機過程中的位置狀態(tài)是且僅是以下3 種之一:走道中、空隙中、座位中。因此,乘客登機過程可以通過元胞自動機模型模擬。

        不失一般性,如圖1所示,一架150座的標準民用航空單通道窄體飛機(A320)的經濟艙區(qū)域被劃分為座位區(qū)、走道區(qū)和超越區(qū)。其中超越區(qū)(空隙道)在走道區(qū)(過道)的兩側,寬度均為過道的1/2。通道兩側各是3 排座位,分為靠窗、中間、靠過道。因此,在構建元胞自動機模型中共有25×9個元胞,座位元胞的尺寸為60 cm×60 cm,過道元胞的尺寸為60 cm×45 cm,空隙道元胞的尺寸為60 cm×22.5 cm。每個區(qū)域的元胞狀態(tài)分為空閑和被占用兩種,賦予每個乘客其對應的i,i∈{1,2,…,nt} ,其中,nt為乘客總人數(shù)。乘客i在客艙的登機過程中,不同位置的元胞狀態(tài)與乘客i的對應關系為:同時刻下乘客i只會占用走道中某位置A(p)的元胞或空隙中某位置Il(p)(Ir(p))的元胞或該乘客座位Si的元胞。

        圖1 空客320窄體機經濟艙仿真圖Fig.1 A320 narrow-body aircraft economy class simulation

        1.3 乘客運動速度模型

        本文在強生杰等[11]乘客跟隨模型的基礎上,進一步考慮行李數(shù)量的影響,提出乘客在過道中的行走速度,計算方法為

        式中:v(t)、p(t)、p(t)f分別為t時刻乘客的速度、乘客的位置、乘客前方距離最近乘客的位置;np為乘客所攜帶行李數(shù)量。在t時刻下,當p(t)f-p(t)超過vmin時,下一時間步乘客將以1-ε·np的概率加速前進,速度大小為p(t)f-p(t)-1,ε為衰減系數(shù);而當p(t)f-p(t)減小時,下一時間步乘客減速,直至v=0,發(fā)生行走干擾,Tmd=Tmd+1。vmin、vmax分別取1元胞每時間步和2元胞每時間步。式(5)描述了當前方無阻塞情況下,乘客i將以不低于vmin的速度行走,直至其座位所在列Si(j)停下。

        1.4 乘客超越行為模型

        在航空登機過程中,如果乘客在機艙過道的阻塞隊列中停滯將導致其行走干擾延誤增加。當行走干擾延誤超過一段時間,乘客將產生超越的傾向。這里的時間段長度被定義為臨界超越時間。調查結果表明,乘客是否產生超越行為受3個因素影響:攜帶行李數(shù)量,阻塞位置到座位所在列的距離,阻塞位置到座位所在列的過道中阻塞人數(shù)的占比。當乘客攜帶2件行李時,超越其他乘客與攜帶1 件行李相比較為困難,因此攜帶2 件行李的乘客更傾向于在隊列中繼續(xù)等待,其臨界超越時間也就高于攜帶1件行李的乘客;在行李數(shù)量相同的情況下,乘客所在位置與座位所在列的距離越遠,到座位所在列的過道中阻塞人數(shù)的占比越高,臨界超越時間越小,這是因為乘客i希望更快和更早地到達座位所在列Si(j)。因此,臨界超越時間為

        式中:Tot,cv、Tot,m、Tot,p分別為乘客的臨界超越時間、基本超越時間、可變超越時間;分別為乘客攜帶行李數(shù)量、乘客所在位置到座位所在列的距離、阻塞位置到座位所在列的過道中阻塞人數(shù)的占比;α、β、γ均為調節(jié)系數(shù)。其中,基本超越時間Tot,m是一個固定值,其決定臨界超越時間的最小取值,而可變超越時間Tot,p是臨界超越時間的主要組成部分,由式(7)確定。

        接下來介紹乘客的超越行為規(guī)則。假設在走道中行走的乘客位于A(p),其將遵循如下超越規(guī)則。

        Step 1Tmd=0。

        Step 2 判斷前方位置A(p+vmin)的狀態(tài)是否為被占用。若是,轉入Step 3;若否,乘客遵循乘客運動速度模型繼續(xù)在走道中行走。

        Step 3Tmd=Tmd+1;

        Step 4 判斷是否Tmd>Tot,cv。若是,產生超越傾向,轉入Step 5;若否,轉入Step 2,

        Step 5 判斷空隙道中Is(p+vmin)是否被占用,其中s∈{left,right} 。若是,Tmd=Tmd+1 ,重復Steps 5;若否,乘客狀態(tài)從A(p)移入Is(p+vmin),進入超越狀態(tài)。定義當乘客i的座位Si位于過道左側,乘客選擇Il(p+vmin);當乘客i的座位Si位于過道右側,乘客選擇Ir(p+vmin)。

        當乘客進入超越狀態(tài)后,將在空隙道中行走,這個行走過程類似在過道中行走,但因為空隙道空間受限,乘客將以穩(wěn)定的速度vmin前進。同樣,當乘客位于Is(p),若Is(p+vmin)的狀態(tài)為被占用,Tmd=Tmd+1。

        通常來說,乘客不會在空隙道內一直走到其座位所在列Si(j)。在空隙道中行走是乘客在阻塞狀態(tài)下產生超越行為的結果,乘客依然傾向在過道中行走,故當乘客超越阻塞隊列,重新回到過道行走。同時,假定乘客不能在空隙道放置行李。

        Step 6 位于Is(p)的乘客,判斷斜前方過道是否出現(xiàn)空閑段Afree。

        式中:Dr為決定不同空閑段距離的臨界空閑距離,根據(jù)調查結果,Dr=2。

        若否,乘客下一步行為也取決于Dps。當Dps≥Dr,乘客尚可繼續(xù)在空隙道中前進,同樣,若Is(p+vmin)空閑,則前進;若Is(p+vmin)被占用,則Tmd=Tmd+1。而當Dr>Dps≥0 ,即乘客即將到達Si(j),乘客將不得不回到過道,Tmd=Tmd+1,行走延誤累加直到Afree出現(xiàn)。

        考慮超越行為后,乘客進入客艙后的模擬流程如圖2所示。當基本超越時間Tot,m的取值為無窮大時,臨界超越時間Tot,cv也將為無窮大,這時阻塞隊列中的乘客不會發(fā)生超越行為,乘客超越行為模型退化為傳統(tǒng)的登機模型。

        圖2 乘客進入客艙后模擬流程圖Fig.2 Simulation flow chart after passengers enter the cabin

        2 登機策略效率分析

        2.1 參數(shù)設置

        仿真參數(shù)設計如下:參照文獻[9-10],行李干擾延誤模型中,調整系數(shù)λ=10,根據(jù)乘客攜帶行李數(shù)量的最大限制為2 件,行李架容量nc=6,乘客放置行李基本時間τ取1.5 個模擬時間步;座位干擾延誤模型中,單個乘客進出座位時間μ取2個模擬時間步。本文中1模擬時間步等于2.4 s;干擾延誤模型的計算值往正無窮方向取最小整數(shù);乘客所攜帶的行李類型均為背包、手提袋。

        基于客艙中客座數(shù)量特點,本文分析8種登機策略,分別為Random(隨機,后文簡稱Rand)、BF3(分3種次序從后到前)、BF4(分4種次序從后到前)、BF5(分5 種次序從后到前)、WA3(從靠窗到過道)、RP4(倒金字塔)、Row(行策略)、Steffen 策略。為消除隨機因素的影響,每種策略仿真100 次,登機時間值取記錄結果的算術平均值。

        2.2 超越行為對Rand策略登機效率的影響

        Rand 策略因其規(guī)則限制少且易于理解被眾多航空公司采用和登機乘客接受,首先仿真對比Rand策略下有超越行為(Tot,m取4個模擬時間步)和無超越行為(Tot,m取無窮大)的乘客登機過程。設置乘客放行間隔為3個模擬時間步,攜帶行李數(shù)量為1 件和2 件的乘客數(shù)量比例分別為60%、40%,乘客超越行為模型中調節(jié)系數(shù)α、β、γ分別取6、0.1、3,乘客運動速度模型中衰減系數(shù)ε取0.1。

        首先對比有無超越行為下進入客艙通道和落座人數(shù)在登機過程中的變化情況,如圖3所示。由圖可見,在348 s前,有無超越行為的進入客艙人數(shù)的增加速率基本一致,而348 s后,無超越行為的進入客艙人數(shù)隨時間的增加速率間歇性地減慢,有超越行為的進入客艙人數(shù)隨時間以較穩(wěn)定的速率增加,直到564 s后增速開始間歇性地減慢,且減慢的頻率和程度都低于無超越行為的情況。最終完成所有乘客進入客艙通道,無超越行為比有超越行為多耗時100.8 s。至于落座情況,在520.8 s 前,有無超越行為的客艙中落座人數(shù)隨時間的增長速率在大部分時間相近,而520.8 s 后,有超越行為的客艙中落座人數(shù)隨時間接近線性增加,無超越行為的客艙中落座人數(shù)的增加速率明顯減慢,且在520.8~780.0 s 和1039.2 s 之后降低明顯。最終完成所有乘客落座,無超越行為比有超越行為多耗時158.4 s。

        圖3 超越行為對Rand策略下乘客進入客艙通道效率與落座效率的影響Fig.3 Effect of overtaking behavior on efficiency of passenger access to cabin aisle and efficiency of seating under Rand strategy

        圖4 進一步展示了Rand 策略下有無超越行為的仿真登機過程。圖中位置在走道、空隙道、座位的橢圓分別代表處于正常行走狀態(tài)、超越狀態(tài)和落座狀態(tài)的乘客。對比可見,同時刻下無超越行為的客艙通道中乘客行走隊列的阻塞程度相較于有超越行為更嚴重,且隨著時間推進至15 min 以后,無超越行為與有超越行為下登機進程的差距不斷增大。

        圖4 乘客放行間隔ti=7.2 s下不同時刻Rand策略乘客登機情形Fig.4 Rand strategy passenger boarding at different times for passenger release interval ti is 7.2 s

        考慮超越行為后,Rand 策略下的登機過程共55位乘客發(fā)生超越行為98次。如圖5所示,無約束的登機次序也決定了發(fā)生超越行為的乘客座位基本平均分布在不同座位行——座位靠窗、中間和靠過道的發(fā)生超越行為的乘客分別為20,17,18 人。而座位在不同座位列的發(fā)生超越行為的乘客人數(shù)存在明顯差異。由圖5可見,67.27%發(fā)生超越行為的乘客座位集中在客艙后部(16~25列)。這是因為根據(jù)超越行為模型,乘客到其座位的距離會參與決定乘客是否發(fā)生超越。

        圖5 Rand策略下發(fā)生超越行為的乘客所在座位(陰影部分)Fig.5 Seat of passenger who overtakes under Rand strategy(shadow)

        2.3 超越行為對不同登機策略登機效率的影響

        進一步地,對比其余登機策略下超越行為造成的登機效率變化情況,設置參數(shù)與2.1節(jié)和2.2節(jié)一致。以平均登機時間作為衡量登機效率的指標,對比結果如表1 所示。由表可見,在考慮超越行為后,所有登機策略的登機時間都有不同程度的縮減,且在考慮超越行為后,原本不考慮超越行為下登機時間越長策略的登機時間的縮減比例越高??紤]超越行為下WA3策略的登機效率高于RP4策略,且所有策略登機時間的差異減小,登機效率最差的Row 策略和最優(yōu)的Steffen策略的登機時間差值從34.18 min減小到7.25 min。

        表1 有無超越行為的登機時間對比Table 1 Comparison of boarding time with and without beyond behavior

        乘客人均登機時間縮減是整個登機時間縮減的重要原因。圖6 展示了不同登機策略下乘客人均時間在有無超越行為下的對比情況。由圖可見,考慮超越行為下的不同登機策略的人均登機時間相較于不考慮超越行為有不同比例的縮減,其中Steffen策略基本不變,變化最大的Row策略的縮減比例為42.07%,BF3、BF4、BF5 策略的縮減比例依次增大,8 種登機策略平均縮減0.77 min。且考慮超越行為后同種策略的乘客之間登機時間差異減小,所有登機策略下乘客登機時長的平均標準偏差為0.53 min,相較于不考慮超越行為縮減了0.53 min。

        圖6 超越行為對不同登機策略下人均登機時間的影響Fig.6 Effect of overtaking behavior on individual boarding time under different boarding strategies

        如前文所述,3 種延誤干擾時間是構成乘客登機時長的主要部分。表2 統(tǒng)計了有無超越行為的干擾延誤時間,其中超越行為對乘客的行李干擾延誤和座位干擾延誤的影響極小,但對乘客行走干擾延誤的影響顯著。在考慮超越行為情況下,乘客行走不再受制于阻塞隊列,其行走干擾延誤將會在超越后保持不變或少量增加。超越行為導致的行走干擾延誤大幅降低是乘客人均登機時長縮減的主要原因,而超越行為對不同策略下乘客行走干擾延誤的影響程度也不同。

        表2 考慮超越行為后乘客人均干擾延誤變化比例Table 2 Percentage change in interference delay per passenger after considering overtaking behavior

        結合圖7(a)和圖7(b)可知,Steffen 策略下的乘客保持一定間距,因此人均行走干擾延誤和乘客超越的可能性都極小;WA3 策略下的人均行走干擾延誤在無超越行為時大于RP4策略,而在有超越行為時卻小于RP4策略。相較于RP4策略,WA3策略不區(qū)分同一座位類別(同為靠過道或中間或靠窗)乘客的登機次序,導致同一座位類別乘客登機的混亂程度高于RP4 策略,從而產生更多的超越次數(shù),使得WA3策略的行走干擾延誤縮減比例高于RP4策略;至于BF系列策略,超越次數(shù)隨著劃分區(qū)域數(shù)量的增加而減少,人均行走干擾延誤的縮減比例卻相反,超越行為對乘客行走干擾延誤的減輕程度隨劃分區(qū)域數(shù)量的增加而增強,這是因為增加劃分區(qū)域數(shù)量的同時也減小了可提供給乘客超越空隙道的空間,但一旦超越就會更順利地到達座位所在列,因為超越位置更接近座位所在列。但這一趨勢并不會一直保持,Row 策略可視作BF 系列策略的極限形式(BF25),超越行為對Row策略下人均行走干擾延誤的減輕程度并不太高,乘客可占用空間極其有限,導致超越后乘客也只是在空隙中等待;值得注意的是,發(fā)生超越次數(shù)最多的Rand 策略下平均每1.4 個乘客就發(fā)生1 次超越,但對乘客行走干擾延誤的影響最小。這是因為,Rand 策略下發(fā)生超越行為的乘客并未顯著增多,大量的超越次數(shù)來自于發(fā)生不止一次超越的部分乘客。Rand策略下的登機過程不體現(xiàn)秩序性,乘客很可能反復在突然停下的乘客后方發(fā)生超越,隨即又回到過道內。例如圖5中座位在C行23列和C行24列的兩位乘客,登機序號i間隔為3,登機時刻間隔為21.6 s,兩位乘客到座位的行走過程中各自發(fā)生2 次超越行為。阻塞隊列處于少量消散和集聚的交替狀態(tài),超越行為對行走干擾延誤的縮減并不算顯著。

        圖7 超越行為對不同登機策略下行走干擾延誤的影響Fig.7 Effect of overtaking behavior on walking interference delay under different boarding strategies

        3 敏感性分析

        3.1 不同行李數(shù)量下超越行為對登機策略效率的影響

        考慮乘客攜帶行李數(shù)量的不同比例情況,設置攜帶1 件行李的乘客數(shù)量比例為r,r分別取0.0、0.2、0.4、0.6、0.8和1.0,其余參數(shù)與2.1節(jié)和2.2節(jié)保持一致,仿真無超越行為和有超越行為的乘客登機過程。通過對比圖8(a)和圖8(b)看出,考慮超越行為時:隨著行李數(shù)量減少,所有策略的登機時間呈現(xiàn)3種不同變化趨勢,其中,Steffen策略基本不變,Row策略以最快速度縮減,Rand策略次之;其余策略的登機時間縮減速度介于Rand和Steffen策略之間,并隨行李數(shù)量的減少逐漸減慢,其中RP4 策略縮減速度高于WA3 策略,這與無超越行為恰好相反;BF 系列策略縮減的速度從BF3 到BF5 依次降低。

        圖8 不同行李數(shù)量下的登機過程平均登機時長Fig.8 Average boarding time of boarding process with different amount of luggage

        進一步對比不同行李數(shù)量下有超越行為相較于無超越行為的登機時長縮減比例,研究超越行為在不同行李數(shù)量情景下的影響作用。由圖9 和圖10 可見:當所有乘客行李數(shù)量為1 件時,RP4 和WA3 策略下的登機過程幾乎不發(fā)生超越行為;當攜帶2件行李的乘客比例增至40%及以上時,更多的超越行為對WA3 策略效率的影響超過RP4 策略。如圖10 所示,RP4 策略和WA3 策略下的乘客行李干擾延誤時間都因放置行李時間的變長而接近同樣趨勢增加,客艙中等候放置行李乘客的行走干擾延誤時間也同樣將整體增加;WA3 策略下的乘客相較于RP4策略更易發(fā)生超越,其平均每次登機的超越次數(shù)也以更快的趨勢增加,這是因為RP4策略增加了區(qū)分前后座位的乘客次序。如圖11所示,相較于WA3 策略,RP4 策略下的乘客在客艙中部的平均超越次數(shù)明顯低于WA3 策略,相較于客艙首尾位置也大幅減少。更少的超越行為次數(shù)歸因于座位在靠過道和中間兩排區(qū)域的乘客因為區(qū)分登機次序均不易形成過長的阻塞隊列。隨著平均行李干擾延誤的增大,超越行為對WA3 策略下的乘客登機進程影響更大;隨著乘客行李數(shù)量的增加,超越行為對Rand、BF3、BF4、BF5策略下效率的影響以相近的速度增大,但對Row策略下效率的影響以極小的速度增大——不同行李數(shù)量下超越行為對Row 策略效率的影響保持在一個高且穩(wěn)定的水平。建議航空公司在乘客行李數(shù)量少時優(yōu)先選用RP4 策略,而乘客行李數(shù)量多時優(yōu)先選用WA3策略。

        圖9 不同行李數(shù)量下有超越行為相較于無超越行為的平均登機時長縮減比例Fig.9 Average reduction in boarding time with overtaking compared to without overtaking for different amount of luggage

        圖10 不同行李數(shù)量下WA3和RP4策略下乘客行李干擾延誤時間和平均超越次數(shù)對比Fig.10 Comparison of passenger luggage interference delay time and average number of overtaking under WA3 and RP4 strategies with different luggage quantities

        圖11 WA3策略、RP4策略不同客艙過道位置平均超越次數(shù)對比Fig.11 Comparison of average number of overtaking in different cabin aisle positions of WA3 strategy and RP4 strategy

        3.2 不同放行間隔下超越行為對登機策略效率的影響

        設置乘客放行間隔分別為4.8,7.2,9.6,12.0,14.4 s,其余參數(shù)與2.1節(jié)和2.2節(jié)保持一致,模擬考慮超越行為的登機過程,無超越行為和有超越行為不同登機策略的登機時間分別如圖12(a)和圖12(b)所示。值得注意的是,無超越行為時,隨著放行間隔的增大(減?。?,Row 策略的登機時間基本不變;其余策略登機時間的變化速度依次降低(提高),這一趨勢在放行間隔介于9.6 s 和12.0 s 時體現(xiàn)明顯。有超越行為時:Row策略的登機時間不存在保持不變,這是因為允許超越的情形中,所有策略下登機乘客的行走干擾延誤已盡可能降至最低,當乘客放行間隔增大時,被超越行為緩解的阻塞情況很少,登機時長只會因乘客進入客艙通道的速率下降而增長。此外,當放行間隔超過7.2 s 以后,RP4 策略的登機效率超過WA3策略。

        圖12 不同放行間隔下登機過程平均登機時長Fig.12 Average boarding time of boarding process at different release intervals

        圖13展現(xiàn)了不同放行間隔下有超越行為相較于無超越行為的平均登機時長縮減比例。當放行間隔超過7.2 s后,超越行為對RP4策略效率的影響大于WA3 策略,原因同樣是WA3 策略僅按行區(qū)分登機次序的規(guī)則,可能導致乘客保持的前后間距更大,因此在放行間隔很大時,超越行為的影響作用小于RP4 策略。建議航空公司在乘客放行間隔小時優(yōu)先選用WA3 策略,而乘客放行間隔大時優(yōu)先選用RP4 策略。隨著放行間隔增大,超越行為對Steffen、RP4、WA3、Rand、BF3、BF4、BF5 策略效率影響的下降趨勢依次增大,而對Row策略效率的影響趨勢整體接近于Rand策略。當放行間隔從4.8 s增至14.4 s,超越行為對BF5 策略效率的影響水平下降最多,此時有無超越行為所有策略的效率都基本無變化。實際上,劃分登機次序越多的登機策略形成的阻塞隊列越短,且隨放行間隔的增大,阻塞隊列的消散速度越快,超越行為對登機效率的影響減小得越快。

        圖13 不同放行間隔下有超越行為相較于無超越行為的平均登機時長縮減比例Fig.13 Average reduction in boarding time with overtaking compared to without overtaking at different release intervals

        3.3 不同客座率下超越行為對登機策略效率的影響

        在實際航空登機中常常出現(xiàn)客艙并非滿座的情況,故保持其余參數(shù)與2.1 節(jié)和2.2 節(jié)一致,設置不同客座率a(50%,60%,70%,80%,90%),進一步模擬不同客座率下無超越行為和有超越行為的登機過程,無超越行為和有超越行為不同登機策略的登機時間分別如圖14(a)和圖14(b)所示。由圖可見,當客座率小于100%時,考慮超越行為后顯著變化是:BF系列策略中效率最高的不再是BF3策略,而是BF4 策略;甚至在客座率為70%時,BF4 是所有策略中效率最高的。伴隨客座率上升(下降),Steffen、RP4、WA3 等策略效率受超越行為影響的變化規(guī)律不再是單調提高或降低。客座率介于80%~100%是航空公司最常面臨的情況,如圖15所示,在這個區(qū)間內,超越行為對WA3和Rand策略的影響遵循隨客座率上升而增大的規(guī)律,但對BF 系列和Row策略的影響規(guī)律卻不同。

        圖14 不同客座率下登機過程平均登機時長Fig.14 Average boarding time of boarding process at different passenger load factor

        圖15 不同客座率下有超越行為相較于無超越行為的平均登機時長縮減比例Fig.15 Average reduction in boarding time with overtaking compared to without overtaking at different occupancy rates

        值得注意的是,不同于前文兩種登機情景,不同客座率下不同登機策略有超越行為相較于無超越行為的平均登機時長縮減比例的排名也并非一致。體現(xiàn)在70%客座率下BF4 策略的縮減比例高于BF3策略和BF5策略。關注這一變化,首先對滿座情景下BF4 策略的登機進程進行研究。由圖16發(fā)現(xiàn),BF4策略下登機過程超越行為的發(fā)生位置主要集中在前后登機次序區(qū)域的分界列過道和分界列的前一列過道,這是因為發(fā)生超越行為的乘客基本是在對應次序區(qū)域內最晚登機,根據(jù)超越行為模型,當行走干擾延誤增加,這些乘客集中在區(qū)域分界處超越。例如,圖16中第13列作為BF4策略第2和第3次序登機區(qū)域的分界,此位置的平均超越次數(shù)高達11次。當超越行為增多導致分界列空隙道被占據(jù)后,分界列的前一列過道將充當候補超越位置。這意味著,當?shù)菣C乘客的人數(shù)盡可能恰好填滿每一次序區(qū)域時,未考慮超越行為的登機效率將與考慮超越行為時達到最大差距。也就是說,盡可能減少下一次序區(qū)域登機乘客的人數(shù),將增大超越行為對登機過程的影響。在70%客座率(105 人)下,BF4 策略的1~3 登機次序區(qū)域(108 人)很好地貼合上述情形。類似地,60%和80%客座率下,超越行為對BF5 策略登機時間的縮減比例相較于其余客座率平均增加2.2%,同樣印證了這一分析。

        圖16 BF4策略下乘客超越行為位置分布Fig.16 Location distribution of passenger overtaking behavior under BF4 strategy

        3.4 不同Tot,m 和ε 取值對登機策略效率的影響

        乘客超越行為受超越行為模型中超越基本時間Tot,m取值的影響,乘客運動速度受運動速度模型中衰減系數(shù)ε取值的影響。乘客不同運動速度會導致不同的行走干擾延誤,從而影響乘客的超越行為。因此本節(jié)保持其余參數(shù)不變,設置超越基本時間Tot,m和衰減系數(shù)ε的不同取值,模擬Rand 策略下有超越行為的登機過程,結果如圖17 所示。值得注意的是:當Tot,m未超過38.4 s時,最短平均登機時間對應的ε都不是0.1——在Tot,m等于9.6,19.2,28.8 s 時最佳ε分別為0.20、0.15、0.20;當Tot,m超過38.4 s 時,平均登機時間隨ε的增大而增長。這是因為當乘客的臨界超越時間很短時,降低乘客的運動速度,可能減輕客艙通道中乘客的集中分布程度,降低了阻塞程度加劇的可能性;當乘客的臨界超越時間很長時,發(fā)生超越行為的乘客很少,運動速度高的乘客會更早地加入阻塞隊列,從而加劇阻塞程度,且因為很多乘客傾向等待最終增加了總登機時間。

        圖17 衰減系數(shù)ε、超越基本時間Tot,m 對有超越行為的Random策略平均登機時長的影響Fig.17 Effect of decay coefficient ε,overtaking basic time Tot,m on average boarding time of Rand strategy with overtaking behavior

        4 結論

        本文考慮航空登機過程中客艙內乘客的超越行為,通過元胞自動機模擬了從乘客進入客艙通道到完成落座的登機過程,通過對不同登機策略下超越行為的發(fā)生次數(shù)、發(fā)生位置以及發(fā)生乘客對應的座位分布進行研究,分析超越行為對不同登機策略效率的影響機理。主要結論如下:考慮超越行為后,登機策略的登機時間縮減比例由高到低依次為Row、BF5、BF4、BF3、Rand、WA3、RP4 和Steffen。乘客行走干擾延誤降低是登機時間縮減的主要原因。登機策略下乘客行走干擾延誤受超越行為的影響程度由高到低依次為Steffen、BF5、BF3、BF4、Row、RP4、WA3、Rand。本文進一步研究了考慮乘客超越行為下不同登機策略在不同行李數(shù)量、乘客放行間隔和客座率下的效率表現(xiàn),重要結論如下:WA3 策略在乘客攜帶2 件行李數(shù)量的比例超過40%或乘客放行間隔低于7.2 s 情景下的登機效率優(yōu)于RP4 策略。BF4 策略在客座率70%左右的情景下效率為最優(yōu),其余客座率情景下,BF系列策略的劃分區(qū)域恰好容納登機乘客人數(shù)時,超越行為對登機效率的影響作用最大。

        猜你喜歡
        效率策略模型
        一半模型
        重要模型『一線三等角』
        提升朗讀教學效率的幾點思考
        甘肅教育(2020年14期)2020-09-11 07:57:42
        重尾非線性自回歸模型自加權M-估計的漸近分布
        例談未知角三角函數(shù)值的求解策略
        我說你做講策略
        高中數(shù)學復習的具體策略
        3D打印中的模型分割與打包
        跟蹤導練(一)2
        “錢”、“事”脫節(jié)效率低
        精品色老头老太国产精品| 久久乐国产精品亚洲综合| 日韩在线不卡免费视频| 亚洲中文字幕人妻诱惑| 亚洲av第一区国产精品| 亚洲中文字幕无码天然素人在线| 国产成人久久777777| 国产中文久久精品| 亚洲高清一区二区精品| 色老板美国在线观看| 少妇饥渴xxhd麻豆xxhd骆驼| 免费无码又爽又刺激又高潮的视频| 波多野结衣中文字幕在线视频| 国产黄色精品高潮播放| 中文字幕av人妻少妇一区二区| 亚欧美日韩香蕉在线播放视频| 欧美日韩色另类综合| 国产aⅴ夜夜欢一区二区三区| 五月停停开心中文字幕| 午夜秒播久久精品麻豆| 久久久午夜精品福利内容| 日韩精品成人无码AV片| 大香蕉视频在线青青草| 日韩精品视频久久一区二区 | 亚洲愉拍99热成人精品热久久| 日本夜爽爽一区二区三区| 亚洲专区在线观看第三页| 国产视频一区二区在线免费观看| 一本无码av中文出轨人妻| 国产成人无码A区在线观| 99国语激情对白在线观看| 国产精品人人做人人爽人人添| 精品国产乱码久久久软件下载| 亚洲熟妇av日韩熟妇av| 美女扒开内裤让我捅的视频| 性无码免费一区二区三区在线| 亚洲国产夜色在线观看| 日韩精品极品免费在线视频| 免费又黄又爽又色的视频| 男女超爽视频免费播放| 少妇被搞高潮在线免费观看|