亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一維傳熱方程瞬態(tài)問題解析解及其應(yīng)用

        2022-08-01 00:57:04宋二祥
        工程力學(xué) 2022年8期

        仝 睿,付 浩,宋二祥

        (清華大學(xué)土木工程系土木工程安全與耐久教育部重點(diǎn)試驗(yàn)室,北京 100084)

        淺層土體溫度的分布規(guī)律,直接影響土體中水分的蒸發(fā)、凍結(jié)等行為,從而影響到農(nóng)業(yè)生產(chǎn)、巖土工程等領(lǐng)域的研究建設(shè)[1-3]。在地表存在公路、鐵路等的覆蓋層時(shí),冬季土體底部熱、頂部冷的溫度梯度,還會(huì)導(dǎo)致覆蓋效應(yīng)出現(xiàn)[4-7]。如何評(píng)價(jià)頂部存在覆蓋層時(shí),土體溫度場(chǎng)的分布,對(duì)于探究覆蓋效應(yīng)的發(fā)生機(jī)理、實(shí)現(xiàn)凍土區(qū)路基的合理設(shè)計(jì)具有重要意義。

        淺層土體溫度常常受太陽(yáng)輻射、水分蒸發(fā)、大氣溫度等多方面因素影響。但如果將地表溫度變化視為正弦變化的溫度邊界條件,深處恒溫土層視為固定的溫度邊界條件,忽略傳熱外的其他作用因素,則土層溫度分布可以近似為一維瞬態(tài)傳熱問題。徐學(xué)祖等[8]在《凍土物理學(xué)》中的研究表明:“土體內(nèi)地溫隨時(shí)間的變化主要是熱量輸運(yùn)的影響,數(shù)學(xué)上可歸納為熱傳導(dǎo)問題”。傳熱方程反映的熱量輸運(yùn)情況,對(duì)地溫如何隨時(shí)間變化有著非常大的影響。因此,研究該一維傳熱方程的定解,對(duì)于估計(jì)實(shí)際土體內(nèi)溫度場(chǎng)的分布,具有重要的參考價(jià)值。

        實(shí)際土體多為分層材料。每層土體內(nèi),物理性質(zhì)會(huì)有波動(dòng),但近似為均質(zhì)材料可以簡(jiǎn)化計(jì)算,且并不會(huì)導(dǎo)致較大的誤差。在《凍土物理學(xué)》中,即有將單一土層視為均質(zhì)材料,進(jìn)行熱流計(jì)算的算例[8]??紤]到傳熱方程涉及的熱容量、傳熱系數(shù)、密度等參數(shù)主要受到含水率影響,當(dāng)土體內(nèi)含水量隨時(shí)間變化不大時(shí),將土體簡(jiǎn)化為均質(zhì)材料進(jìn)行分析是可行的。此外,本文隨后的推導(dǎo)表明,單一土層的分析,可以進(jìn)一步推廣到分層土模型中。因此,對(duì)單一均質(zhì)土層的一維傳熱方程定解進(jìn)行分析,對(duì)于工程問題中的多層土層溫度變化分析同樣具有參考價(jià)值。

        關(guān)于一維傳熱方程的解析求解,此前已有一定研究。涂新斌等[9],使用復(fù)變函數(shù)方法,分析了模型無限大,底部不存在恒溫點(diǎn)時(shí),一維傳熱方程對(duì)應(yīng)的解析解。李翊神[10]使用杜哈梅積分法,研究了傳熱方程定解和波動(dòng)方程定解之間的關(guān)系。王兆瑞等[11]使用傅里葉變換和積分函數(shù)表示方法,分析了一維傳熱方程的特解。林府標(biāo)等[12]通過李代數(shù),研究了一維廣義方程的解析解特點(diǎn)。左沖等[13]使用時(shí)域徑向積分法給出了積分形式的傳熱方程解。但是,目前尚未有人給出底部溫度恒定、頂部溫度變化邊界條件下,土體一維瞬態(tài)傳熱問題的解析解。

        本文給出一維瞬態(tài)傳熱問題的解析解。通過與數(shù)值模擬及現(xiàn)場(chǎng)測(cè)試結(jié)果的對(duì)比驗(yàn)證了解析解的正確性,進(jìn)而給出了解析解在凍深估計(jì)、有關(guān)模型試驗(yàn)中幾何相似關(guān)系的確定、“覆蓋效應(yīng)”數(shù)值模擬等方面的應(yīng)用。

        1 一維瞬態(tài)傳熱問題解析解

        1.1 解析解推導(dǎo)

        土體或上覆材料的頂部,與大氣直接接觸,可近似用正弦曲線反映頂部空氣溫度每日或每年的周期性變化。而在底部較深處,則假定溫度基本恒定將,土近似為均質(zhì)材料,得到的控制方程及邊界條件為:

        式中:u為單元體溫度;ρ 為材料密度;c為材料比熱容;k為材料導(dǎo)熱系數(shù);T0為頂部溫度均值;T1為頂部溫度正弦變化部分振幅;Tbot為深層土體恒定溫度;Tini為初始狀態(tài)的溫度分布。

        式(1)可根據(jù)數(shù)學(xué)物理方程中的參數(shù)分離法進(jìn)行求解[14]:

        式中:B1、B2為待定系數(shù);λ 為變量分離法選取的常數(shù)。

        對(duì)于頂部與底部的固定值部分,存在對(duì)應(yīng)特解:

        對(duì)于頂部的正弦邊界條件,設(shè)對(duì)應(yīng)的溫度解形式為:

        根據(jù)特解需要滿足的傳熱方程式(1),解出對(duì)應(yīng)的系數(shù)之間的關(guān)系:

        又因?yàn)閤=0 時(shí),需符合頂部溫度邊界條件,可以得到對(duì)應(yīng)Tsin(ωx)的特解為:

        從而,針對(duì)非齊次邊界條件(2),對(duì)應(yīng)的特解為:

        假如初始值條件選取為:

        則這組特解反映的是頂部正弦溫度邊界條件,會(huì)形成振幅不斷衰減的正弦溫度波動(dòng),向土體下方傳播。

        當(dāng)波動(dòng)傳播到土體底部時(shí),特解式(8)中,取x=h,得到的邊界條件無法和底部u(h,t)=Tbot的邊界條件相協(xié)調(diào),說明特解式(8)并不能同時(shí)符合上、下端邊界條件。此時(shí)需要如圖1 所示,疊加函數(shù)式(10),才能滿足底部的邊界條件。

        圖1 疊加示意圖Fig. 1 Composition of functions

        而函數(shù)式(10)又會(huì)導(dǎo)致頂部邊界條件無法滿足。將反射函數(shù)不斷疊加下去,最終得到了同時(shí)滿足上、下邊界條件,級(jí)數(shù)形式的精確解:

        這兩個(gè)無窮級(jí)數(shù),都可以通過比較判別法證明絕對(duì)收斂。以第一個(gè)級(jí)數(shù)和為例:

        從而可以知道,無窮級(jí)數(shù)V(x,t)收斂。

        注意到精確解(式(11))中,不斷疊加的級(jí)數(shù)項(xiàng),反映了溫度波動(dòng)變化傳播到土體底部時(shí),存在反射現(xiàn)象。反射波動(dòng)回到土體頂部時(shí),又會(huì)再次反射。而且式(10)中,與應(yīng)力波、光波等波動(dòng)類似,在固定端反射時(shí),都出現(xiàn)了“半波損失”的現(xiàn)象。

        如果給定的初始值條件與式(9)存在差異,不妨設(shè):

        將w(x)以齊次通解式(3)為基底進(jìn)行傅里葉展開,可以得到對(duì)應(yīng)的齊次解:

        其中:

        土體或覆蓋層頂部的空氣溫度變化,對(duì)應(yīng)的頂部溫度邊界條件應(yīng)當(dāng)包含每日溫度變化、每年溫度變化兩組正弦變化函數(shù)。分別對(duì)應(yīng):

        1.2 近似解及其討論

        式(10)給出的精確解,表達(dá)形式較為復(fù)雜。可以將特殊解式(8),作為精確解式(11)的近似。近似解的相對(duì)誤差大小為:

        取一組典型數(shù)值進(jìn)行估計(jì)。土的密度為1600 kg/m3,比熱容1200 J/(kg·K),傳熱系數(shù)k=1.2 W/(m·K),h=20 m,溫度年波動(dòng)T1=20 K,土體底部溫度Tbot=278.15 K,此時(shí)按式(17)計(jì)算相對(duì)誤差上限約為0.0024%。這意味著,針對(duì)自然界中的土體傳熱問題,式(8)可以很好地近似實(shí)際溫度變化。

        2 解析解的數(shù)值驗(yàn)證

        由圖2 可見,位于0.1 倍、0.2 倍、0.5 倍波長(zhǎng)位置處的土體,在經(jīng)過1~2 個(gè)周期后數(shù)值模擬的溫度已與解析解接近一致,由此可以看出解析解作為穩(wěn)態(tài)解的正確性。此外,初始時(shí)刻溫度的差異正說明初始溫度場(chǎng)的影響需要一段時(shí)間來平衡。

        圖2 解析解和模擬結(jié)果對(duì)比Fig. 2 Comparison between analytical solution and simulation results

        3 結(jié)合現(xiàn)場(chǎng)試驗(yàn)數(shù)據(jù)對(duì)解析解進(jìn)行驗(yàn)證

        本課題組此前在蘭新鐵路武威段411+600 區(qū)域路堤土層中不同深度處布設(shè)溫、濕度傳感器和凍脹計(jì)以獲得相應(yīng)的測(cè)試數(shù)據(jù)[15]。

        本課題組將監(jiān)測(cè)儀器布置在0.1 m、0.4 m、1.0 m、1.6 m、2.5 m、3.3 m 處,以獲得對(duì)應(yīng)深度處的溫濕度數(shù)據(jù)??紤]到2019/06/01~2021/06/01這一時(shí)間段內(nèi)測(cè)得的溫度數(shù)據(jù)和2017/11/11~019/06/01 這一時(shí)間段內(nèi)測(cè)得的溫度數(shù)據(jù)相差不大,本文選用后一時(shí)間段內(nèi)的溫度數(shù)據(jù),對(duì)解析解加以驗(yàn)證。該時(shí)間段內(nèi)的路基土體溫度數(shù)據(jù)如圖3 所示,邊坡土體溫度數(shù)據(jù)如圖4 所示。

        圖3 路基土體溫度Fig. 3 Temperature of subgrade soil

        圖4 邊坡土體溫度Fig. 4 Temperature of slope soil

        觀察圖3 和圖4 可以發(fā)現(xiàn),土體不同深度處的溫度都近似以正弦函數(shù)的形式周期性變化。正弦函數(shù)的振幅隨著深度的增加不斷減小,相位隨深度增加也存在明顯的“滯后性”現(xiàn)象。

        3.1 振幅衰減驗(yàn)證

        根據(jù)不同深度處土體的最高溫、最低溫計(jì)算溫度變化的振幅,進(jìn)而根據(jù)振幅的與深度的關(guān)系,對(duì)解析解進(jìn)行驗(yàn)證。

        路基中土體溫度的振幅如圖5 所示。使用指數(shù)擬合公式進(jìn)行回歸,得到如下公式:

        圖5 路基振幅-深度關(guān)系圖Fig. 5 Amplitude vs depth diagram of subgrade

        該回歸公式的R2為0.9881,回歸的效果較好。根據(jù)此前測(cè)得的土體密度1600 kg/m3,比熱容按照1200 J/(kg·K)進(jìn)行估計(jì),回歸參數(shù)對(duì)應(yīng)的土體傳熱系數(shù)為:

        該取值在粉土正常傳熱系數(shù)范圍0.6 W/(m·K)~1.4 W/(m·K)之內(nèi)。

        邊坡中土體溫度的振幅如圖6 所示。

        圖6 邊坡振幅-深度關(guān)系圖Fig. 6 Amplitude vs depth diagram of slope

        使用指數(shù)擬合公式進(jìn)行回歸,得到下式:

        該回歸公式的R2為0.989。根據(jù)此前測(cè)得的土體密度1600 kg/m3、比熱容按照1200 J/(kg·K)進(jìn)行估計(jì),回歸參數(shù)對(duì)應(yīng)的土體傳熱系數(shù)為:

        與根據(jù)路基中溫度變化情況回歸出的土體傳熱系數(shù)極為接近。

        根據(jù)式(19)和式(21)可以得到,路基頂部的石砟層,將大氣溫度變化衰減為:

        根據(jù)鐵道部數(shù)據(jù),石砟表觀密度在2700 kg/m3左右,堆積密度1500 kg/m3左右。據(jù)此推算,路基頂部石砟層孔隙率在44.4%左右。石砟層厚度按照平均值0.65 m 計(jì)算。石砟比熱容按照1000 J/(kg·K)計(jì)算??諝鈱?dǎo)熱系數(shù)為0.023 W/(m·K),石砟導(dǎo)熱系數(shù)取為1.28 W/(m·K)。估算得到的等價(jià)導(dǎo)熱系數(shù)為:

        根據(jù)這個(gè)估算的年溫度變化衰減為:

        這一估計(jì)數(shù)值與式(23)的實(shí)際計(jì)算數(shù)值存在較大的差距。存在差距的原因?qū)⒃诘谒墓?jié)最后進(jìn)行解釋。

        3.2 相位滯后性驗(yàn)證

        將不同傳感器測(cè)得最高溫的時(shí)間點(diǎn),與傳感器的深度進(jìn)行回歸,從而對(duì)解析解進(jìn)行驗(yàn)證。

        路基中土體取得最高溫的時(shí)間點(diǎn)如圖7 所示。其中縱軸的數(shù)值(時(shí)間/d),代表傳感器自2017 年11 月11 日開始測(cè)量數(shù)據(jù)以來,經(jīng)過了多少天測(cè)得了最高溫?cái)?shù)據(jù)。使用線性擬合公式進(jìn)行回歸,回歸得到如下公式:

        圖7 路基最高溫時(shí)間點(diǎn)-深度關(guān)系圖Fig. 7 Maximum temperature time vs depth diagram of subgrade

        該回歸公式的R2為0.9883,回歸的效果較好。根據(jù)此前測(cè)得的土體密度1600 kg/m3,比熱容按照1200 J/(kg·K)進(jìn)行估計(jì),回歸參數(shù)對(duì)應(yīng)的土體傳熱系數(shù)為:

        這個(gè)取值在粉土正常傳熱系數(shù)范圍0.6 W/(m·K)~1.4 W/(m·K)之內(nèi)。

        邊坡中土體取得最高溫的時(shí)間點(diǎn)如圖8 所示。使用線性擬合公式進(jìn)行回歸,回歸得到公式:該回歸公式的R2為0.9793。根據(jù)此前測(cè)得的土體密度1600 kg/m3,比熱容按照1200 J/(kg·K)進(jìn)行估計(jì),回歸參數(shù)對(duì)應(yīng)的土體傳熱系數(shù)為:

        圖8 邊坡最高溫時(shí)間點(diǎn)-深度關(guān)系圖Fig. 8 Maximum temperature time vs depth diagram of slope

        這個(gè)取值在粉土正常傳熱系數(shù)范圍0.6 W/(m·K)~1.4 W/(m·K)之內(nèi)。

        值得注意的是,根據(jù)相位滯后性反推的土體傳熱系數(shù),不論路基和邊坡,都明顯高于根據(jù)振幅衰減情況反推得到的土體傳熱系數(shù)。

        觀察到溫度變化的傳播函數(shù)與波的傳播函數(shù)類似,且式(11)推導(dǎo)了固定溫度邊界產(chǎn)生的反射波存在,及其對(duì)應(yīng)的“半波損失”現(xiàn)象。筆者有一個(gè)猜想:“溫度變化傳播到不同性質(zhì)材料的交界面上,也會(huì)發(fā)生反射和入射現(xiàn)象,帶來振幅的改變”,筆者將在后文對(duì)這一猜想加以證明。

        4 不同性質(zhì)材料交界面的反射函數(shù)推導(dǎo)

        考慮兩種不同材料交界面處情況,其中,上方材料厚度為x1、密度為ρ1、熱容量為c1、傳熱系數(shù)為k1,下方材料厚度為x2、密度為ρ2、熱容量為c2、傳熱系數(shù)為k2,溫度邊界條件設(shè)為:

        初始值條件設(shè)為:

        參考式(7),從t=0 時(shí)刻開始,頂部正弦溫度變化逐漸向下傳輸。而當(dāng)溫度傳輸?shù)浇唤缑嫔蠒r(shí),需要在交界面上同時(shí)滿足溫度的連續(xù)性條件,以及熱流量的平衡條件。

        假設(shè)上方入射溫度方程為:

        假設(shè)入射后溫度方程為:

        觀察到熱流量:

        如果只存在入射現(xiàn)象,則可以得到方程:

        由式(35)中的第一個(gè)溫度連續(xù)性方程可知,未知參數(shù)A1=1。代入第二個(gè)熱流量平衡方程,可以看到,除非兩種材料的c、ρ、k值相等,不然熱流量平衡方程肯定無法滿足。

        與振動(dòng)波、光波類似,這里可以取cρk這一乘積值作為表征材料對(duì)熱量傳輸能力的參數(shù)。

        當(dāng)兩種材料的值cρk不同時(shí),為同時(shí)滿足交界面處的溫度連續(xù)性方程、熱流量平衡方程,就需要引入反射波。假設(shè)反射波方程為:

        從而在交界面處,得到方程:

        化簡(jiǎn)為:

        從而可以解出:

        從解式(39)可以看出,反射溫度函數(shù)的振幅一定小于入射溫度函數(shù)。當(dāng)溫度函數(shù)從cρk值比較大的材料傳入cρk值比較小的材料時(shí),入射后溫度函數(shù)的振幅會(huì)大于入射前溫度函數(shù)的振幅,同時(shí)反射溫度函數(shù)的振幅系數(shù)為正。而當(dāng)溫度函數(shù)從cρk比較小的材料傳入cρk值比較大的材料時(shí),入射后溫度函數(shù)的振幅會(huì)小于入射前溫度函數(shù)的振幅,同時(shí)反射溫度函數(shù)的振幅系數(shù)為負(fù),存在“半波損失”現(xiàn)象,如圖9 所示。

        圖9 不同材料交界面反射示意圖Fig. 9 Reflection in interface between different materials

        從本節(jié)的推導(dǎo)中可以看出,溫度函數(shù)的振幅變化會(huì)受到不同材料交界面的影響。而相位變化,則不會(huì)受到不同材料交界面的影響。因此,式(28)、式(29)根據(jù)相位變化回歸得到的熱傳導(dǎo)系數(shù),更接近于真實(shí)的土體平均熱傳導(dǎo)系數(shù)。

        而式(26)估算得到的比率,明顯小于實(shí)際衰減后的振幅比率,也是因?yàn)闆]有考慮交界面處反射波。如果將交界面處的反射波納入考慮之中,將土體傳熱系數(shù)按照式(28)估計(jì)為0.989 W/(m·K)。重新估算得到的衰減后比率為:

        這一比率略大于實(shí)際值59.48%。考慮到實(shí)際石子與石子之間不是完全貼合,石砟層的傳熱系數(shù)應(yīng)略小于按照空氣、石子并聯(lián)估算的式(24),式(40)得到的比率略高于實(shí)際值,屬于較為合理的結(jié)果。

        5 反射函數(shù)的數(shù)值模擬驗(yàn)證

        使用COMSOL 對(duì)解得的反射函數(shù)進(jìn)行驗(yàn)證。上方材料厚度為x1=1 m、密度為ρ1=1200 kg/m3、熱容量為c1=1400 J/(kg·K)、傳熱系數(shù)為k1=1.0 W/(m·K),下方材料厚度為x2=1 m、密度為ρ2=1400 kg/m3、熱容量為c2=1600 J/(kg·K)、傳熱系數(shù)為k2=1.0 W/(m·K)。溫度邊界條件設(shè)為:

        初始值條件設(shè)為:

        模擬到10.25 d 時(shí),交界面附近的數(shù)值解、解析解如圖10 所示。補(bǔ)充了忽略熱流量平衡方程得到的無反射波參考解作為對(duì)比。

        圖10 中,仿真結(jié)果與理論分析結(jié)果基本一致,而無反射對(duì)應(yīng)解則存在明顯偏差。

        圖10 仿真結(jié)果與理論分析結(jié)果對(duì)照?qǐng)DFig. 10 Comparison of simulation result and analytical result

        6 解析解的應(yīng)用

        6.1 使用解析解對(duì)冬季凍深進(jìn)行估計(jì)

        假設(shè)某地區(qū)地大氣溫度變化遵循公式:

        考慮完全裸露均質(zhì)土體,忽略衰減較多的日溫侵入。在地下x/m 處對(duì)應(yīng)的溫度為:

        求解T>273.15 K,得到:

        以西安地區(qū)為例,文獻(xiàn)[15]測(cè)得西安地區(qū)粉質(zhì)粘土比熱容為1231.6 J/kg·K,傳熱系數(shù)為1.9885 W/(m·K),密度為1959.184 kg/m3。西安地區(qū)平均溫度T0為288.65 K,年溫度變化振幅約為18.5 K。根據(jù)式(45)估算,凍深為:

        查閱相關(guān)文獻(xiàn)[16]知,西安地區(qū)冬季觀測(cè)到的凍土深度為0.45 m。估計(jì)的凍深與實(shí)際的凍深相比,誤差為20%??紤]到實(shí)際情況土層并非是均勻介質(zhì),且土體內(nèi)水分遷移、化學(xué)反應(yīng)等因素對(duì)于土體的溫度分布會(huì)產(chǎn)生影響,這一誤差較為合理。20%的誤差,可以滿足估測(cè)的需要。

        6.2 使用解析解估計(jì)室內(nèi)試驗(yàn)的“尺寸效應(yīng)”

        在使用小尺寸樣本對(duì)實(shí)際大尺寸情況進(jìn)行試驗(yàn)?zāi)M時(shí),一個(gè)常見的問題是:頂部溫度條件如何選取,才可以模擬實(shí)際自然界中的溫度變化情況。

        例如,室內(nèi)試驗(yàn)裝置高度1 m,用于模擬實(shí)際10 m 深的土體溫度變化。則對(duì)應(yīng)的,模擬年溫度變化的室內(nèi)試驗(yàn)頂部溫度變化周期,應(yīng)當(dāng)選取為365/100=3.65 d。

        6.3 使用解析解對(duì)“覆蓋效應(yīng)”模擬條件進(jìn)行修正

        此前針對(duì)“覆蓋效應(yīng)”現(xiàn)象的數(shù)值模擬,頂部邊界往往直接設(shè)置為大氣溫度變化[4,17-18];或者設(shè)置為固定溫度[19]。實(shí)際情況下,頂部道面也會(huì)對(duì)大氣溫度變化有折減和滯后作用。考慮這一情況,根據(jù)頂部道面情況,對(duì)覆蓋效應(yīng)的頂部邊界條件進(jìn)行修正。

        例如,瀝青道面常見厚度為0.2 m,瀝青密度為1200 kg/m3、比熱容為1300 J/(kg·K)、導(dǎo)熱系數(shù)為0.7 W/(m·K),下方土層密度為1600 kg/m3、比熱容為1200 J/(kg·K),導(dǎo)熱系數(shù)為1 W/(m·K)。

        此前本課題組的論文[4]中,選擇頂部模擬條件為:年平均溫度為283.15 K、日溫度變化振幅為10 K、年溫度變化振幅為15 K。

        考慮交界面處的反射現(xiàn)象計(jì)算得到的日溫度變化,經(jīng)過瀝青道面衰減為:

        年溫度變化衰減為:

        對(duì)應(yīng)的,修正后大氣溫度變化條件近似為:

        除了頂部溫度邊界條件外,從第1 節(jié)也可以看出,模擬需要設(shè)置合理的初始值條件。實(shí)際土體經(jīng)過多年頂部溫度作用,土體內(nèi)溫度分布已經(jīng)近似于式(9),因此,模擬的初始值應(yīng)按照式(9)進(jìn)行設(shè)置,才可以得到較為接近實(shí)際情況的水熱遷移結(jié)果。

        從式(10)可知,模型高度需要滿足:

        才可以忽略底部固定邊界條件產(chǎn)生的反射波影響。因此,將模型高度修改為10 m。

        修正前,模型的初始值條件為全域288.15 K。修正后的初始值條件設(shè)計(jì)為:

        其余模擬參數(shù)按照文獻(xiàn)[4]進(jìn)行設(shè)置。

        修正前、后冬季溫度對(duì)比如圖11 所示。

        圖11 修正前、后溫度對(duì)比圖Fig. 11 Temperature comparison before and after modification

        從圖11 中可以看出,修正后土體溫度波動(dòng)更小,冬季頂部溫度更高。

        修正前、后含水量對(duì)比如圖12 所示。

        圖12 修正前、后含水量對(duì)比圖Fig. 12 Water volumetric content comparison before and after modification

        從圖12 中可以看出,修正后,土體頂部的水分聚集更少。

        修正前、后的結(jié)果對(duì)比表明:修正前的模型,夸大了路基土體頂部的溫度變化幅度,得到的水分遷移量偏大,對(duì)“覆蓋效應(yīng)”影響的預(yù)測(cè)偏大。

        7 結(jié)論

        本文針對(duì)一維土柱的瞬態(tài)問題,求解了對(duì)應(yīng)的解析解。通過數(shù)值模擬、現(xiàn)場(chǎng)試驗(yàn)兩種方式驗(yàn)證了解析解的正確性。本文還推導(dǎo)了解析解在固定邊界處、不同材料交界面上存在的反射現(xiàn)象。通過對(duì)推導(dǎo)結(jié)果的分析,發(fā)現(xiàn):

        (1) 土體頂部溫度正弦變化帶來的土體溫度改變與應(yīng)力波存在一定相似性,會(huì)以波動(dòng)的形式向下傳播;但波動(dòng)振幅在傳播過程中會(huì)以指數(shù)形式不斷衰減。

        (2) 溫度正弦變化的傳播在固定邊界處存在帶有“半波損失”的反射現(xiàn)象;在不同材料交界面處也存在反射現(xiàn)象。

        (3) 該解析解存在多種應(yīng)用場(chǎng)景??梢愿鶕?jù)該解析解,估計(jì)土體某一深度處的溫度變化情況;估計(jì)冬季凍結(jié)深度;計(jì)算室內(nèi)試驗(yàn)滿足“尺寸效應(yīng)”的合理邊界條件;計(jì)算土體頂部以上存在覆蓋層時(shí),對(duì)應(yīng)的頂部溫度邊界條件。

        国产无套粉嫩白浆在线| 青青草视频在线观看绿色| 91热久久免费频精品99| 就国产av一区二区三区天堂| 国产极品美女到高潮视频| 国产青青草自拍视频在线播放| 日韩伦理av一区二区三区| 在线视频一区二区国产| 成人欧美一区二区三区在线观看 | 中国亚洲一区二区视频| 日本丰满少妇xxxx| 最近中文字幕免费完整版| 在线精品国产一区二区三区| 人妻无码中文字幕免费视频蜜桃| 国产成人无码A区在线观| 国产精品涩涩涩一区二区三区免费| 色se在线中文字幕视频| 97精品熟女少妇一区二区三区| 一区二区三区人妻少妇| 亚洲av综合av成人小说| 国产在线一区二区三区av | 日韩精品一区二区免费 | 亚洲国产91精品一区二区| 国产91精品高潮白浆喷水| 97夜夜澡人人双人人人喊| 亚洲av无码一区二区三区网站| 一级做a爰片久久毛片| 丰满少妇棚拍无码视频| 午夜麻豆视频在线观看| 国产一区二区三区久久精品 | 久久中文精品无码中文字幕| 精品国产爱在线观看| 美女免费视频观看网址| 欧洲女人与公拘交酡视频| 欧美成人午夜精品久久久| 亚洲欧美另类自拍| 久久99久久99精品观看| 国产黄久色一区2区三区| 无套内谢老熟女| 护士奶头又白又大又好摸视频| 天堂女人av一区二区|