亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于改進NSGA-II混合算法求解多目標柔性作業(yè)車間調度問題

        2022-07-15 09:52:44陸科苗何利力
        智能計算機與應用 2022年7期
        關鍵詞:設備

        陸科苗,何利力

        (浙江理工大學 信息學院,杭州 310018)

        0 引 言

        傳統(tǒng)的作業(yè)車間調度問題(Job-shop scheduling problem,JSP)一直被大家廣泛關注,柔性作業(yè)車間調度問題(Flexible job-shop scheduling problem,FJSP)是此類問題的一種擴展。簡而言之,其是一類滿足任務配置需求和條件約束的組合優(yōu)化問題。求得符合各項要求的最優(yōu)解,可用于指導實際生產,所以對其研究具有重要的實際參考價值。

        多年來,如啟發(fā)式算法、禁忌搜索(TS)、粒子群法(PSO)、遺傳算法(GA)和變鄰域搜索(VNS)等算法及混合優(yōu)化算法,都被廣泛用于求解該問題。Amjad通過研究發(fā)現,GA方法是解決FJSP最廣泛、有效的算法之一。但經典GA中,不同的交叉概率和變異概率會極大影響算法行為和性能,進而影響其算法收斂性。侍守創(chuàng)等提出,將遺傳算法與量子粒子群優(yōu)化算法混合,改善單一算法收斂性不足的問題。吳秀麗等提出基于NSGA-II算法,來求解多目標調度問題。張超勇設計了一種改進的非支配排序遺傳算法,優(yōu)化了精英選擇策略。Sevkli等采用變鄰域搜索算法,設計了兩種不同的鄰域結構,組成鄰域結構集求解JSP。

        從上述研究可以看出,單一算法因其搜索效率低以及進化速度慢,難以進化出較為優(yōu)質的個體,并存在局部搜索性不足的問題。故采用混合優(yōu)化算法取長補短求解FJSP,逐步改良求解過程,最終尋得最優(yōu)解。當前研究多為NSGA-II算法求解多目標優(yōu)化問題,雖然已經表現了良好的求解能力,但在保持種群的多樣性和局部搜索方面仍存在不足。因此,本文結合改進的NSGA-II算法全局搜索性能較強和VNS算法鄰域搜索性能較強的特點,提出一種改進的NSGA-II算法和變鄰域搜索算法相結合的IVNSGA-II算法。通過與其它算法求解FJSP的實驗結果進行比較分析,驗證了算法的有效性和適用性。

        1 FJSP模型

        1.1 問題描述

        FJSP可描述為個待加工的工件集合{,,…,J}在臺不同的設備集合{,,…,M}上加工。每個工件有若干道工序集合,每道工序有若干臺設備可以選擇,工序的加工時間也因設備的選擇而有所不同,且工序間有先后約束,給定各工序加工時間,確定設備所有工件的加工次序和加工時間。柔性作業(yè)車間調度問題的符號定義見表1。

        表1 符號定義Tab.1 Symbol definition

        在FJSP的調度過程中,應滿足以下約束條件:

        (1)一道工序只能在一臺可選設備上加工;

        (2)同一工藝路線上的兩個工序不能同時加工;

        (3)同臺設備同一時刻只能加工一道工序;

        (4)加工過程中不能中斷;

        (5)不同工件具有相同的加工優(yōu)先級;

        (6)同一工件的工序具有先后約束,不同工件之間沒有先后約束。

        1.2 多目標優(yōu)化模型

        本文以最大完工時間、生產總能耗、設備總負荷最小,作為FJSP的多目標優(yōu)化函數。其優(yōu)化模型為:

        (1)最小化最大完工時間:最大完成時間是指所有部件同時進行加工,最后一個部件完成時所花費的時間。時間越短,表明方案越好。計算公式如下:

        (2)最小化生產總能耗:在車間實際生產中,計算生產總能耗時需要考慮到設備加工和等待加工,兩種情況分別對應的單位能耗值是不同的。設備的能耗和車間生產總能耗公式如下:

        (3)最小化設備總負荷:車間生產加工時,在滿足加工能耗與最大完工時間最小的同時,還要考慮到設備的總負荷。因此,工序在能耗相同的情況下,選擇加工時間短的設備,使其設備總負荷最小化。計算公式如下:

        2 算法設計

        2.1 編碼

        在對FJSP進行編碼時,需要同時考慮到工序、設備的排序問題。因此,本文采用工序與設備融合并行雙鏈式編碼方式。第1層為基于工序的編碼層(Operation Sequence,OS),第2層為基于設備選擇的編碼層(Machine Sequence,MS)。融合兩種編碼方式,形成一條染色體,就可以得到面向FJSP的一個可行解。如圖1所示,層的數字表示工件號,工件號出現的次數即表示該工件的第幾道工序;層則按照工件工序順序排列并與之相對應,表示相應位置工序的設備選擇。層和層的長度相等。

        圖1 并行雙鏈式編碼示例圖Fig.1 Example of parallel double-chain coding

        圖1中表示的加工順序為:工件1的第一道工序在加工設備1上加工→工件3的第一道工序在加工設備2上加工→工件2的第一道工序在加工設備2上加工→工件3的第二道工序在加工設備為5上加工依次類推。這種編碼方式保證了后續(xù)操作所產生染色體解的可行性,且對工件的工序長度和工件數量無任何要求,避免了后續(xù)繁雜的修正操作,簡單靈活。此外,對其中一層的單獨操作不會影響到另一層,具有很強的并行性。

        2.2 解碼

        對和層分別進行解碼,目標是根據編碼層的形式獲得空間范圍內優(yōu)質的解。然而在實際任務分配過程中,常常存在兩個相鄰工序間等待時間過長,所以可將后續(xù)符合相應約束條件的工序,提前插入到符合條件的時間區(qū)間中,進行“插隊”操作。因此,提出一種最優(yōu)插入法,實現對解的高效搜索。實現步驟如下:

        判斷是否為此工件的首道工序,若是則將0作為空閑起點;反之,將上一道工序的完工時間作為空閑起點;

        尋找空閑起點之后大于等于待加工工序加工時間的空閑時間段。若未找到,則按順序正常加工;

        選擇滿足待加工工序加工時間且最短的空閑時間段插入;

        重復Step1-3,直至所有工序安排完成;

        計算最大完工時間。

        最優(yōu)插入法的插入過程如圖2所示。工序O將在設備上加工,根據當前情況,3段可選空閑時間段均滿足O的加工時間所需條件。其中空閑1結束時間與工序O結束時間之差所求的空閑時間小于O的加工時間,不滿足約束條件舍去;空閑2、3都滿足插入條件,而空閑2的空閑時間更短,因此選擇空閑2插入。該策略能夠為后續(xù)工序的插入提供更多的選擇,以獲取更優(yōu)質的解。

        圖2 最優(yōu)插入示意圖Fig.2 Schematic diagram of optimal insertion

        2.3 種群初始化

        NSGA-II算法中,初始化策略影響著解的質量與收斂速度,是重要的起步階段??紤]到算法復雜度和種群數量大小限制,在種群初始化階段,數量規(guī)??刂圃谠N群數量的1.5倍。為保證種群多樣性,對于OS編碼層采用隨機選擇產生,隨機搜索時種群越大找到最優(yōu)解的概率也就越大;對于MS編碼層采用全局選擇、局部選擇和隨機選擇的方式初始化。

        將隨機式初始化和混合式初始化方式相結合,相互取長補短,在保證收斂速度的同時增強全局搜索能力,經過后續(xù)處理迭代,提高初始種群豐富度,減少隨機性,加大求得最優(yōu)解的概率。

        2.4 選擇算子

        本文以最大完工時間、生產總能耗、設備總負荷最小作為FJSP問題的目標,對個體的適應度進行評價,算法的適應度如下:

        其中,、、分別為式(1)、式(3)、式(4)的最小化目標優(yōu)化函數。需要均衡3個適應度指標,根據計算后的適應度,對個體進行非支配排序,同時計算處于同一支配層級的個體擁擠度。種群中適應度最大的染色體直接復制到新種群,然后新種群中的其它個體采用動態(tài)擁擠度算法并結合精英解保留策略,選擇個體組成新父種群。

        2.5 交叉操作

        (1)OS交叉:采用基于工件順序的交叉(POX)如圖3所示。父代染色體與進行交叉,交換染色體中工序的位置得到子代。

        圖3 OS交叉Fig.3 OS cross

        (2)MS交叉:采用多點交叉如圖4所示。父代染色體和分別選擇隨機位置,將所選位置按順序插入子代,然后將剩余未選中位置插入到子代,同理操作。

        圖4 MS交叉Fig.4 MS cross

        2.6 變異操作

        變異操作可以起到擴大隨機性的作用,增加算法的搜索能力,變異操作如圖5所示。在進化初始階段,需要較小的變化概率,并盡可能多的保留優(yōu)良基因;而在后期階段,需要適當增加變異概率產生基因的多樣性,以免“早熟”現象,所以在迭代過程中使用動態(tài)自適應變異概率。計算公式如下:

        圖5 OS和MS的變異操作Fig.5 Mutation operations for OS and MS

        其中,為初始變異概率值;為最大變化率;MAX為最大迭代次數;為當前迭代次數。

        2.7 變鄰域搜索算法

        雖然交叉、變異操作在一定程度上可以增加種群多樣性,但算法仍可能存在陷入局部最優(yōu)的情況。因此,引入變鄰域搜索算法,通過改變當前解染色體的某些基因位值,產生鄰域可行解,從而避免種群進化過程中產生的解陷入局部最優(yōu)。本文針對OS染色體段,結合改進的NSGA-II算法中各類算子,再引入4種(insert算子、inverse算子、swap算子、pairwise算子)不同的鄰域搜索結構,實現動態(tài)鄰域搜索,擴大局部搜索范圍,增強局部搜索能力。

        (1)insert算子:隨機選擇2點工件所在工序對應的基因位置進行操作。例如位置2、6,則把6位置的基因插入2基因后的位置上,原來的3-5基因往后順延,具體的結構變換過程如圖6所示:

        圖6 insert算子鄰域變換示例Fig.6 Insert operator neighborhood transformation example

        (2)inverse算子:隨機選擇兩個位置,將位置之間的工序基因順序進行反轉。例如,選擇位置3、7,具體結構變換過程如圖7所示:

        圖7 inverse算子鄰域變換示例Fig.7 Inverse operator neighborhood transformation example

        (3)swap算子:隨機取兩個位置,執(zhí)行兩點交換操作。例如,選擇位置4、6,具體結構變換過程如圖8所示:

        圖8 swap算子鄰域變換示例Fig.8 Swap operator neighborhood transformation example

        (4)pairwise算子:將相鄰的兩個成對基因位置互換,即第一個和第二個基因互換位置,第三個和第四個基因互換位置,以此類推,最后若剩下單個工序則不變動。具體結構變換過程如圖9所示:

        圖9 inverse算子鄰域變換示例Fig.9 Inverse operator neighborhood transformation example

        2.8 IVNSGA-II算法

        本文提出的IVNSGA-II算法,是以改進的NSGA-II算法為基礎,通過非支配排序、動態(tài)擁擠度算法和精英選擇策略得到新種群,再結合VNS變鄰域搜索算法構建鄰域結構集求解多目標柔性作業(yè)車間調度問題,算法流程如圖10所示。IVNSGA-II算法流程如圖10所示:

        圖10 IVNSGA-II算法流程Fig.10 IVNSGA-II algorithm flow

        3 實驗結果與分析

        IVNSGA-II算法通過MATLAB編程實現,在win10系統(tǒng),Intel(R)Core(TM)i7-8565U CPU@1.80 GHz,內存8 GB的計算機上實現。各項參數設置為:種群規(guī)模P=150,最大迭代次數MAX100,交叉概率P=0.8,變異概率0.05。

        為驗證IVNSGA-II算法的可行性和有效性,分別進行單目標優(yōu)化和三目標優(yōu)化實驗。其中,單目標為最大完工時間。采用Brandimarte設計的5個典型FJSP數據集(mk01~mk05)進行測試對比,此數據集中包括不同的工件數、工序數、設備數以及加工時間。車間使用的加工設備功率相關數據見表2。

        表2 設備功率表Tab.2 Equipment power table

        3.1 單目標實驗

        表3為GA、PSO、NSGA-II、IVNSGA-II算法在mk01~mk05中運行的結果。根據對比可以看出,IVNSGA-II均取得最優(yōu)解,證明了該算法具備良好的性能。

        表3 算法運行時間結果對比Tab.3 Comparison of running time of different algorithm

        以mk01為例,其收斂曲線如圖11所示。由圖可見,開始迭代時下降速度較快,說明開始采用的初始化策略加速了收斂速度,大概在40代時得到最優(yōu)解;之后的上下波動,證明IVNSGA-II算法避免了陷入局部最優(yōu)解。mk01的調度甘特圖如圖12所示。

        圖11 IVNSGA-II迭代收斂圖Fig.11 IVNSGA-II iterative convergence graph

        圖12 mk01調度甘特圖Fig.12 mk01 scheduling Gantt chart

        3.2 三目標實驗

        同等條件下在mk01數據集上進行實驗,結合設備功率表,針對最大完工時間、生產總能耗以及設備總負荷的三目標求解,得到完整的Pareto前端。不同于單目標的衡量指標,解的數量也是衡量多目標調度性能的重要指標之一。本文將IVNSGA-II與NSGA-II進行三目標性能對比,對比結果如圖13所示。

        圖13 三目標Pareto前沿圖Fig.13 Three-target Pareto frontier map

        從圖中可以看出,3個目標之間相互影響,IVNSGA-II所獲得解的范圍更大,解的個數更多,解集質量也更優(yōu)。可以證明,IVNSGA-II具有良好的全局收斂性和局部搜索性。在實際調度生產中,企業(yè)可以根據實際情況選擇合適的解,然后獲得相應的甘特圖,用于指導實際生產。

        4 結束語

        本文針對FJSP問題,同時考慮多目標優(yōu)化的特點,以最大完工時間、生產總能耗、設備總負荷最小為優(yōu)化目標,提出一種IVNSGA-II算法,對多目標優(yōu)化問題求解。通過動態(tài)擁擠度和自適應變異算子,保證求解過程中解的多樣性;再結合VNS算法鄰域搜索能力,設計4中不同的鄰域結構進行變鄰域搜索。通過在Matlab平臺上實例的分析對比,表明該算法可有效解決FJSP問題,為車間生產者提供可參考的調度方案,且具有較好的穩(wěn)定性和尋優(yōu)能力,驗證了所提算法的有效性。

        猜你喜歡
        設備
        諧響應分析在設備減振中的應用
        調試新設備
        當代工人(2020年13期)2020-09-27 23:04:20
        基于VB6.0+Access2010開發(fā)的設備管理信息系統(tǒng)
        基于MPU6050簡單控制設備
        電子制作(2018年11期)2018-08-04 03:26:08
        廣播發(fā)射設備中平衡輸入與不平衡輸入的轉換
        電子制作(2018年10期)2018-08-04 03:24:48
        食之無味,棄之可惜 那些槽點滿滿的可穿戴智能設備
        500kV輸變電設備運行維護探討
        HTC斥資千萬美元入股虛擬現實設備商WEVR
        IT時代周刊(2015年8期)2015-11-11 05:50:37
        Automechanika Shanghai 2014 之“看” 汽保設備篇
        如何在設備采購中節(jié)省成本
        牛仔裤人妻痴汉电车中文字幕| 插上翅膀插上科学的翅膀飞| 在线亚洲高清揄拍自拍一品区| 国产亚洲av综合人人澡精品| 一级一级毛片无码免费视频| 中文字幕国产精品专区| 日韩人妻大奶子生活片| 久久综网色亚洲美女亚洲av| av网站免费线看精品| 日韩人妻无码精品-专区| 国产精品18禁久久久久久久久| 麻豆av一区二区天堂| 中美日韩在线一区黄色大片| 亚洲乱码日产精品一二三| 老熟妇仑乱视频一区二区| 精品久久久久一区二区国产| 超短裙老师在线观看一区| 又黄又刺激的网站久久| 亚洲中文字幕无码天然素人在线| 少妇spa推油被扣高潮| 国产精品无码久久久久下载| 男女互舔动态视频在线观看| 2019最新中文字幕在线观看| a级毛片免费观看在线| 亚洲av无码片在线播放| 国产自拍伦理在线观看| 亚洲女人的天堂网av| 亚洲av永久无码精品网站在线观看| 麻豆第一区MV免费观看网站| 国产va在线播放| 中文字幕人妻一区色偷久久| 国产精品人成在线观看免费| 中文字幕乱码熟妇五十中出| 国产成人精品日本亚洲11| 在线成人福利| 日本一区二区日韩在线| 人人超碰人人爱超碰国产| 97午夜理论片在线影院| 亚洲av激情久久精品人| 国产精品一区二区av麻豆日韩| 久久夜色精品国产欧美乱|