朱燦 李夢瑤
摘要:在軸向運動納米梁系統(tǒng)中,速度會使系統(tǒng)產(chǎn)生力學行為復雜的橫向振動,且對系統(tǒng)運行的穩(wěn)定性有很大的影響。將時滯控制方法應用在兩端簡支條件下的軸向運動納米梁系統(tǒng)中,通過動力系統(tǒng)分支理論和冪級數(shù)法來考察系統(tǒng)運行的穩(wěn)定性。結(jié)果表明,時滯和反饋增益系數(shù)對兩端簡支軸向運動納米梁系統(tǒng)的穩(wěn)定區(qū)域有很大影響,恰當?shù)臅r滯控制能夠有效增強系統(tǒng)的穩(wěn)定性,并可以消除系統(tǒng)的耦合顫振失穩(wěn)現(xiàn)象。
關鍵詞:時滯控制;穩(wěn)定分析;冪級數(shù)法;納米梁;軸向運動
中圖分類號:O322;O29文獻標志碼:A
納米梁是納機電系統(tǒng)(nano-electromechanical system,NEMS)的基本組成結(jié)構(gòu),納米梁加工工藝研究、納米梁力學電學測試研究以及納米梁在集成電路和傳感器領域中應用研究具有重要意義。MOTE[1-3]對物體軸向運動誘發(fā)產(chǎn)生的橫向振動已有了很好的研究。YANG和TAN等[4-5]研究了軸向運動梁外部激勵和穩(wěn)態(tài)響應固有頻率之間的關系。Z等[6]以軸向加速運動梁為研究對象,利用攝動法對該系統(tǒng)進行求解,分別對運動速度的波動頻率接近系統(tǒng)自然頻率2倍時出現(xiàn)的主參數(shù)共振情況以及速度的波動頻率為系統(tǒng)兩個自然頻率的和時出現(xiàn)的組合參數(shù)共振情況進行分析,討論不同共振情況下系統(tǒng)的穩(wěn)定性。李曉軍和陳立群[7]以兩端固支的軸向運動梁為研究對象,建立一種數(shù)值解析的方法,求解得到系統(tǒng)發(fā)生橫向振動的自然頻率和模態(tài)。楊曉東和唐有綺[8]在復模態(tài)分析的基礎上,得出軸向運動梁系統(tǒng)在發(fā)生橫向振動時的頻率和模態(tài)。 SATO等[9]利用中心流形定理和平均法研究帶有時滯的非線性動力系統(tǒng)穩(wěn)定周期解及其穩(wěn)定性,討論時滯對該系統(tǒng)自由振動和受迫振動的影響。LIU等[10]研究一種時滯反饋控制參數(shù)的求解方法,并運用最優(yōu)化控制方法對非線性振動系統(tǒng)進行減振控制。SHANG等[11-12]基于Helmoholtz振蕩器系統(tǒng),給出時滯位移反饋對其安全流域分形侵蝕的影響。LIU等[13]以一類時滯控制下的懸臂梁為研究對象,通過系統(tǒng)的一次和二次共振,發(fā)現(xiàn)速度時滯及其反饋系數(shù)可以有效地提高該系統(tǒng)的穩(wěn)定性。關于時滯對軸向運動梁的控制的相關研究還處于初級階段,為此,文中采用軸向運動納米梁模型,通過動力系統(tǒng)分支理論和冪級數(shù)法,研究系統(tǒng)在時滯控制下軸向運動納米梁的振動行為和穩(wěn)定區(qū)域。
1理論模型
2次諧波共振穩(wěn)定性研究
3組合參數(shù)共振穩(wěn)定性研究
4結(jié)論
研究了兩端簡支的軸向運動納米梁系統(tǒng)在發(fā)生橫向振動時,時滯控制對系統(tǒng)穩(wěn)定性的影響。結(jié)果如下:
1)時滯和反饋增益系數(shù)對兩端簡支軸向運動納米梁系統(tǒng)的穩(wěn)定區(qū)域有很大影響,恰當?shù)臅r滯控制能夠有效增強系統(tǒng)的穩(wěn)定性,并可以消除系統(tǒng)的耦合顫振失穩(wěn)現(xiàn)象。
2)當系統(tǒng)發(fā)生次諧波共振時,位移時滯量、速度時滯量和位移反饋增益系數(shù)對系統(tǒng)發(fā)生次諧波共振的穩(wěn)定區(qū)域影響較小,但穩(wěn)定性隨著速度反饋增益系數(shù)的增加而減弱。
3)當系統(tǒng)發(fā)生組合參數(shù)共振時,位移時滯量對系統(tǒng)穩(wěn)定性的影響較小,位移反饋增益系數(shù)增大會減弱系統(tǒng)的穩(wěn)定性,速度時滯量和速度反饋增益系數(shù)增加則會增強系統(tǒng)的穩(wěn)定性。參考文獻:
[1]MOTE C D. A study of band saw vibration[J]. Journal of the Franklin Institute, 1965, 279(6): 430-444.
[2] MOTE C D. On the non-linear oscillation of an axially moving string[J]. Journal of Applied Mechanics, 1966, 33(2): 463-464.
[3] MOTE C D. Dynamic stability of axially moving materials[J]. Shock and Vibration Digest, 1972, 4(4): 2-11.
[4] YANG B, TAN C A. Transfer function of one dimensional distrubuted parameter systems[J]. Journal of Applied Mechanics, 1992, 59(4): 1009-1014.
[5] TAN C A, CHUNG C H. Transfer function formulation of constrained distributed parameter systems[J]. Journal of Applied Mechanics, 1993, 60(4): 1004-1011.
[6] Z H R, PAKDEMIRLI M, BOYACL H. Non-linear vibrations and stability of an axially moving beam with ti-me-dependent velocity[J]. International Journal of Non-Linear Mechanics, 2001, 36(1): 107-115.
[7] 李曉軍, 陳立群. 關于兩端固定軸向運動梁的橫向振動[J]. 振動與沖擊, 2005, 24(1): 22-23.
[8] 楊曉東, 唐有綺. Timoshenko模型軸向運動梁的橫向振動特性分析[J]. 機械強度, 2008(6): 903-906.
[9] SATO K, YAMAMOTO S, OKIMURA T,et al. Dynamic motion of a nonlinear mechanical system with time delay: analysis of the forced vibration by an averaging method[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 1995,61(585):1861-1866.459EE679-44BB-44BD-8CBE-ABA3FE118A74
[10]LIU C C, JI H L, SUN H Y, et al. Optimal delayed control of nonlinear vibration resonances of SDOF system[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2014, 31(1): 49-55.
[11]SHANG H L, WEN Y P. Erosion of safe basins in a softening duffing system and its control with time-delay position feedback[J]. Journal of Vibration and Shock, 2012,31: 11-15.
[12]SHANG H L, HAN Y B, LI W Y. Suppression of chaos and basin erosion in a nonlinear relative rotation system by delayed position feedback[J]. Acta Physica Sinica, 2014, 11: 88-95.
[13]LIU C X, YAN Y, WANG W Q. Primary and secondary resonance analyses of a cantilever beam carrying an intermediate lumped mass with time-delay feedback[J]. Nonlinear Dynamics, 2019, 97(2): 1175-1195.
[14]ERINEGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9): 4703-4710.
[15]YANG X D, ZHANG W. Nonlinear dynamics of axially moving beam with coupled longitudinal-transversalvibrations[J]. Nonlinear Dynamics, 2014, 78(4): 2547-2556.
(責任編輯:曾晶)
Stability Analysis and Time Delay Feedback of
Axially Moving Nano Beams
ZHU Can, LI Mengyao
(Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China)Abstract: Due to the existence of the velocity, the system will have lateral vibration behavior during the operation of the axially moving nano beams system. The mechanical behavior is very complex and will affect the stability of the system during the operation. In this paper, the timedelay control is applied to the axially moving nano beams system with both sides simply supported. The stability of the system is investigated by means of the dynamic system branching theory and the power series method. The results show that different delay and feedback gain coefficients will affect the stability region of the axially moving nano beams system, and appropriate delay control can effectively enhance the stability of the system, and eliminate the coupling flutter instability of the system.
Key words: time delay feedback; stability analysis; power series method; nano beams; axial motion459EE679-44BB-44BD-8CBE-ABA3FE118A74