錢遠(yuǎn)超,何久興,孔 夢(mèng),宋吉青,齋藤信,呂國(guó)華**
寡糖對(duì)土壤微生物多樣性及群落結(jié)構(gòu)的調(diào)節(jié)作用*
錢遠(yuǎn)超1,何久興1,孔 夢(mèng)1,宋吉青1,齋藤信2,呂國(guó)華1**
(1.中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081;2. 昭和電工株式會(huì)社,日本東京 105-8518)
土壤微生物種群類型,對(duì)土壤質(zhì)量和作物生長(zhǎng)具有重要影響,研究寡糖對(duì)土壤微生物種群的影響特征,有助于正確、高效及安全使用寡糖。本研究利用人工氣候室進(jìn)行土壤培養(yǎng),土壤施加50mg·L?1的殼寡糖(CSOS)和纖維寡糖(COS)溶液,以清水(CK)為對(duì)照處理,培養(yǎng)6d后取樣,利用高通量測(cè)序技術(shù),分析土壤微生物群落結(jié)構(gòu)組成及多樣性分布特征。結(jié)果表明:殼寡糖(CSOS)和纖維寡糖(COS)處理均顯著改變細(xì)菌、真菌的群落結(jié)構(gòu),提高細(xì)菌的物種觀測(cè)數(shù)。變形菌門(Proteobacteria)、酸桿菌門(Acidobacteria)、放線菌門(Actinobacteria)、綠彎菌門(Chloroflexi)、芽單胞菌門(Gemmatimonadetes)和擬桿菌門(Bacteroidetes)為優(yōu)勢(shì)細(xì)菌門,子囊菌門(Ascomycota)、擔(dān)子菌門(Basidiomycota)和被孢霉門(Mortierellomycota)為優(yōu)勢(shì)真菌門。通過組間群落組成比較分析可知,殼寡糖(CSOS)和纖維寡糖(COS)處理均不同程度降低酸桿菌門(Acidobacteria)的相對(duì)豐度,增加變形菌門(Proteobacteria)、放線菌門(Actinobacteria)、芽單胞菌門(Gemmatimonadetes)、壺菌門(Chytridiomycota)以及有益菌屬溶桿菌屬()、硝化螺旋菌屬()、、芽球菌屬()和鏈霉菌屬()的相對(duì)豐度,但與纖維寡糖(COS)相比,殼寡糖(CSOS)處理微生物群落組成的變化幅度更大。此外,殼寡糖(CSOS)和纖維寡糖(COS)處理在調(diào)節(jié)土壤微生物群落結(jié)構(gòu)上存在一定差異。其中,殼寡糖(CSOS)處理有益菌屬的相對(duì)豐度增加195%,纖維寡糖(COS)處理有益菌屬假單胞菌屬()的相對(duì)豐度增加215%。綜上,殼寡糖和纖維寡糖處理均能優(yōu)化土壤微生物群落的結(jié)構(gòu)組成,其調(diào)控差異性有助于理解不同寡糖的調(diào)控機(jī)制,推動(dòng)寡糖的應(yīng)用與推廣。
殼寡糖;纖維寡糖;高通量測(cè)序;細(xì)菌群落結(jié)構(gòu);真菌群落結(jié)構(gòu)
土壤微生物豐度高、種類多、代謝快,是土壤生態(tài)系統(tǒng)中重要的組成部分[1?2],在防治作物土傳病害、調(diào)節(jié)養(yǎng)分循環(huán)和穩(wěn)定生態(tài)系統(tǒng)等方面發(fā)揮著十分重要的作用[3?5]。由于不合理施肥用藥引起的土壤酸化、板結(jié)等諸多問題,不僅改變土壤微環(huán)境,破壞土壤生態(tài)系統(tǒng)平衡,嚴(yán)重威脅農(nóng)業(yè)可持續(xù)綠色發(fā)展。
寡糖作為一種生物刺激素,不僅對(duì)生態(tài)環(huán)境無害,而且能調(diào)控作物生長(zhǎng)發(fā)育,改善土壤質(zhì)量[6?8],對(duì)減少化肥農(nóng)藥用量具有重要作用。其中,在植物生產(chǎn)中使用較為普遍的殼寡糖,不僅能夠促進(jìn)作物生長(zhǎng)[9?10],提升作物品質(zhì)[11],還能增強(qiáng)作物的抗逆能力[12]。研究發(fā)現(xiàn),殼寡糖可以誘導(dǎo)植物產(chǎn)生抗病信號(hào)分子,能促進(jìn)抗病相關(guān)酶大量合成,增強(qiáng)植物抗病性[13]。來源于農(nóng)業(yè)廢棄物如秸稈、甘蔗渣和苜蓿殘?jiān)睦w維寡糖具有較高環(huán)境效益和經(jīng)濟(jì)效益,多應(yīng)用于食品、飼料添加劑和生物農(nóng)藥等領(lǐng)域[14]。在食品添加方面,纖維寡糖能促進(jìn)人體益生菌增值,調(diào)節(jié)腸道菌群平衡,提高機(jī)體免疫機(jī)能[15]。在飼料添加方面,因纖維寡糖含有一種優(yōu)良的雙歧桿菌促生物質(zhì)(雙歧因子),能作為雙歧桿菌等有益菌群的生長(zhǎng)底物并促進(jìn)其增殖生長(zhǎng)[16]。此外,纖維寡糖作為生物農(nóng)藥,能有效誘導(dǎo)植保素的合成與積累,對(duì)植物的抗病抗逆、分子信號(hào)調(diào)控以及生長(zhǎng)發(fā)育等有著重要意義[17?18]。
目前,有關(guān)殼寡糖的農(nóng)業(yè)研究多數(shù)集中于作物生長(zhǎng)、品質(zhì)改善以及防病抗逆等方面,而纖維寡糖更多應(yīng)用在食品和飼料添加方面,有關(guān)殼寡糖和纖維寡糖對(duì)土壤微生物群落結(jié)構(gòu)的調(diào)控作用尚不明確。因此,本研究利用Illumina Miseq高通量測(cè)序技術(shù),對(duì)土壤微生物多樣性和群落結(jié)構(gòu)組成進(jìn)行系統(tǒng)分析,探討土壤微生物群落結(jié)構(gòu)差異,進(jìn)一步揭示殼寡糖和纖維寡糖對(duì)土壤微生物多樣性及群落結(jié)構(gòu)的調(diào)控差異,為寡糖的農(nóng)業(yè)應(yīng)用提供土壤微生物學(xué)方面的理論參考。
供試土壤取自北京市順義區(qū)農(nóng)業(yè)環(huán)境綜合實(shí)驗(yàn)基地0?20cm耕層土壤,該地區(qū)屬于暖溫帶半濕潤(rùn)大陸性季風(fēng)性氣候,土壤類型為砂質(zhì)壤土,pH值7.58,有機(jī)質(zhì)25.86g·kg?1,總可溶性氮含量為13.85mg·kg?1,速效磷含量為21.31mg·kg?1,速效鉀含量為127.02mg·kg?1。殼寡糖聚合度分布在3~7,平均分子量為1159;纖維寡糖的聚合度在2~6,平均分子量為827,根據(jù)前期實(shí)驗(yàn)結(jié)果兩種寡糖濃度采用50mg·L?1。
實(shí)驗(yàn)在人工氣候室內(nèi)進(jìn)行,設(shè)置光照為12h·d?1,溫度25℃,相對(duì)濕度60%。分別稱取過2mm篩的風(fēng)干土500g,分層、多次裝入培養(yǎng)盒,培養(yǎng)盒尺寸為底徑12cm、口徑16cm、高17cm。灌水調(diào)節(jié)土壤水分至田間持水量的70%左右,用保鮮膜封口,并在保鮮膜上留若干小孔。人工氣候室中培養(yǎng)一周,期間稱重補(bǔ)水,以保持土壤水分含量相對(duì)穩(wěn)定。設(shè)置殼寡糖(CSOS)、纖維寡糖(COS)和清水對(duì)照(CK)三個(gè)處理,每個(gè)處理設(shè)置3個(gè)重復(fù),培養(yǎng)一周后,分別加入50mg·L?1的殼寡糖和纖維寡糖溶液800mL,至土壤水分達(dá)到飽和,自由排水至田間持水量,對(duì)照補(bǔ)充相對(duì)應(yīng)的去離子水。培養(yǎng)6d后,采集土樣進(jìn)行測(cè)定。
將土壤樣品送到北京某公司提取土壤總DNA并進(jìn)行后續(xù)分析,土壤微生物組DNA提取方法參照Power Soil DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA)試劑盒說明書。提取得到的DNA用1%瓊脂糖凝膠電泳和分光光度法進(jìn)行DNA質(zhì)量和濃度檢測(cè)。質(zhì)檢合格的樣本儲(chǔ)存在?20℃以供使用。細(xì)菌16S rRNA基因V3-V4區(qū)的擴(kuò)增采用引物338F(5'-ACTCCTACGGGAGGCAGCAG-3')和806R(5'-GGACTACHVGGGTWTCTAAT-3'),真菌ITS基因測(cè)序引物為ITS1F(5'-CTTGGTCATTTAGAGG AAGTAA-3')和ITS2(5'-TGCGTTCTTCATCGATG C-3')[19]。合成帶有條形碼序列的上述引物進(jìn)行PCR擴(kuò)增。PCR產(chǎn)物使用1%瓊脂糖凝膠電泳檢測(cè)擴(kuò)增目的條帶大小,并用Agencourt AMPure XP核酸純化試劑盒純化。PCR產(chǎn)物用于構(gòu)建微生物多樣性測(cè)序文庫,基于Illumina Miseq高通量測(cè)序平臺(tái)進(jìn)行Paired-end測(cè)序。
為了使信息分析的結(jié)構(gòu)更加準(zhǔn)確可靠,下機(jī)數(shù)據(jù)經(jīng)過QIIME1(v1.8.0)軟件根據(jù)Barcode序列拆分樣本,使用Pear(v0.9.6)軟件對(duì)數(shù)據(jù)進(jìn)行過濾、拼接,并根據(jù)Gold Database數(shù)據(jù)庫用Uchime方法比對(duì)去除嵌合體序列。最后使用Vsearch(v2.7.1)軟件UPARSE算法對(duì)優(yōu)質(zhì)序列按照97%的一致性進(jìn)行OTU聚類,并采用Silva128數(shù)據(jù)庫使用RDP Classifier算法對(duì)OTUs進(jìn)行注釋[20]。
采用Microsoft Excel 2016分析數(shù)據(jù)并制作表格,柱狀圖在Origin中進(jìn)行繪制。采用SPSS19.0對(duì)微生物多樣性指數(shù)進(jìn)行單因素方差分析(ANOVA),P<0.05說明處理間差異顯著。使用Mothur (version v.1.30)軟件,對(duì)樣品α多樣性指數(shù)進(jìn)行計(jì)算和評(píng)估[21],微生物群落α多樣性采用Chao1、Observed species、Shannon和PD whole tree指數(shù)表征。使用QIIME1(v1.8.0)計(jì)算β多樣性距離矩陣,基于OTU偏最小二乘法判別分析(PLS-DA分析)微生物群落結(jié)構(gòu)[22]。
2.1.1 對(duì)土壤細(xì)菌α多樣性的影響
α多樣性指數(shù)中的Chao1指數(shù)和Observed species(觀測(cè)物種數(shù))用以估算群落中的OTU數(shù)目,即菌種豐富度指數(shù),而Shannon和PD whole tree是估算樣品中微生物多樣性的指數(shù),Coverage指數(shù)是樣品文庫的覆蓋率,其數(shù)值越高,說明測(cè)序結(jié)果越接近代表樣本的真實(shí)情況。由表1可見,各樣本Coverage指數(shù)均達(dá)到98%以上,說明測(cè)序數(shù)據(jù)量合理,足以代表樣本中微生物的真實(shí)情況。表中各項(xiàng)指數(shù)對(duì)比顯示,與CK相比,CSOS(殼寡糖)和COS(纖維寡糖)處理的土壤中,觀測(cè)物種數(shù)量顯著增加,分別比CK高出82和51個(gè)OTU單位,雖然兩種寡糖處理間差異不顯著,但也說明該兩種寡糖處理對(duì)土壤中菌種豐富度指數(shù)有一定影響。從微生物多樣性指數(shù)看,兩種寡糖處理對(duì)Shannon指數(shù)的影響略有差異,CSOS處理的Shannon指數(shù)顯著高于CK和COS處理,而COS處理與CK差異不顯著;各處理間細(xì)菌譜系多樣性指數(shù)差異不顯著,說明土壤中施加殼寡糖能顯著提高細(xì)菌觀測(cè)物種數(shù)量和Shannon指數(shù),施加纖維寡糖顯著提高細(xì)菌觀測(cè)物種數(shù)量,但施加該兩種寡糖對(duì)Chao1指數(shù)和譜系多樣性均無顯著影響。
表1 不同處理土壤細(xì)菌α多樣性指數(shù)評(píng)估結(jié)果
注:培養(yǎng)一周后的土壤,每盒分別灌施清水(CK)、50mg·L?1殼寡糖(CSOS)和纖維寡糖(COS)溶液800mL至土壤水分達(dá)到飽和,并覆蓋帶有若干小孔的保鮮膜,培養(yǎng)6d后取樣。同一列小寫字母表示處理間在0.05水平上的差異顯著性,表中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤。下同。
Note:After one week cultivation, each box is respectively filled with clean water (CK), 50mg·L?1chitosan oligosaccharide (CSOS) and cello-oligosaccharide (COS) solution by 800mL until the soil moisture reaches saturation, covered with fresh-keeping film with several small holes, and sampled after six days. The different lowercase letters in the same column represent significant difference at 0.05 level. The data is means ± SD. The same as below.
2.1.2 對(duì)土壤細(xì)菌群落組成的影響
由圖1可見,兩種寡糖處理下,土壤中的優(yōu)勢(shì)菌門為變形菌門(Proteobacteria, 26.96%~31.03%)、酸桿菌門(Acidobacteria, 14.85%~22.97%)、放線菌門(Actinobacteria, 14.28%~16.71%)、綠彎菌門(Chloroflexi, 7.31%~8.20%)、芽單胞菌門(Gemmatimonadetes, 7.97%~9.50%)和擬桿菌門(Bacteroidetes, 6.84%~7.27%),占總體群落的86%以上。兩種寡糖處理明顯改變了土壤細(xì)菌群落組成,另外,在所有處理樣品中還檢測(cè)到了很多相對(duì)豐度較低的細(xì)菌,如粘球菌門(Myxococcota, 2.86%~3.57%)、厚壁菌門(Firmicutes, 1.43%~1.56%)、疣微菌門(Verrucomicrobia, 1.13%~1.36%)、浮霉菌門(Planctomycetes, 1.02%~1.21%)、Bdellovibrionota(1.07%~1.38%)和硝化螺旋菌門(Nitrospirota, 0.90%~1.18%)。與CK相比,兩種寡糖處理對(duì)細(xì)菌在門水平上的群落組成略有影響,殼寡糖(CSOS)和纖維寡糖(COS)處理后,酸桿菌門(Acidobacteria)的相對(duì)豐度分別降低35%和16%,殼寡糖(CSOS)處理變形菌門(Proteobacteria)、放線菌門(Actinobacteria)和芽單胞菌門(Gemmatimonadetes)的相對(duì)豐度分別增加15%、17%和19%,纖維寡糖(COS)處理變形菌門(Proteobacteria)、放線菌門(Actinobacteria)和芽單胞菌門(Gemmatimonadetes)的相對(duì)豐度分別增加8%、7%和7%。
圖1 不同土壤樣品門水平細(xì)菌群落相對(duì)豐度的比較
由圖2可知,在屬水平上,相對(duì)豐度>1.5%的優(yōu)勢(shì)屬為鞘氨醇單胞菌(, 3.83%~4.47%)、RB41(2.14%~3.38%)、MND1(2.67%~3.61%)和馬賽菌屬(, 1.71%~1.97%)。在相對(duì)豐度>0.5%的前29個(gè)屬中,與CK相比,施加CSOS后有19個(gè)屬相對(duì)豐度增加,10個(gè)屬的相對(duì)豐度降低,其中,相對(duì)豐度明顯增加的有9個(gè)屬,如MND1(35%)、溶桿菌屬(,25%)、硝化螺旋菌屬(,24%)、放線菌屬()(29%)、芽單胞菌屬(,24%)、YC-ZSS-LKJ147(37%)、赭黃嗜鹽囊菌屬(,46%)、芽球菌屬(,57%)和鏈霉菌屬(,31%)。與CK相比,COS處理有16個(gè)屬相對(duì)豐度增加,13個(gè)屬的相對(duì)豐度降低,其中,MND1、YC-ZSS-LKJ147、芽球菌屬()和假單胞菌屬()的相對(duì)豐度分別增加18%、36%、30%和215%。
圖2 不同土壤樣品屬水平細(xì)菌群落相對(duì)豐度的比較
2.1.3 不同土壤樣品土壤細(xì)菌群落結(jié)構(gòu)變化
基于OTU偏最小二乘法判別分析(PLS-DA分析)進(jìn)行統(tǒng)計(jì)分析,由圖3可知,細(xì)菌第一、二主成分的方差貢獻(xiàn)率分別為17.42%和12.21%,同一樣品點(diǎn)分布距離接近,不同樣品有明顯的分離現(xiàn)象。說明CSOS和COS處理改變了土壤細(xì)菌群落結(jié)構(gòu)分布,且CSOS和COS處理變化也具有明顯差異。
圖3 基于OTU的偏最小二乘法判別分析
2.2.1 對(duì)土壤真菌α多樣性的影響
由表2可知,各樣本Coverage指數(shù)均達(dá)到99%以上,說明測(cè)序數(shù)據(jù)量合理,足以代表樣本中微生物的真實(shí)情況。表中各項(xiàng)指數(shù)對(duì)比顯示,處理間的真菌α多樣性指數(shù)差異均不顯著。
2.2.2 對(duì)土壤真菌群落組成的影響
除unidentified外,各處理共檢測(cè)得到11個(gè)真菌門,由圖4可知,子囊菌門(Ascomycota)、擔(dān)子菌門(Basidiomycota)和被孢霉門(Mortierellomycota)為所測(cè)土壤中的優(yōu)勢(shì)真菌門,子囊菌門相對(duì)豐度最高,占比達(dá)60%以上,其次是擔(dān)子菌門(Basidiomycota, 8.19%~10.24%)和被孢霉門(Mortierellomycota, 4.65%~5.65%),而壺菌門(Chytridiomycota, 0.35%~1.34%)相對(duì)豐度占比較少。在相對(duì)豐度>1%的真菌門中,與CK相比,殼寡糖(CSOS)和纖維寡糖(COS)處理壺菌門的相對(duì)豐度分別增加了288%和174%。
由圖5可知,在屬水平上,相對(duì)豐度>1.5%的優(yōu)勢(shì)真菌屬為毛殼屬(, 9.56%~10.40%)、(6.54%~8.79%)、被孢霉屬(, 4.65%~5.65%)、鐮孢菌屬(, 3.24%~3.86%)、黃絲曲霉屬(, 3.80%~11.20%)、葡萄穗霉屬(, 2.90%~3.37%)、粉紅粘帚霉屬(, 2.30%~2.92%)。在相對(duì)豐度>0.5%的前20個(gè)屬中,與CK相比,施加CSOS處理相對(duì)豐度增加的有6個(gè)屬,降低的屬有14個(gè),其中,黃絲曲霉屬()的相對(duì)豐度變化明顯,其相對(duì)豐度增加了195%。施加COS處理有10個(gè)屬相對(duì)豐度表現(xiàn)為增加,有10個(gè)屬相對(duì)豐度表現(xiàn)為降低,但變化均不明顯。
2.2.3 不同土壤樣品真菌群落結(jié)構(gòu)分析
進(jìn)一步基于OTU偏最小二乘法判別分析(PLS-DA分析)進(jìn)行統(tǒng)計(jì)分析,由圖6可知,細(xì)菌第一、二主成分的方差貢獻(xiàn)率分別為14.93%和12.20%,同一樣品點(diǎn)分布距離接近,不同樣品有明顯的分離現(xiàn)象。說明CSOS和COS處理顯著改變了土壤真菌群落結(jié)構(gòu)分布,且CSOS和COS處理變化也具有明顯差異。
表2 不同處理土壤真菌α多樣性指數(shù)評(píng)估結(jié)果
圖4 不同土壤樣品中門水平真菌群落相對(duì)豐度的比較
圖5 不同土壤樣品中屬水平真菌群落相對(duì)豐度的比較
圖6 基于OTU的偏最小二乘法判別分析
糖類物質(zhì)通過提供豐富的碳源,為微生物提供能量,從而改善土壤微生態(tài)環(huán)境,促進(jìn)微生物生長(zhǎng)和繁殖[23]。本研究發(fā)現(xiàn)殼寡糖(CSOS)和纖維寡糖(COS)處理顯著增加細(xì)菌豐富度指數(shù),即物種觀測(cè)數(shù),殼寡糖(CSOS)和纖維寡糖(COS)處理均能顯著改變細(xì)菌和真菌的群落結(jié)構(gòu)。這表明兩種寡糖不但能提高細(xì)菌的豐富度,而且還在調(diào)控土壤微生物群落組成上均發(fā)揮著重要作用。
本研究發(fā)現(xiàn),變形菌門(Proteobacteria)、酸桿菌門(Acidobacteria)和放線菌門(Actinobacteria)是本研究中相對(duì)豐度最高的三個(gè)菌門,這與前人研究結(jié)果基本一致,即變形菌門(Proteobacteria)、酸桿菌門(Acidobacteria)和放線菌門(Actinobacteria)是不同農(nóng)業(yè)系統(tǒng)或其他土壤類型中最為常見的門類[24]。變形菌門(Proteobacteria)和放線菌門(Actinobacteria)偏好于營(yíng)養(yǎng)豐富的環(huán)境,富碳環(huán)境可刺激其快速增長(zhǎng),有助于土壤營(yíng)養(yǎng)物質(zhì)的積累,從而促進(jìn)富營(yíng)養(yǎng)型細(xì)菌的生長(zhǎng),而酸桿菌門(Acidobacteria)是貧營(yíng)養(yǎng)型菌群[25?26],能在含有難降解碳的環(huán)境中生長(zhǎng),降解植物殘?bào)w多聚物。在本研究中兩種寡糖處理均一定程度降低了酸桿菌門(Acidobacteria)的相對(duì)豐度,提高了變形菌(Proteobacteria)、放線菌門(Actinobacteria)和芽單胞菌門(Gemmatimonadetes)的相對(duì)豐度,但是,與纖維寡糖(COS)相比,殼寡糖(CSOS)處理改變細(xì)菌群落組成的幅度更大。同樣也有研究發(fā)現(xiàn)放線菌門(Actinobacteria)在土壤碳氮循環(huán)中具有重要作用[27],還能產(chǎn)生抗逆性較強(qiáng)的孢子,同時(shí)具有解磷、解鉀等功能[28?30],還有研究發(fā)現(xiàn),隨著土壤環(huán)境中碳含量的增加,芽單胞菌門(Gemmatimonadetes)的相對(duì)豐度也增加[31]。在屬水平上,鞘氨醇單胞菌()是三種處理中相對(duì)豐度最高的優(yōu)勢(shì)屬,與本研究結(jié)果一致,有研究發(fā)現(xiàn)鞘氨醇單胞菌()是黃土高原雨養(yǎng)農(nóng)業(yè)生態(tài)系統(tǒng)上的優(yōu)勢(shì)細(xì)菌屬[32]。本研究結(jié)果顯示,與CK相比,殼寡糖(CSOS)處理能明顯增加MND1、溶桿菌屬()、硝化螺旋菌屬()、放線菌屬()、芽單胞菌屬()、YC-ZSS-LKJ147、赭黃嗜鹽囊菌屬()、芽球菌屬()和鏈霉菌屬()的相對(duì)豐度,纖維寡糖(COS)處理后假單胞菌屬()的相對(duì)豐度增加了215%。有研究指出,溶桿菌屬()和芽球菌屬()在促進(jìn)植物生長(zhǎng)、抵御不良環(huán)境、防治土壤病害等方面發(fā)揮著重要作用[33?35]。硝化螺旋菌屬()能促進(jìn)營(yíng)養(yǎng)元素吸收轉(zhuǎn)化,增加土壤肥力[36]。赭黃嗜鹽囊菌屬()和鏈霉菌屬()在磷的吸收轉(zhuǎn)化中具有重要作用[37?38]。假單胞菌屬是高效的病害抑制性微生物,可以有效抑制鐮孢菌的生長(zhǎng)[39]??芍?,殼寡糖(CSOS)處理能促進(jìn)多種利于土壤營(yíng)養(yǎng)物質(zhì)積累的有益菌群生長(zhǎng),纖維寡糖(COS)處理主要表現(xiàn)為抑制有害菌屬。
子囊菌(Ascomycota)和擔(dān)子菌(Basidiomycota)作為土壤中主要的分解者,對(duì)分解植物殘?bào)w和降解秸稈殘留物具有重要作用[40?41],本研究也發(fā)現(xiàn)真菌群落以子囊菌門(Ascomycota)和擔(dān)子菌門(Basidiomycota)為主,占真菌總體的70%以上。此外,兩種寡糖均明顯增加壺菌門(Chytridiomycota)的相對(duì)豐度。在屬水平上,殼寡糖(CSOS)處理明顯增加有益菌屬的相對(duì)豐度。作為解磷微生物,其相對(duì)豐度增加能顯著提高土壤有效磷的供給[42]。以上結(jié)果表明,兩種寡糖處理都有利于改善土壤功能,但在優(yōu)化土壤微生物類群上具有一定的差異。
施加50mg·L?1殼寡糖(CSOS)和纖維寡糖(COS)溶液的土壤,于人工氣候室培養(yǎng)6d后,兩種寡糖處理均顯著改變了土壤細(xì)菌和真菌的群落結(jié)構(gòu),提高了細(xì)菌的豐富度(物種觀測(cè)數(shù))。其中,變形菌門(Proteobacteria)、酸桿菌門(Acidobacteria)、放線菌門(Actinobacteria)、綠彎菌門(Chloroflexi)、芽單胞菌門(Gemmatimonadetes)和擬桿菌門(Bacteroidetes)為土壤優(yōu)勢(shì)細(xì)菌門。子囊菌門(Ascomycota)、擔(dān)子菌門(Basidiomycota)和被孢霉門(Mortierellomycota)為優(yōu)勢(shì)真菌門。
兩種寡糖處理均不同程度降低了土壤酸桿菌門(Acidobacteria)的相對(duì)豐度,增加了土壤變形菌(Proteobacteria)、放線菌門(Actinobacteria)、芽單胞菌門(Gemmatimonadetes)、壺菌門(Chytridiomycota)以及有益菌屬溶桿菌屬()、硝化螺旋菌屬()、赭黃嗜鹽囊菌屬()、芽球菌屬()和鏈霉菌屬()的相對(duì)豐度,但是,與纖維寡糖(COS)相比,殼寡糖(CSOS)處理微生物群落組成的變化幅度更大。殼寡糖(CSOS)處理顯著增加有益菌屬Talaromyces的相對(duì)豐度(195%),纖維寡糖(COS)處理則明顯增加假單胞菌屬()的相對(duì)豐度(215%)。綜上,兩種寡糖均能增加有益土壤微生物,而其調(diào)控差別對(duì)于優(yōu)化土壤功能存在一定差異,其中殼寡糖(CSOS)處理能促進(jìn)多種利于土壤營(yíng)養(yǎng)物質(zhì)積累的有益菌群生長(zhǎng),纖維寡糖(COS)處理主要表現(xiàn)為抑制有害菌屬。
[1] Gans J,Wolinsky M,Dunbar J.Computational improvements reveal great bacterial diversity and high metal toxicity in soil[J].Science,2005,309(5739):1387-1390.
[2] Wang J,Liu G B,Zhang C,et al.Higher temporal turnover of soil fungi than bacteria during long-term secondary succession in a semiarid abandoned farmland[J].Soil and Tillage Research,2019,194:104305.
[3] Sindhu S S,Gupta S K,Dadarwal K R.Antagonistic effect ofspp. on pathogenic fungi and enhancement of growth of green gram()[J].Biology and Fertility of Soils,1999,29(1):62-68.
[4] 李巖,楊曉東,秦璐,等.兩種鹽生植物根際土壤細(xì)菌多樣性和群落結(jié)構(gòu)[J].生態(tài)學(xué)報(bào),2018,38(9):3118-3131.
Li Y,Yang X D,Qin L,et al.The bacterial diversity and community structures in rhizosphere soil of two halophytes,and[J].Acta Ecologica Sinica,2018,38(9):3118-3131.(in Chinese)
[5] Wardle D A,Bardgett R D,Klironomos J N,et al.Ecological linkages between aboveground and belowground biota[J]. Science,2004,304(5677):1629-1633.
[6] Aftab T,Khan M M A,Naeem M,et al.Effect of irradiated sodium alginate and phosphorus on biomass and artemisinin production in Artemisia annua[J].Carbohydrate Polymers, 2014,110:396-404.
[7] 何久興,趙解春,白文波,等.葉面噴施寡糖對(duì)生菜生長(zhǎng)和品質(zhì)的調(diào)節(jié)作用[J].中國(guó)農(nóng)業(yè)氣象,2019,40(12):783-792.
He J X,Zhao J C,Bai W B,et al.Effect of different oligosaccharides by spraying on plant growth and quality in lettuce[J].Chinese Journal of Agrometeorology,2019, 40(12):783-792.(in Chinese)
[8] Yang W J,Chen D Y,He Z C,et al.NMR characterization and anticoagulant activity of the oligosaccharides from the fucosylated glycosaminoglycan isolated from Holothuria coluber[J].Carbohydrate Polymers,2020,233: 115844.
[9] He J X,Han W,Wang J,et al.Functions of oligosaccharides in improving tomato seeding growth and chilling resistance[J].Journal of Plant Growth Regulation,2021(1): 1-11.
[10] 羅曉峰,代宇佳,宋艷,等.三種植物生長(zhǎng)調(diào)節(jié)劑對(duì)大豆生長(zhǎng)發(fā)育及產(chǎn)量的影響[J].核農(nóng)學(xué)報(bào),2021,35(4):980-988.
Luo X F,Dai Y J,Song Y,et al.Effects of three plant growth regulators on growth and yield of soybean[J].Journal of Nuclear Agricultural Sciences,2021,35(4):980-988.(in Chinese)
[11] 張運(yùn)紅,吳禮樹,耿明建,等.幾種寡糖類物質(zhì)對(duì)菜心產(chǎn)量和品質(zhì)的影響[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,28(2):164-168.
Zhang Y H,Wu L S,Geng M J,et al.Effects of several oligosaccharides on the yield and quality of[J].Journal of Huazhong Agricultural University, 2009,28(2):164-168.(in Chinese)
[12] Wang M,Chen Y,Zhang R,et al.Effects of chitosan oligosaccharides on the yield components and production quality of different wheat cultivars(L.) in Northwest China[J].Field Crops Research,2015,172: 11-20.
[13] Yin H,Zhao X M,Du Y G.Oligochitosan:a plant diseases vaccine-a review[J].Carbohydr Polym,2010,82(1):1-8.
[14] 劉程程.β-葡聚糖酶水解紫花苜蓿制備纖維寡糖的研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2011.
Liu C C.Enzymatic Hydrolysis Cello-oligosaccharide ofby β-glucanase[D].Beijing: Chinese Academy of Agricultural Sciences,2011.(in Chinese)
[15] Sadako N,Tsuneyuki O,Makoto I.Bioavailability of cellobiose by tolerance test and breath hydrogen excretion in humans[J].Nutrition,2004,20(11):979-983.
[16] Cheikhyoussef A,Pogori N,Chen W,et al.Antimicrobial proteinaceous compounds obtained from bifidobacteria: from production to their application[J].International Journal of Food Microbiology,2008,125(3):215-222.
[17] Shibuya N,Minami E.Oligosaccharide signalling for defence responses in plant[J].Physiological and Molecular Plant Pathology,2001,59(5):223-233.
[18] 邱馳,李寶聚,范海延,等.幾種葡聚寡糖激發(fā)子及其衍生物生物活性的比較[J].植物病理學(xué)報(bào),2004(4):336-339.
Qiu C,Li B J,Fan H Y,et al.Compare of biological activity of kinds of gluco-oligosaccharides and their derivants[J]. Acta Phytopathologica Sinica,2004(4):336-339.(in Chinese)
[19] Miao L,Wang S,Li B,et al.Effect of carbon source type on intracellular stored polymers during endogenous denitritation(ED) treating landfill leachate[J].Water Research,2016,100:405-412.
[20] Edgar Robert C.UPARSE:highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013, 10(10):996-998.
[21] Wang Y,Sheng H F,He Y,et al.Comparison of the levels of bacterial diversity in freshwater,intertidal wetland,and marine sediments by using millions of illumina tags[J]. Applied and Environmental Microbiology,2012,78(23): 8264-8271.
[22] Jiang X T,Peng X,Deng G H,et al.Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland[J].Microbial Ecology, 2013,66(1):96-104.
[23] Li X W,Chen Q X,Lei H Q,et al.Nutrient uptake and utilization by fragrant rosewood () seedlings cultured with oligosaccharide addition under different lighting spectra[J].Forests,2018,9(1):29-43.
[24] Nacke H,Thürmer A,Wollherr A,et al.Pyrosequencing- based assessment of bacterial community structure along different management types in german forest and grassland soils[J].PLOS ONE,2017,6(2):e17000.
[25] Sul W J,Asuming-Brempong S,Wang Q,et al.Tropicalagricultural land management influences on soil microbial communities through its effect on soil organic carbon[J].Soil Biology and Biochemistry,2013,65(5):33-38.
[26] Morris S A,Radajewski S,Willison T W,et al.Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing[J].Applied and Environmental Microbiology,2002,68(3):1446-1453
[27] Zeng Q C,Dong Y H,An S S.Bacterial community responses to soils along a latitudinal and vegetation gradient on the loess plateau,China[J].PLoS ONE,2016, 11(4):e0152894.
[28] Hamdali H,Hafidi M,Virolle M J,et al.Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions[J].Applied Soil Ecology, 2008,40(3):510-517.
[29] Hamdali H,Bouizgarne B,Hafidi M,et al.Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines[J].Applied Soil Ecology,2008,38:12-19.
[30] Hamdali H,Hafidi M,Virolle M J,et al.Rock phosphate solubilizing Actinomycetes:screening for plant growth promoting activities[J].World Journal of Microbiology& Biotechnology,2008,24(11):2565-2575.
[31] Bhatti A A,Haq S,Bhat R A.Actinomycetes benefaction role in soil and plant health[J].Microbial Pathogenesis, 2017,111(111):458-467.
[32] Sun Lei,Li Jun,Wang Qian,et al.The effects of eight years of conservation tillage on the soil physicochemical properties and bacterial communities in a rain-fed agroecosystem of the Loess Plateau,China[J].Land Degradation and Development,2020,31(16):2475-2489.
[33] Jochum C C,Osborne L E,Yuen G Y.Fusarium head blight biological control with Lysobacter enzymogenes strain C3[J].Biological Control,2006,39(3):336-344.
[34] Ko H S,Jin R D,Krishnan H B,et al.Biocontrol ability ofHS124 against phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes[J].Current Microbiology, 2009,59(6):608-615.
[35] 孫紅敏,余利巖,張玉琴.地嗜皮菌科放線菌的研究進(jìn)展[J].微生物學(xué)報(bào),2015,55(12):1521-1529.
Sun H M,Yu L Y,Zhang Y Q.Recent advance in Geodermatophilaceae:a review[J].Acta Microbiologica Sinica,2015,55(12):1521-1529.(in Chinese)
[36] 朱琳,曾椿淋,李雨青,等.基于高通量測(cè)序的大豆連作土壤細(xì)菌群落多樣性分析[J].大豆科學(xué),2017,36(3):419-424.
Zhu L,Zeng C L,Li Y Q,et al.The characteristic of bacterial community diversity in soybean field withcontinuous cropping based on the high-throughput sequencing[J]. Soybean Science,2017,36(3):419-424.(in Chinese)
[37] 秦利均,楊永柱,楊星勇.土壤溶磷微生物溶磷、解磷機(jī)制研究進(jìn)展[J].生命科學(xué)研究,2019,23(1):59-64.
Qin L J,Yang Y Z,Yang X Y,et al.Advances in mechanisms of soil phosphorus solubilization and dissolution by phosphate solubilizing microorganisms[J]. Life Science Research, 2019,23(1):59-64.(in Chinese)
[38] Qiu M H,Zhang R F,Xue C,et al.Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils,2012,48(7):807-816.
[39] Schippers B.Exploitation of microbial mechanisms to promote plant health and plant growth[J].Phytoparasitica, 1993,21(4):275-279.
[40] Yelle D J,Ralph J,Lu F C,et al.Evidence for cleavage of lignin by a brown rot basidiomycete[J].Environmental Microbiology,2008,10(7):1844-1849.
[41] 武俊男,劉昱辛,周雪,等.基于Illumina MiSeq測(cè)序平臺(tái)分析長(zhǎng)期不同施肥處理對(duì)黑土真菌群落的影響[J].微生物學(xué)報(bào),2018,58(9):1658-1671.
Wu J N,Liu Y X,Zhou X,et al.Effects of long-term different fertilization on soil fungal communities in black soil based on the Illumina Mi Seq platform[J].Acta Microbiologica Sinica,2018,58(9):1658-1671.(in Chinese)
[42] 吳安琪,張揚(yáng),萬松澤,等.一株金黃藍(lán)狀菌解磷特性及其對(duì)毛竹的促生效應(yīng)[J].應(yīng)用生態(tài)學(xué)報(bào),2019,30(1):173-179.
Wu A Q,Zhang Y,Wan S Z,et al.Phosphate solubilizing characteristics of Talaromyces aurantiacus and its growth-promoting effect on Phyllostachys edulis seedlings [J].Chinese Journal of Applied Ecology,2019,30(1):173- 179.(in Chinese)
錢遠(yuǎn)超,何久興,孔夢(mèng),等.寡糖對(duì)土壤微生物多樣性及群落結(jié)構(gòu)的調(diào)節(jié)作用[J].中國(guó)農(nóng)業(yè)氣象,2022,43(6):464-473
Regulation of Oligosaccharides on Soil Microbial Diversity and Community Structure
QIAN Yuan-chao1,HE Jiu-xing1,KONG Meng1,SONG Ji-qing1, MAKOTO Saito2, LV Guo-hua1
(1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences,Beijing 100081,China;2. Showa Denko K.K., Minato-ku, Tokyo 105-8518, Japan)
The type of soil microbial population plays an important role in soil quality and growth of crops. Studying the impact characteristics of different oligosaccharides on soil microbial population will help to use oligosaccharides correctly, efficiently and safely. In this study, the soils were placed in an artificial climate chamber, 50mg·L?1Chitosan oligosaccharide (CSOS) and Cello-oligosaccharide (COS) solution were applied into the soils, treated with clean water (CK) as the control, cultured for 6 days, sampled, and analyzed the structure composition and diversity distribution characteristics of soil microbial community by high-throughput sequencing technology. The CSOS and COS treatments significantly changed the community structure of bacteria and fungi, increased the observed number of bacterial species. Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes and Bacteroidetes were the dominant bacteria. Ascomycota, Basidiomycota and Mortierllomycota were the dominant fungi. Through the comparative analysis of community composition among groups, it could be seen that the treatments both reduced the relative abundance of Acidobacteria in different degrees, and increased Proteobacteria, Actinobacteria, Gemmatimonadetes, Chytridiomycota and beneficial bacteria,,,,and. However, compared with the COS, the CSOS treatment had a greater change in microbial community composition. In addition, the CSOS and COS treatments had some differences in regulating soil microbial community structure. The relative abundance of beneficial bacteriatreated with the CSOS increased by 195%, and the relative abundance of beneficial bacteriatreated with the COS increased by 215%. In conclusion, chitosan oligosaccharide and cello-oligosaccharide both could optimize the structure and composition of soil microbial community. The difference between the CSOS and COS helped to realize the regulating mechanism, and promote their application and popularization.
; Cello-oligosaccharide; High-throughputsequencing; Bacterial communitystructure; Fungal community structure
收稿日期:2021?09?24
中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(Y2020GH12);糧食豐產(chǎn)增效科技創(chuàng)新專項(xiàng)(2017YFD0300410-2);中日合作項(xiàng)目(2020110001002708)
通訊作者:呂國(guó)華,副研究員,從事農(nóng)業(yè)新材料應(yīng)用研究。E-mail:lvguohua@caas.cn
錢遠(yuǎn)超,E-mail:1124875667@qq.com
10.3969/j.issn.1000-6362.2022.06.004