李軍 朱夢珂 田激旋 陳瑜 林冬枝 董彥君
摘? 要: 粳稻品種“嘉花1號”經甲基磺酸乙酯(EMS)化學誘變處理,獲得一個穩(wěn)定遺傳水稻幼苗高溫白化復綠突變體.該突變體在高溫(>24 ℃)條件下,二葉期葉色呈白色失綠,三葉期開始復綠,四葉期后與野生型沒有明顯差異;而在低溫(20 ℃)條件下,突變體苗期葉色與野生型一致呈綠色,無白化現象.利用該突變體與“培矮64S”雜交構建F遺傳群體,發(fā)現苗期的高溫白化復綠葉色性狀受到一對隱性核基因控制,并將該突變基因()定位在水稻第5染色體上的ID05M16025和ID05M16113分子標記之間的127 kb區(qū)間內,經測序推定突變基因是編碼PPR蛋白的基因.結果表明:是一個受高溫響應且影響水稻早期葉綠體發(fā)育的關鍵基因.今后將進一步對基因進行研究,以加深了解溫度對水稻葉綠體分子發(fā)育機理.
關鍵詞: 水稻; 葉色突變; 高溫敏感; 遺傳分析; 分子定位
中圖分類號: Q 344??? 文獻標志碼: A??? 文章編號: 1000-5137(2022)02-0243-08
Genetic analysis and molecular mapping of high-temperature albino regreen mutant in rice
LI JunZHU MengkeTIAN JixuanCHEN XuLIN DongzhiDONG Yanjun
(1.College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;2.Institute of Genetics, Shanghai Normal University, Shanghai 200234, China)
Japonica rice variety “Jiahua 1” was treated with Ethyl methyl sulfone (EMS) chemical mutagenesis to obtain a stable genetic rice seedling high temperature albino and regreening mutant . Under high temperature (>24 ℃), the mutant showed white chlorosis at the 2-leaf stage, re-greening at the 3-leaf stage, and no significant difference from the wild type after the 4-leaf stage. By contrast, under low temperature (20 ℃), the leaf color of the mutant at the seedling stage was the same as that of the wild type, and it was green, and there was no albino phenomenon. The F genetic population was constructed by hybridizing the mutant with Peiai 64S. It was found that the high temperature albino regreen leaf color trait at seedling stage was controlled by a pair of recessive nuclear genes. The mutant gene () was located in the 127 kb interval between ID05M16025 and ID05M16113 molecular markers on rice chromosome 5. The mutant gene was presumed to be the gene encoding PPR protein. Collectively, is a key gene that responds to high temperature and affects early rice chloroplast development. In the future, further study of gene will help to deepen the understanding of temperature on the molecular development mechanism of rice chloroplast.
rice; leaf-color mutant; high-temperature sensitive; genetic analysis; molecular mapping
0? 引 言
高質量的水稻生產對于保障我國的糧食安全有著極為重要的作用.光合作用能否順利進行是影響水稻生長發(fā)育及產量最主要的因素之一.水稻葉色變化與葉綠體的發(fā)育是影響水稻光合作用的主要因素.關于水稻葉色突變的研究已開展多年,目前至少有150種葉色突變體被發(fā)現,其中多數突變體基因已經被定位與克隆.在這些葉色基因中不少是溫敏感基因,如低溫敏感基因有:編碼三角狀五肽重復序列(PPR)蛋白,,,],,編碼50S核糖體L13蛋白;編碼RNA聚合酶,與類囊體膜的穩(wěn)定性有關,編碼葉綠體核糖體小亞基蛋白S6的;編碼S-磺基半胱氨酸合酶的,編碼合成蘇氨酰-tRNA合成酶的以及編碼偽尿嘧啶合酶等等;但已報道的高溫敏感基因僅有:與類胡蘿卜素合成相關-()、編碼Deg蛋白酶的以及編碼谷氨酰-tRNA合成酶()等,且在高溫條件下又能復綠的更為少見.因此,對高溫白化復綠相關基因進行定位與克隆,可以為進一步解釋水稻葉綠體發(fā)育的復雜機制奠定基礎.
本研究所用的高溫白化復綠突變體是水稻品種“嘉花1號”經過甲基磺酸乙酯(EMS)誘變獲得的.對該突變體的葉色、光合色素含量、葉綠體顯微結構進行了觀察和分析,并利用了SSR及InDel分子標記對該突變基因進行了定位,為該基因的分子克隆及分子機理的研究奠定基礎.
1? 材料與方法
實驗材料
本實驗所用的突變體是“嘉花1號”干種子經過EMS化學誘變形成的,經多次自交繁殖,當其農藝性狀穩(wěn)定后,再與“培矮64S”雜交獲得F代,F代自交得到F代,F代群體作為遺傳分析和基因定位材料.
方 法
1.2.1 突變體苗期表型觀察
將已發(fā)芽的突變體與野生型“嘉花1號”(WT)的種子分別播種于塑料盤中,再將它們分別置于20,24,28,32 ℃的光照培養(yǎng)箱(寧波江南儀器,GXZ智能型)中培養(yǎng),每日光照12 h,光照強度為180 μmol?m·s,每天觀察幼苗的生長狀況,并分別在二葉期、三葉期和四葉期進行拍照.
1.2.2 苗期葉片葉綠素含量的測定
分別剪取在20,24,28,32 ℃培養(yǎng)箱中培養(yǎng)的野生型“嘉花1號”和突變體第3片葉子的中間區(qū)域,剪碎后并稱取0.02 g,倒入10 mL離心管中,并加入5 mL葉綠素提取液((乙醇)∶(丙酮)∶(水)=5∶4∶1),室溫條件下避光處理20 h;然后,將已經溶解全部色素的提取液加入到比色皿中,用分光光度計(METASH-UV5100型)分別測定470,645,663 nm波長的吸光值,并推算苗期葉片中葉綠素a(Chl a)、葉綠素b(Chl b)和類胡蘿卜素(CAR)的含量.實驗重復3次,取平均值.
1.2.3 葉綠體亞顯微結構的觀察
葉片取樣過程與1.2.2節(jié)相同,然后沿著葉脈方向剪成約8 mm長的片段,放進離心管中,加入2.5%(體積分數)的戊二醛進行固定,隨后抽真空,4 ℃下避光保存,之后再經過磷酸緩沖液沖洗,鋨酸再固定,乙醇梯度去水,丙酮置換、浸漬、包埋、聚合、修塊、切片、醋酸鈾染色等一系列處理后,在透射電鏡(Hitachi765型)下進行觀察拍照.
1.2.4 遺傳群體的構建
本研究將“培矮64S”與雜交后代F種子作為遺傳分析和基因定位的群體,然后,將發(fā)芽F種子播在裝有水稻土的托盤中,放置在32 ℃的培養(yǎng)箱中生長,觀察葉色變化及其分離比,并選取突變型白化幼苗作為基因定位遺傳群體.
1.2.5 DNA的提取
將挑取的親本幼苗及F代白化幼苗分別利用十六烷基三甲基溴化銨(CTAB)法和TPS法提取其基因組DNA.
1.2.6 基因定位
在本實驗中,首先利用在“培矮64S”和之間多態(tài)性良好的SSR及InDel分子標記,對F代群體的具有白化表型的幼苗進行突變基因定位,確定突變基因在哪條染色體后,擴大遺傳群體和更多DNA分子標記(表1),對突變基因進行精細定位.通過網站(http://rice.uga.edu/cgi-bin/gbrowse/rice/)查詢得到區(qū)間內的全部預測基因,并通過測序驗證突變位點.
2? 結果與分析
突變體苗期表型
通過對突變體苗期葉色表型的觀察(圖1),發(fā)現在20 ℃時,的葉色從二葉期到四葉期都為綠色,與WT一致;在24 ℃和28 ℃時,其在二葉期表現出葉片白化現象,在三葉期迅速轉綠,葉色與WT相仿,在四葉期與WT無明顯差異;而在32 ℃時,突變體在二葉期同樣表現出白化,三葉期仍為白葉,四葉期基本轉綠. 觀察結果表明:突變體在低溫下(20 ℃)葉色正常,在高溫下(>24 ℃)苗期葉色都有白化現象,并隨幼苗生長逐漸轉綠,是一個高溫白化復綠突變體,但其復綠的速度與溫度呈負相關.
突變體葉綠素含量變化
對20,24,28,32 ℃下生長的WT及tcd52突變體的三葉期幼苗的葉片的葉綠素含量進行測定,結果如圖2所示.在20 ℃時,WT與tcd52的葉綠素含量無顯著差異;24 ℃時,tcd52葉綠素下降到WT的一半;28 ℃時,下降至WT的1/4;而32 ℃時,tcd52中幾乎檢測不到葉綠素.由此可知,溫度越高,tcd52突變體的葉綠素含量下降幅度越大,這與葉色表型變化一致.
突變體葉綠體顯微結構
通過透射電鏡觀察第3葉葉綠體的亞顯微結構(圖3),發(fā)現在32 ℃時,葉片細胞中基本沒有完整的、成形的葉綠體結構;而在20 ℃時,與WT的葉綠體結構沒有顯著差異,與2.1和2.2節(jié)葉色和光合色素的變化完全吻合.
群體的遺傳分析
“培矮64S”與突變體雜交得到的F代在高溫(32 ℃)條件下全表現為綠色,無白化現象,而F代自交得到的F代則苗色分離.對其中F代772株群體調查發(fā)現,綠色植株582株,白色植株190株,對其進行卡方檢驗(=0.062 17),符合分離比3∶1的標準. 由此,推斷該高溫白化復綠性狀是由一對隱性核基因()控制.
基因定位
選取22株F代突變型白苗進行連鎖分析,發(fā)現水稻第5染色體上的分子標記MM2914(圖4(a))有強烈的偏態(tài)擴增,初步確定位于第5染色體上. 然后將群體擴大到413株,將基因定位在MM3827和MM4201兩個分子標記之間(圖4(a)),隨后將定位群體擴大到1 094株,把該基因定位在ID16025和ID16113兩個分子標記127 kb的區(qū)間內(圖4(b),4(c)).該區(qū)域跨越3個BACs(OJ1126_B10,OJ11268_B08,OJ1735_C10)(圖4(c))共有27個候選基因,經測序只發(fā)現編碼PPR蛋白基因()的編碼區(qū)第2219個堿基G到A的突變,導致第740個氨基酸由絲氨酸變(Ser)為天冬酰胺(Asn)(圖4(d)).
3? 討 論
水稻不僅是重要糧食作物,也是單子葉植物和禾本科的模式植物,所以,對水稻葉綠體發(fā)育相關基因的研究極其重要.葉綠體是植物特有的半自主性細胞器,自身能夠合成部分蛋白質,也受到核基因的調控,在植物的生長發(fā)育過程中起到關鍵作用.葉綠體的發(fā)育是影響葉色的最主要因素之一,溫敏感的葉色突變體是研究葉綠體發(fā)育溫度響應機制的理想材料.溫敏感的葉色突變體可以分為低溫敏感和高溫敏感兩種類型.在高溫敏感的葉色基因中,的破壞會使植株在四葉期后致死;的突變會使水稻的葉色在高溫條件下呈現黃色的表型;本研究發(fā)現基因只對水稻三葉期前的葉綠體的發(fā)育起到重要的作用,它的突變在高溫下使葉綠體的結構出現嚴重缺陷,從而出現白化現象,但在三葉期后其對水稻葉綠體發(fā)育的影響顯著降低,植株出現復綠.經過基因定位,推定是在水稻第5染色體上的編碼PPR蛋白()基因上,由于第2 219位堿基G替換為A,導致第740位的氨基酸由絲氨酸變(Ser)為天冬酰胺(Asn),造成基因功能改變.有趣的是,TANG等也報道了在的突變體說明是復等位突變基因,而是第1 103個堿基C替換成T,導致其編碼的第368位氨基酸由蘇氨酸(Thr)變?yōu)楫惲涟彼幔↙eu)(圖5).更有意思的是,雖同為復等位突變基因,但是這兩個突變體的表型卻有著明顯的差異,突變體只有在高溫下,才會出現白化表型,并且隨著幼苗的生長而逐漸復綠,后期并不會影響植株的生長,是高溫白化復綠表型突變體;但突變體表現出苗白化,不受溫度的影響,也不會轉綠,植株最終枯萎而死,是致死突變體. 比較發(fā)現,的突變位置比更加靠前(圖5),但兩者均未造成提前翻譯終止.由此,推測的突變位點所在蛋白結構域對水稻葉綠體發(fā)育和植株生長極其重要,并影響著水稻植株生死存亡,而突變位點所在DYW蛋白結構域只影響水稻幼葉綠體發(fā)育,并受到溫度調控. 結合兩個突變體的表型情況及基因的突變情況,還有DYW結構域對葉綠體和線粒體轉錄本成熟的重要作用,更加確定基因對葉綠體發(fā)育以及溫度響應具有重要作用.
4? 結 論
實驗利用EMS化學誘變粳稻“嘉花1號”,獲得了由一對隱性基因控制的高溫白化復綠突變體.該突變體在高溫(>24 ℃)下會出現白化,四葉期轉綠恢復正常,葉色表型變化與其葉綠體完整性和葉綠素含量變化相一致.該基因()定位在水稻第5染色體上ID16025和ID16113兩個分子標記之間127 kb內,測序發(fā)現是一個編碼PPR蛋白()基因,是蛋白中一個絲氨酸變(Ser)突變成天冬酰胺(Asn)導致突變體苗色產生高溫白化復綠.今后將進一步研究該基因分子機制,以加深對溫度影響水稻葉綠體發(fā)育機理的理解.
參考文獻:
[1]? ZHENG C K, ZHOU G H, NIU S L, et al. Phenotype identification and gene localization of premature aging mutant - in rice [J/OL]. Acta Agronomica Sinica,2021:1-13[2022-01-11].http://kns.cnki.net/kcms/detail/11.1809.S.20211202.1852.002.html.
[2]? GUO X Q, LUO D, ZHU Q, et al. Research progress on genetic mechanism, exploration and utilization of rice albino mutants [J/OL]. Molecular Plant Breeding,2021:1-19[2022-01-11].http://kns.cnki.net/kcms/detail/46.1068.S.20210609.0919.005.html.
[3]? ZHANG P, LIU M L, YE H S, et al. Research progress of rice leaf color mutants [J]. Molecular Plant Breeding,2021,19(17):5712-5719.
[4]? YAGN Y R, HUANG Q Q, ZHAO Y N, et al. Advances in rice leaf color gene cloning and molecular mechanism [J]. Journal of Plant Genetic Resources,2020,21(4):794-803.
[5]? GOTHANDAM K M, KIM E S, CHO H, et al. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis [J]. Plant Molecular Biology,2005,58(3):421-433.
[6]? WANG Y. Map based cloning and functional analysis of rice white stripe gene [D]. Beijing: Chinese Academy of Agricultural Sciences,2017.
[7]? GONG X, SU Q, LIN D, et al. The rice encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress [J]. Journal of Integrative Plant Biology,2014,56(4):400-410.
[8]? LIU X, LAN J, HUANG Y, et al. WSL5, a pentatricopeptide repeat protein, is essential for chloroplast biogenesis in rice under cold stress [J]. Journal of Experimental Botany,2018,69(16):3949-3961.
[9]? DU Y X, MO W P, MA T T, et al. A pentatricopeptide repeat protein DUA1 interacts with sigma factor 1 to regulate chloroplast gene expression in rice [J]. Photosynth Res,2020,147(2):131-143.
[10] SONG J, WEI X, SHAO G, et al. The rice nuclear gene encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions [J]. Plant Molecular Biology,2014,84(3):301-314.
[11] YU Y, ZHOU Z, PU H, et al. is required for chloroplast development in rice ( L.) at low temperature by regulating plastid genes expression [J]. Functional Plant Biology,2019,46(8):766-776.
[12] HE Y. Cloning and functional analysis of ATP binding cassette transporter gene in Rice [D]. Beijing:Chinese Academy of Agricultural Sciences,2020.
[13] WANG W J, ZHENG K L, GONG X D, et al. The rice encoding plastid ribosomal protein S6 is essential for chloroplast development at low temperature [J]. Plant Science,2017,259:1-11.
[14] WANG Y, ZHONG P, ZHANG X Y, et al. encoding a putative S-sulfocysteine synthase is involved in chloroplast development at the early seedling stage of rice [J]. Plant Science,2019,280:321-329.
[15] LIN D Z, ZHOU W H, WANG Y L, et al. Rice encoding threonyl-tRNA synthetase is needed for early chloroplast development and seedling growth under cold stress [J]. G3 (Bethesda, Md),2021,11(9):jkab196.
[16] LIN D Z, KONG R R, CHEN L, et al. Chloroplast development at low temperature requires the pseudouridine synthase gene in rice [J]. Science Letter,2020,10(1):8518.
[17] GUO T, HUANG Y X,HUANG X, et al. Map based cloning of - gene from albino to green and multi tiller dwarf in rice [J] Journal of Crops,2012,38(8):1397-1406.
[18] ZHENG K L, ZHAO J, LIN D Z, et al. The rice gene encoding a novel Deg protease protein is essential for chloroplast development under high temperatures [J]. Rice,2016,9(1):13.
[19] LIU W Z, FU Y P, HU G C, et al. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice ( L.) [J]. Planta,2007,226(3):785-795.
[20] JIANG S H, ZHOU H, LIN D Z, et al. Identification and gene localization of leaf color temperature sensitive mutants in rice seedlings [J]. Chinese Rice Science,2013,27(4):359-364.
[21] ZHANG X Z. Determination of plant chlorophyll content: acetone ethanol mixture method [J]. Liaoning Agricultural Sciences,1986(3):26-28.
[22] LI C, LIN D Z, DONG Y J, et al. Genetic analysis and gene localization of a temperature-sensitive white striped leaf mutant in rice seedling stage [J]. Chinese Rice Science,2010,24(3):223-227.
[23] POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components [J]. Plant Molecular Biology Reporter,1997,15(1):8-15.
[24] ZHANG X Q, ZOU J S, ZHU H T, et al. Genetic analysis and gene localization of multi-Ovary mutant fon5 in rice early maturation [J]. Heredity,2008(10):1349-1355.
[25] GAO Y Y, ZHANG T, ZHOU W H, et al. Identification and gene localization of , low temperature sensitive mutant in rice [J]. Genomics and Applied Biology,2020,39(11):5143-5149.
[26] LEI X Q, WU L L, WANG W J, et al. Identification of , a lethal mutant of albinism at seedling stage of rice and its gene localization [J]. Journal of Shanghai Normal University (Natural Science Edition),2018,47(5):577-584.
[27] WANG X W, AN Y Q, XIAO J W, et al. Research progress on PPR protein regulation of plastoid gene expression and chloroplast development [J]. Journal of Plant Physiology,2020,56(12):2510-2516.
[28] TANG J P, ZHANG W W, WEN K, et al. OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice [J]. Plant Molecular Biology,2017,95(4/5):345-357.
(責任編輯:顧浩然)