修思瑞 周小林 王寶?!《艅?/p>
摘? 要: 分析了一種面向智能物聯(lián)的雙路徑機(jī)器學(xué)習(xí)調(diào)制模式識別方法.以元學(xué)習(xí)網(wǎng)絡(luò)為基礎(chǔ),將模糊分類和精確分類相結(jié)合,在低信噪比環(huán)境下,能擴(kuò)增識別信號類型,同時保持較高的識別精度,有效地降低了惡劣環(huán)境對信號帶來的影響.用理論分析和仿真結(jié)果證明了該方法的有效性.
關(guān)鍵詞: 智能物聯(lián); 自適應(yīng)網(wǎng)絡(luò); 元學(xué)習(xí); 雙路徑
中圖分類號: TP 311??? 文獻(xiàn)標(biāo)志碼: A??? 文章編號: 1000-5137(2022)02-0221-06
XIU Sirui, ZHOU XiaolinWANG Baorui, DU Gang
(School of Information Science and Technology, Fudan University, Shanghai 200433, China)
In this paper a dual path machine learning modulation pattern recognition method was analyzed for intelligent Internet of Things. Based on meta-learning network and the combination of fuzzy classification and precise classification, the types of identification signals were increased, and high identification accuracy was maintained in the low signal-to-noise ratio environment at the same time which could effectively reduced the impacts of harsh environment to the signal. The theoretical analysis and simulation results demonstrated the effectiveness of the proposed method.
intelligent Internet of Things; adaptive network; meta-learning; dual path
0? 引言
隨著互聯(lián)網(wǎng)產(chǎn)業(yè)日趨成熟以及人工智能的出現(xiàn)和發(fā)展,越來越多的物聯(lián)網(wǎng)設(shè)備朝著智能化方向迅速融合.其具備的數(shù)據(jù)交換的能力,推動了智能物聯(lián)網(wǎng)的變革和發(fā)展,同時也為人們的生產(chǎn)、生活和社會活動提供了大量的機(jī)會和便利.智能物聯(lián)已成為一種主導(dǎo)技術(shù),允許不同的事物通過互聯(lián)網(wǎng)進(jìn)行通信并相互理解,利用人工智能技術(shù)來處理不同傳感器收集的數(shù)據(jù)并采取相應(yīng)的行動.
智能化接收和識別不同調(diào)制類型的信號能夠有效提高信號確認(rèn)和頻譜管理速率,減少網(wǎng)絡(luò)延遲,提高準(zhǔn)確率,為搭建智能物聯(lián)自適應(yīng)網(wǎng)絡(luò)提供可能.現(xiàn)有的調(diào)制模式識別的研究已獲得了較高的準(zhǔn)確率,但是大多數(shù)算法都專注于數(shù)字調(diào)制分類,而忽視了模擬通信技術(shù),不能完全體現(xiàn)汽車自適應(yīng)網(wǎng)絡(luò)的智能化和廣泛化.
針對以上背景,本文作者研究了一種面向智能物聯(lián)的雙路徑機(jī)器學(xué)習(xí)調(diào)制模式識別方法.以元學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)為基礎(chǔ),識別不同類型圖像.將識別階段分為模糊分類和精準(zhǔn)分類階段,區(qū)分非數(shù)字調(diào)制信號,并對數(shù)字調(diào)制信號進(jìn)行精準(zhǔn)分類,以最優(yōu)分類結(jié)果作為輸出,在保證準(zhǔn)確率的同時,提高系統(tǒng)的兼容性.實驗結(jié)果表明,該雙路徑雙重識別方式所能識別的信號類型范圍更廣,復(fù)雜度更低,比單一方式的識別精度提高約8%.
1? 雙路徑調(diào)制模式識別系統(tǒng)
元學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)
雙路徑數(shù)據(jù)集
雙階段分類器
2? 仿真和分析
分別采用雙路徑識別方案及星座圖單路徑識別方案進(jìn)行仿真對比實驗.在神經(jīng)網(wǎng)絡(luò)選取上,元學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)具備自我學(xué)習(xí)的功能,且為了控制變量,由雙路徑識別方案訓(xùn)練神經(jīng)網(wǎng)絡(luò).由于星座圖僅能還原數(shù)字調(diào)制信號,設(shè)計基礎(chǔ)調(diào)制信號包含2ASK,2PSK,2FSK,2QAM,4ASK,4FSK,4PSK,4QAM,8ASK,8FSK,8PSK,8QAM,16ASK,16FSK,16PSK,16QAM,32QAM及64QAM 18種數(shù)字調(diào)制信號,涵蓋不同調(diào)制階數(shù)的數(shù)字調(diào)制方式,盡可能模擬復(fù)雜的調(diào)制信號環(huán)境.在雙路徑識別方案中,除18種基礎(chǔ)調(diào)制信號外,還設(shè)計了AM,F(xiàn)M非數(shù)字調(diào)制信號,總共20種調(diào)制信號進(jìn)行仿真實驗.
在元學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練階段,每種調(diào)制信號的信噪比由4 dB增加到10 dB,且以2 dB為間隔變化,當(dāng)信噪比為1 dB時,每種類型共采集20張圖像作為訓(xùn)練集,共計1 600張圖像.在測試階段,每種調(diào)制信號均選取40張圖像(雙路徑共計800張,星座圖共計720張)作為測試對象進(jìn)行測試.
圖4顯示了雙路徑訓(xùn)練集下,訓(xùn)練及驗證分類準(zhǔn)確率與迭代次數(shù)的關(guān)系.訓(xùn)練過程中,在每個迭代次數(shù)結(jié)束之后,保存的模型都會在新任務(wù)上泛化測試,以此來評估分類模型的快速自學(xué)習(xí)能力.仿真結(jié)果表明,不同信噪比下,訓(xùn)練分類的驗證準(zhǔn)確率在5,6次迭代后顯著提高,并逐漸趨于穩(wěn)定,最終均能保持在90%左右,顯示出了較強(qiáng)的快速自學(xué)習(xí)能力.
由于星座圖單路徑識別方案無法識別非數(shù)字調(diào)制信號,只對比兩種方案對數(shù)字調(diào)制信號的識別精度.圖5為雙路徑識別方案和星座圖單路徑識別方案在數(shù)字調(diào)制信號識別精度的效果圖.從圖5中可以看出,雙路徑識別方案在低信噪比情況下,能夠提高識別準(zhǔn)確率,識別準(zhǔn)確率提高最大幅度約為8%,有一定的可行性.
3? 結(jié) 論
分析了一種面向智能物聯(lián)的雙路徑機(jī)器學(xué)習(xí)調(diào)制模式識別方法,以元學(xué)習(xí)網(wǎng)絡(luò)為基礎(chǔ),模糊分類和精確分類相結(jié)合的方式,在擴(kuò)大識別信號類型的同時,使低信噪比環(huán)境下,仍然保持較高的識別精度,比單路徑識別方式精度最多提高約8%,能夠快速有效地識別各類調(diào)制信號,為模擬與數(shù)字信號混合調(diào)制識別方法的研究提供了一種思路.
參考文獻(xiàn):
[1]? ZHANG C. Intelligent Internet of things service based on artificial intelligence technology [C]// 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). Nanchang: IEEE,2021:731734.
[2]? ALZAHRANI S M. Sensing for the Internet of Things and its applications [C]// 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW). Prague: IEEE,2017:88-92.
[3]? ZHAO X D, ZHOU X H, XIONG J, et al. Automatic modulation recognition based on multi?dimensional feature extraction [C]// 2020 International Conference on Wireless Communications and Signal Processing (WCSP). Nanjing: IEEE,2020: 823-828.
[4]? HU S, PEI Y, LIANG P P, et al. Deep neural network for robust modulation classification under uncertain noise conditions [J]. IEEE Transactions on Vehicular Technology,2019,69(1):564-577.
(責(zé)任編輯:包震宇,顧浩然)