亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類半線性隨機微分方程的均方漸近概自守溫和解

        2022-05-30 20:32:49姚慧麗霍貴珍孫海彤王晶囡
        哈爾濱理工大學學報 2022年4期
        關鍵詞:型函數(shù)均方線性

        姚慧麗 霍貴珍 孫海彤 王晶囡

        摘要:均方概自守型函數(shù)理論在隨機微分方程中的應用越來越引起數(shù)學研究者的關注,這類方程的均方漸近概自守解比均方概自守解的應用范圍更加廣泛。對一類半線性隨機微分方程的均方漸近概自守溫和解進行探討。利用Banach壓縮映射原理,結合均方漸近概自守隨機過程的定義和性質(zhì)、Cauchy-Schwarz不等式、Lipschitz條件、It等距積分,討論了該類隨機微分方程的均方漸近概自守溫和解的存在唯一性。

        關鍵詞:均方漸近概自守溫和解;半線性隨機微分方程;Banach壓縮映射原理

        DOI:10.15938/j.jhust.2022.04.020

        中圖分類號: O175

        文獻標志碼: A

        文章編號: 1007-2683(2022)04-0154-07

        Square-Mean Asymptotically Almost Automorphic Mild Solutions

        to a Class of Semi-linear Stochastic Differential Equations

        YAO Hui-li,HUO Gui-zhen,SUN Hai-tong,WANG Jing-nan

        (School of Science,Harbin University of Science and Technology,Harbin 150080,China)

        Abstract:The applications of the theories of square-mean almost automorphic type functions have attracted more and more attention by mathematics researchers, square-mean asymptotically almost automorphic solutions of this class of differential equations have a wider range of applications than square-mean almost automorphic solutions.Square-mean asymptotically almost automorphic mild solutions to a class of semi-linear stochastic differential equations are investigated. The existence and uniqueness of square-mean asymptotically almost automorphic mild solutions for this kind of equation are discussed by using the principle of Banach compressed image, combining with the definition and properties of square-mean asymptotically almost automorphic stochastic processes, Cauchy-Schwarz inequality, Lipschtiz conditions and Ito integrals isometry.

        Keywords:square-mean asymptotically almost automorphic mild solutions; semi-linearstochastic differential equations; principle of Banach compressed image

        0引言

        概自守函數(shù)、漸近概自守函數(shù)以及偽概自守函數(shù)(統(tǒng)稱為概自守型函數(shù))的定義分別由BOCHNER S、N′GUEREKATA G M、XIAO T J, LIANG J, ZHANG J給出[1-3]。概自守型函數(shù)理論的產(chǎn)生推廣了概周期型函數(shù)的應用范圍,并在各類方程中得到了應用[4-10],為了更好的描述自然界中的隨機現(xiàn)象,2010年,F(xiàn)U M M, LIU Z X提出了均方概自守隨機過程的概念[11],這一概念是對概自守函數(shù)的推廣。之后,均方偽概守隨機過程和均方漸近概自守隨機過程的概念也相繼被給出[ 12-13 ] 。自均方概自守型隨機過程有關理論被提出以來,國內(nèi)外數(shù)學工作者將其應用到一類將隨機性納入了數(shù)學描述中的模型中即隨機微分方程中,研究了此種方程的均方概自守解[14-16]和均方偽概自守解的存在及唯一性[17-18]。在文[14]中,CHANG Y K, ZHAO Z H, N′GUEREKATA G M.對下列一類半線性隨機微分方程

        1預備知識

        2主要結論

        參 考 文 獻:

        [1]BOCHNER S. A New Approach to Almost Periodicity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1962, 48(12):2039.

        [2]N′GUEREKATA G M. Some Remarks on Asymptotically Almost Automorphic Function[J]. Rivista Di Matematica Della Università Di Parma, 1988, 13(4): 301.

        [3]XIAO T J, LIANG J, ZHANG J. Pseudo Almost Automorphic Solutions to Semi-linear Differential Equations in Banach Spaces[J]. Semigroup Forum, 2008, 76(3): 518.

        [4]GOLDSTEIN J A, N′GUEREKATA G M. Almost Automorphic Solution of Semi-linear Evolution Equations[J]. Proc.Amer.Math.Soc.133, 2005,2401.

        [5]EZZINBI K, N′GUEREKATA G M. Massera Type Theorem for Almost Automorphic Solutions of Functional Differential Equations of Neutral Type[J]. Journal of Mathematical Analysis and Applications,2006, 316:707.

        [6]DIAGANA T, N′GUEREKATA G M. Amost Automorphic Solutions to Some Classes of Partial Evolution Equations[J]. Applied.Mathematics Letters,2007,20(4):462.

        [7]M′HAMDI M S. Pseudo Almost Automorphic Solutions for Multidirectional Associative Memory Neural Network with Mixed Delays[J]. Neural processing letters, 2019, 49(3): 1567.

        [8]AOUITI C, DRIDI F. Weighted Pseudo Almost Automorphic Solutions for Neutral Type Fuzzy Cellular Neural Networks with Mixed Delays and D Operator in Clifford Algebra[J]. International Journal of Systems Science, 2020(3): 1.

        [9]ZABSONRE I, MBAINADJI D. Pseudo Almost Automorphic Solutions of Class r in α-norm under the Light of Measure Theory[J]. Nonautonomous Dynamical Systems, 2020, 7(1): 81.

        [10]AOUITI C, M′HAMDI M S, TOUATI A. Pseudo Almost Automorphic Solutions of Recurrent Neural Networks with Time-Varying Coefficients and Mixed Delays[J]. Neural Processing Letters, 2016, 45(1):1.

        [11]FU M M, LIU Z X. Square-mean Almost Automorphic Solutions for Some Stochastic Differential Equations[J]. Proc.Amer.Math.Soc, 2010,138(10):3689.

        [12]CHEN Z, LIN W. Square-mean Pseudo Almost Automorphic Process and Its Application to Stochastic evolution Equations[J]. Journal of Functional Analysis,2011,261(1):69.

        [13]YAN Z, ZHANG H W.Square-mean Asymptotically Almost Automorphic Solutions for Non-local Neutral Stochastic Functional Integro-differential Equations in Hilbert Spaces[J]. Electronic Journal of Mathematical Analysis and Applications,2013,1(1):15.

        [14]CHANG Y K, ZHAO Z H, N′GUEREKATA G M. Square-mean Almost Automorphic Mild Solutions to Non-autonomous Stochastic Differential Equations in Hilbert Spaces[J]. Advances in Difference Equations, 2011, 61(2): 384.

        [15]XI L,HAN Y L, LIU B F. Square-mean Almost Automorphic Solutions to Some Stochastic Evolution Equations I: Autonomous Case[J]. Acta Mathematicae Applicatae Sinica, English Series, 2015, 31(3): 577.

        [16]LI L J. Existence of Square-Mean Almost Automorphic Solutions to Stochastic Functional Integro-differential Equations in Hilbert Spaces[J]. Abstract and Applied Analysis, 2014: 1.

        [17]GU Y, REN Y, SAKTHIVEL R. Square-mean Pseudo Almost Automorphic Mild Solutions for Stochastic Evolution Equations Driven by G-Brownian Motion[J]. Stochastic Analysis & Applications, 2016, 34(3):528.

        [18]YAN Z M, ZHANG H W. Existence of Stepanov-Like Square-Mean Pseudo Almost Periodic Solutions to Partial Stochastic Neutral Differential Equations[J]. Annals of Functional Analysis, 2015, 6(1): 116.

        [19]張著洪.關于閉算子及其共軛的分數(shù)次冪的評注[J].貴州大學學報(自然科學版),1997(4):202.ZHANG Zhuhong. Comments on the Fractional Power of Closed Operators and Their Conjugates[J].Journal of Guizhou University (Natural Sciences),1997(4):202.

        [20]姚慧麗, 劉婷, 張士晶. 一類隨機微分方程的均方漸近概自守溫和解[J]. 哈爾濱理工大學學報, 2016, 21(3): 114.YAO Huili, LIU Ting, ZHANG Shijing. Square-mean Asymptotically Almost Automorphic Mild Solutions for a Class of Stochastic Differential Equations[J]. Journal of Harbin University of Science and Technology, 2016, 21(3): 114.

        (編輯:溫澤宇)

        猜你喜歡
        型函數(shù)均方線性
        一類隨機積分微分方程的均方漸近概周期解
        漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
        線性回歸方程的求解與應用
        幾類“對勾”型函數(shù)最值問題的解法
        Beidou, le système de navigation par satellite compatible et interopérable
        二階線性微分方程的解法
        Orlicz Sylvester Busemann型函數(shù)的極值研究
        基于抗差最小均方估計的輸電線路參數(shù)辨識
        電力建設(2015年2期)2015-07-12 14:15:59
        基于隨機牽制控制的復雜網(wǎng)絡均方簇同步
        V-型函數(shù)的周期點
        在线播放国产自拍av| 国产原创精品视频| 亚洲va精品va国产va| 久久免费亚洲免费视频| 永久免费人禽av在线观看| a在线观看免费网站大全| 欧美成人a视频免费专区| 亚洲成人激情深爱影院在线 | 久热香蕉视频| 国产一区二区三区亚洲精品| 加勒比日韩视频在线观看 | 国产精品jizz视频| 白丝美女被狂躁免费视频网站| 99久久久69精品一区二区三区| 在线视频夫妻内射| 台湾佬娱乐中文22vvvv| 国产精品国三级国产av| 精品嫩模福利一区二区蜜臀| 寂寞少妇做spa按摩无码| 97无码人妻Va一区二区三区| 成人精品国产亚洲av久久| 国产最新女主播福利在线观看| 边啃奶头边躁狠狠躁| 中文字幕一区二区三区在线不卡| 在线女同免费观看网站| 无码人妻久久一区二区三区蜜桃| 日日摸夜夜添无码无码av| 欧洲一级无码AV毛片免费| 日韩中文字幕一区二区二区| 亚洲av一区二区在线| 加勒比一本heyzo高清视频| 亚洲色大成网站www永久一区| 亚洲AV成人片色在线观看高潮| 国产一区亚洲一区二区| 欧美国产激情18| 国产精品美女久久久久久久久| 亚洲无码激情视频在线观看| 久久久中文字幕日韩精品| 欧美性受xxxx白人性爽| 东京热加勒比在线观看| 国产黄色一区二区三区av|