亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類半線性隨機(jī)微分方程的均方漸近概自守溫和解

        2022-05-30 20:32:49姚慧麗霍貴珍孫海彤王晶囡
        關(guān)鍵詞:概念理論數(shù)學(xué)

        姚慧麗 霍貴珍 孫海彤 王晶囡

        摘要:均方概自守型函數(shù)理論在隨機(jī)微分方程中的應(yīng)用越來越引起數(shù)學(xué)研究者的關(guān)注,這類方程的均方漸近概自守解比均方概自守解的應(yīng)用范圍更加廣泛。對一類半線性隨機(jī)微分方程的均方漸近概自守溫和解進(jìn)行探討。利用Banach壓縮映射原理,結(jié)合均方漸近概自守隨機(jī)過程的定義和性質(zhì)、Cauchy-Schwarz不等式、Lipschitz條件、It等距積分,討論了該類隨機(jī)微分方程的均方漸近概自守溫和解的存在唯一性。

        關(guān)鍵詞:均方漸近概自守溫和解;半線性隨機(jī)微分方程;Banach壓縮映射原理

        DOI:10.15938/j.jhust.2022.04.020

        中圖分類號: O175

        文獻(xiàn)標(biāo)志碼: A

        文章編號: 1007-2683(2022)04-0154-07

        Square-Mean Asymptotically Almost Automorphic Mild Solutions

        to a Class of Semi-linear Stochastic Differential Equations

        YAO Hui-li,HUO Gui-zhen,SUN Hai-tong,WANG Jing-nan

        (School of Science,Harbin University of Science and Technology,Harbin 150080,China)

        Abstract:The applications of the theories of square-mean almost automorphic type functions have attracted more and more attention by mathematics researchers, square-mean asymptotically almost automorphic solutions of this class of differential equations have a wider range of applications than square-mean almost automorphic solutions.Square-mean asymptotically almost automorphic mild solutions to a class of semi-linear stochastic differential equations are investigated. The existence and uniqueness of square-mean asymptotically almost automorphic mild solutions for this kind of equation are discussed by using the principle of Banach compressed image, combining with the definition and properties of square-mean asymptotically almost automorphic stochastic processes, Cauchy-Schwarz inequality, Lipschtiz conditions and Ito integrals isometry.

        Keywords:square-mean asymptotically almost automorphic mild solutions; semi-linearstochastic differential equations; principle of Banach compressed image

        0引言

        概自守函數(shù)、漸近概自守函數(shù)以及偽概自守函數(shù)(統(tǒng)稱為概自守型函數(shù))的定義分別由BOCHNER S、N′GUEREKATA G M、XIAO T J, LIANG J, ZHANG J給出[1-3]。概自守型函數(shù)理論的產(chǎn)生推廣了概周期型函數(shù)的應(yīng)用范圍,并在各類方程中得到了應(yīng)用[4-10],為了更好的描述自然界中的隨機(jī)現(xiàn)象,2010年,F(xiàn)U M M, LIU Z X提出了均方概自守隨機(jī)過程的概念[11],這一概念是對概自守函數(shù)的推廣。之后,均方偽概守隨機(jī)過程和均方漸近概自守隨機(jī)過程的概念也相繼被給出[ 12-13 ] 。自均方概自守型隨機(jī)過程有關(guān)理論被提出以來,國內(nèi)外數(shù)學(xué)工作者將其應(yīng)用到一類將隨機(jī)性納入了數(shù)學(xué)描述中的模型中即隨機(jī)微分方程中,研究了此種方程的均方概自守解[14-16]和均方偽概自守解的存在及唯一性[17-18]。在文[14]中,CHANG Y K, ZHAO Z H, N′GUEREKATA G M.對下列一類半線性隨機(jī)微分方程

        1預(yù)備知識

        2主要結(jié)論

        參 考 文 獻(xiàn):

        [1]BOCHNER S. A New Approach to Almost Periodicity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1962, 48(12):2039.

        [2]N′GUEREKATA G M. Some Remarks on Asymptotically Almost Automorphic Function[J]. Rivista Di Matematica Della Università Di Parma, 1988, 13(4): 301.

        [3]XIAO T J, LIANG J, ZHANG J. Pseudo Almost Automorphic Solutions to Semi-linear Differential Equations in Banach Spaces[J]. Semigroup Forum, 2008, 76(3): 518.

        [4]GOLDSTEIN J A, N′GUEREKATA G M. Almost Automorphic Solution of Semi-linear Evolution Equations[J]. Proc.Amer.Math.Soc.133, 2005,2401.

        [5]EZZINBI K, N′GUEREKATA G M. Massera Type Theorem for Almost Automorphic Solutions of Functional Differential Equations of Neutral Type[J]. Journal of Mathematical Analysis and Applications,2006, 316:707.

        [6]DIAGANA T, N′GUEREKATA G M. Amost Automorphic Solutions to Some Classes of Partial Evolution Equations[J]. Applied.Mathematics Letters,2007,20(4):462.

        [7]M′HAMDI M S. Pseudo Almost Automorphic Solutions for Multidirectional Associative Memory Neural Network with Mixed Delays[J]. Neural processing letters, 2019, 49(3): 1567.

        [8]AOUITI C, DRIDI F. Weighted Pseudo Almost Automorphic Solutions for Neutral Type Fuzzy Cellular Neural Networks with Mixed Delays and D Operator in Clifford Algebra[J]. International Journal of Systems Science, 2020(3): 1.

        [9]ZABSONRE I, MBAINADJI D. Pseudo Almost Automorphic Solutions of Class r in α-norm under the Light of Measure Theory[J]. Nonautonomous Dynamical Systems, 2020, 7(1): 81.

        [10]AOUITI C, M′HAMDI M S, TOUATI A. Pseudo Almost Automorphic Solutions of Recurrent Neural Networks with Time-Varying Coefficients and Mixed Delays[J]. Neural Processing Letters, 2016, 45(1):1.

        [11]FU M M, LIU Z X. Square-mean Almost Automorphic Solutions for Some Stochastic Differential Equations[J]. Proc.Amer.Math.Soc, 2010,138(10):3689.

        [12]CHEN Z, LIN W. Square-mean Pseudo Almost Automorphic Process and Its Application to Stochastic evolution Equations[J]. Journal of Functional Analysis,2011,261(1):69.

        [13]YAN Z, ZHANG H W.Square-mean Asymptotically Almost Automorphic Solutions for Non-local Neutral Stochastic Functional Integro-differential Equations in Hilbert Spaces[J]. Electronic Journal of Mathematical Analysis and Applications,2013,1(1):15.

        [14]CHANG Y K, ZHAO Z H, N′GUEREKATA G M. Square-mean Almost Automorphic Mild Solutions to Non-autonomous Stochastic Differential Equations in Hilbert Spaces[J]. Advances in Difference Equations, 2011, 61(2): 384.

        [15]XI L,HAN Y L, LIU B F. Square-mean Almost Automorphic Solutions to Some Stochastic Evolution Equations I: Autonomous Case[J]. Acta Mathematicae Applicatae Sinica, English Series, 2015, 31(3): 577.

        [16]LI L J. Existence of Square-Mean Almost Automorphic Solutions to Stochastic Functional Integro-differential Equations in Hilbert Spaces[J]. Abstract and Applied Analysis, 2014: 1.

        [17]GU Y, REN Y, SAKTHIVEL R. Square-mean Pseudo Almost Automorphic Mild Solutions for Stochastic Evolution Equations Driven by G-Brownian Motion[J]. Stochastic Analysis & Applications, 2016, 34(3):528.

        [18]YAN Z M, ZHANG H W. Existence of Stepanov-Like Square-Mean Pseudo Almost Periodic Solutions to Partial Stochastic Neutral Differential Equations[J]. Annals of Functional Analysis, 2015, 6(1): 116.

        [19]張著洪.關(guān)于閉算子及其共軛的分?jǐn)?shù)次冪的評注[J].貴州大學(xué)學(xué)報(bào)(自然科學(xué)版),1997(4):202.ZHANG Zhuhong. Comments on the Fractional Power of Closed Operators and Their Conjugates[J].Journal of Guizhou University (Natural Sciences),1997(4):202.

        [20]姚慧麗, 劉婷, 張士晶. 一類隨機(jī)微分方程的均方漸近概自守溫和解[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2016, 21(3): 114.YAO Huili, LIU Ting, ZHANG Shijing. Square-mean Asymptotically Almost Automorphic Mild Solutions for a Class of Stochastic Differential Equations[J]. Journal of Harbin University of Science and Technology, 2016, 21(3): 114.

        (編輯:溫澤宇)

        猜你喜歡
        概念理論數(shù)學(xué)
        Birdie Cup Coffee豐盛里概念店
        堅(jiān)持理論創(chuàng)新
        神秘的混沌理論
        理論創(chuàng)新 引領(lǐng)百年
        相關(guān)于撓理論的Baer模
        幾樣概念店
        學(xué)習(xí)集合概念『四步走』
        聚焦集合的概念及應(yīng)用
        我為什么怕數(shù)學(xué)
        新民周刊(2016年15期)2016-04-19 18:12:04
        數(shù)學(xué)到底有什么用?
        新民周刊(2016年15期)2016-04-19 15:47:52
        91在线无码精品秘 入口九色十| 成人午夜福利视频| 热久久美女精品天天吊色| 亚洲av永久无码精品放毛片| 成人做爰69片免费看网站| 国产aⅴ夜夜欢一区二区三区| 北岛玲精品一区二区三区| 自拍av免费在线观看| 蜜桃传媒网站在线观看| 国产日产亚洲系列最新| 亚洲av高清在线一区二区三区| 亚洲男人天堂| 中文字幕第1页中文字幕在| 久久精品中文字幕第一页| 人妻av中文字幕精品久久| 91精品啪在线观九色| 东北少妇不戴套对白第一次 | 俺也去色官网| 色综合999| 人妻中文字幕一区二区三区| 中文字幕无码乱人伦| 亚洲av美国av产亚洲av图片| 久久精品国产自清天天线| 国产精选免在线观看| 波多野无码AV中文专区| 香蕉蜜桃av一区二区三区| 亚洲av三级黄色在线观看| 久久人妻av无码中文专区| 亚洲av日韩av天堂一区二区三区 | 久久精品国产亚洲av瑜伽| 伊人狠狠色j香婷婷综合| 中文少妇一区二区三区| av天堂手机免费在线| 亚洲av日韩综合一区久热| 99香蕉国产精品偷在线观看| 国产精品无码片在线观看| 福利一区二区三区视频在线| 风流熟女一区二区三区| 精品久久久久久无码中文野结衣 | 国产精品美女久久久久久久| 欧美破处在线观看|