亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        賦Luxemburg范數(shù)的Orlicz序列空間的次接近一致凸性

        2022-05-25 08:16:22崔云安代明君

        崔云安 代明君

        摘要:接近一致非折是Banach空間中一種重要的性質(zhì)。引入一個(gè)新的幾何性質(zhì),稱(chēng)為次接近一致凸性,其蘊(yùn)含Banach空間關(guān)于非擴(kuò)張映射具有弱不動(dòng)點(diǎn)性質(zhì),給出了賦Luxemburg范數(shù)的Orlicz序列空間是次接近一致凸的充要條件。

        關(guān)鍵詞:Orlicz序列空間;Luxemburg范數(shù);次接近一致凸

        DOI:10.15938/j.jhust.2022.02.019

        中圖分類(lèi)號(hào): O177.3

        文獻(xiàn)標(biāo)志碼: A

        文章編號(hào): 1007-2683(2022)02-0149-05

        Sub Nearly Uniformly Convex of Orlicz Sequence Spaces Equipped with Luxemburg Norm

        Cui Yun-an,Dai Ming-jun

        (School of Sciences,Harbin University of Science and Technology,Harbin 150080,China)

        Abstract:Nearly uniform noncreasy is a important property in Banach spaces. In this paper we introduce a new geometric property, which is called sub nearly uniformly convex property. It implies that Banach spaces have weak fixed point property for nonexpansive mappings. The necessary and sufficient condition for the Orlicz sequence space with Luxemburg norm to be sub nearly uniformly convex is given.

        Keywords:Orlicz sequence spaces; Luxemburg norm; sub nearly uniformly convex

        0引言

        自20世紀(jì)以來(lái),不動(dòng)點(diǎn)問(wèn)題已經(jīng)成為時(shí)下最熱門(mén)的數(shù)學(xué)問(wèn)題之一,與不動(dòng)點(diǎn)有關(guān)的幾何性質(zhì)問(wèn)題也已經(jīng)成為人們熱衷的研究課題之一,近年來(lái)與不動(dòng)點(diǎn)有關(guān)的幾何性質(zhì)問(wèn)題得到了充分的發(fā)展,許多數(shù)學(xué)研究者們將Banach空間中的一系列問(wèn)題推廣到Orlicz空間中,2002年,崔云安和Hudzik證明了Orlicz 空間是非折的判定準(zhǔn)則[1];2003年,石忠銳和林伯祿將Banach空間中的非折性質(zhì)和一致非折性質(zhì)推廣到了Orlicz函數(shù)空間中,并且給出了Orlicz函數(shù)空間是非折的和一致非折的充要條件[2],2005年,Stanislaw Prus和Mariusz Szczepanik證明了具有接近一致非折性質(zhì)的實(shí)Banach空間具有弱不動(dòng)點(diǎn)性質(zhì)[3]。本文主要討論Orlicz序列空間中的次接近一致凸性質(zhì),給出了賦Luxemburg范數(shù)的Orlicz序列空間是次接近一致凸的充要條件,為下一步證明Orlicz序列空間中的接近一致非折性質(zhì)做了充足的準(zhǔn)備。

        1預(yù)備知識(shí)

        2主要結(jié)果及證明

        參 考 文 獻(xiàn):

        [1]CUI Y A, HUDZIK H. Orlicz Spaces Which are Noncreasy[J]. Archiv Der Mathematik, 2002, 78(4): 303.

        [2]LIN B L, SHI Z R. Noncreasy and Uniformly Noncreasy Orlicz Function Spaces[J]. Journal of Mathematical Analysis & Applications, 2003, 287(1): 253.

        [3]PRUS S, SZCZEPANIK M. Nearly Uniformly Noncreasy Banach Spaces[J]. Journal of Mathematical Analysis and Applications, 2005, 307(1): 255.

        [4]左明霞, 彭麗娜. Orlicz序列空間的(k)性質(zhì)[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2017,22(6): 122.ZUO Mingxia, PENG Lina. Property (k) of Orlicz Sequence Spaces[J]. Journal of Harbin University of Science and Technology, 2017, 22(6): 122.

        [5]吳從炘, 王廷輔, 陳述濤, 等. Orlicz空間幾何理論[M]. 哈爾濱:哈爾濱工業(yè)大學(xué)出版社, 1986: 1.

        [6]崔云安.Banach空間幾何理論及應(yīng)用[M]. 北京:科學(xué)出版社, 2011:1.

        [7]王廷輔. Orlicz序列空間的一致凸條件[J]. 哈爾濱科學(xué)技術(shù)大學(xué)學(xué)報(bào), 1983(2): 1.WANG Tingfu. Uniformly Convex Conditions for Orlicz Sequence Spaces[J]. Journal of Haerbin University of Science AND Technology,1983(2): 1.

        [8]TAKAHASHI W, TOYODA M. Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings[J]. Journal of Optimization Theory and Applications, 2003, 118(2) : 417.

        [9]李朝博, 陳麗麗. b-凸度量空間的不動(dòng)點(diǎn)理論[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2021, 26(2): 143.LI Chaobo, CHEN Lili.Fixed Point Theory in b-convex Metric Spaces[J]. Journal of Harbin University of Science and Technology, 2021, 26(2): 143.

        [10]崔云安, 安莉麗, 展玉佳. 賦s-范數(shù)的Orlicz空間的端點(diǎn)[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2020, 25(5): 143.CUI Yunan, AN Lili, ZHAN Yujia. Extreme Points in Orlicz Spaces Equipped with S-norm[J]. Journal of Harbin University of Science and Technology, 2020, 25(5): 143.

        [11]崔云安, 安莉麗. 賦Φ-Amemiya范數(shù)的Orlicz空間的端點(diǎn)[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2021, 26(2): 149.CUI Yunan, AN Lili. An Extreme Point of Orlicz Spaces Equipped with Φ-Amemiya Norm[J]. Journal of Harbin University of Science and Technology, 2021, 26(2): 149.

        [12]BAI X R, CUI Y A, Joanna Konczak. Monotonicities in OrliczSpaces Equipped with Mazur-Orlicz F-Norm[J]. Journal of Function Spaces, 2020, 2020(4): 1.

        [13]SHANG S Q, CUI Y A. Musielak-Orlicz-Bochner Function Spaces Which are Uniformly Noncreasy[J]. Mathematische Nachrichten, 2018, 291(13): 2099.

        [14]CHENGQ J, WANG B, WANG C L. On Uniform Convexity of Banach Spaces[J]. ActaMathematica Sinica, English Series, 2011, 27(3): 587.

        [15]LI X Y, CUI Y A, WISLA M. Smoothness of Orlicz Function Spaces Equipped with thep-Amemiya Norm[J]. Banach Journal of Mathematical Analysis, 2021, 15(3).

        [16]AN L L, CUI Y A. Strongly Extreme Pointsof Orlicz Function Spaces Equipped with Φ-Amemiya Norm[J]. Journal of Inequalities and Applications, 2020, 2020(1): 78.

        [17]SHANG S Q, CUI Y A. Approximative Compactness in Musielak-Orlicz Functionspaces of Bochner Type [J]. Banach Journal of Mathematical Analysis, 2017, 11(1): 143.

        [18]CHEN L L, LI C B, KACZMAREK R, et al. Several Fixed Point Theorems in Convex b-Metric Spaces and Applications[J]. Mathematics, 2020, 8(2): 242.

        [19]SRIVATSAB K, RANJAN G.? Non-rotating Beams Isospectral to Rotating Rayleigh Beams[J].International Journal of Mechanical Sciences, 2018: 142.

        [20]FAN L Y, CUI Y A. On Schur Property in Orlicz Sequence Spaces.[J].Heilongjiang Daxue Ziran Kexue Xuebao,2005,22(3):342.

        [21]KAMINSKA A. On Uniform Convexity of OrliczSpaces [J]. Indagationes Mathematicae, 1982, 2020(1): 27.

        (編輯:溫澤宇)

        亚洲成av人片天堂网| 国产一区二区白浆在线观看| 国产女主播一区二区久久| 一卡二卡国产av熟女| 日本少妇高潮喷水视频| 极品美女aⅴ在线观看| 纯肉无遮挡H肉动漫在线观看国产 国产精品自产拍在线观看免费 | 伊人色综合视频一区二区三区| 亚洲国产区男人本色| 亚洲国产精品综合久久20| 女优av性天堂网男人天堂| 亚洲麻豆视频免费观看| 国产中文字幕亚洲精品| 亚洲爆乳无码专区www| 久久亚洲私人国产精品va| 亚洲成a人片在线看| 激情五月婷婷六月俺也去 | 国产高清a| 久久国产精品免费一区二区三区 | 亚洲一区二区日韩精品| 蜜臀av在线观看| 国产精品高潮呻吟av久久4虎| 久久这里只精品国产99热| 国产精品流白浆喷水| 国产麻豆成人精品av| 国产一区二区黄色网页| 一二三四日本中文在线| 久久国产A√无码专区亚洲| 亚洲黄色官网在线观看| 国产毛片av最新视频| 美丽人妻在夫前被黑人| 亚洲av无码精品色午夜蛋壳| 亚州毛色毛片免费观看| 亚洲天堂一二三四区在线| 亚洲av综合av一区| 日韩欧美人妻一区二区三区| 国产最新AV在线播放不卡| 白白色福利视频在线观看| 亚洲精品一品区二品区三区| 色偷偷av男人的天堂| 富婆如狼似虎找黑人老外|