亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        零日病毒時(shí)滯傳播模型及穩(wěn)定性分析

        2022-05-20 02:47:20仇銘陽孟慶微馬潤年
        關(guān)鍵詞:模型

        仇銘陽,王 剛,孟慶微,馬潤年

        (空軍工程大學(xué)信息與導(dǎo)航學(xué)院,西安,710077)

        零日病毒是利用計(jì)算機(jī)平臺(tái)中存在的零日漏洞發(fā)起攻擊的一種網(wǎng)絡(luò)病毒,和一般網(wǎng)絡(luò)病毒相比,具有潛伏性強(qiáng)和信息不對(duì)稱的特點(diǎn)[1]。在零日病毒攻擊中,攻擊方可以利用對(duì)手計(jì)算機(jī)平臺(tái)存在的零日漏洞,事先設(shè)計(jì)和部署網(wǎng)絡(luò)攻擊行動(dòng),較之防御方具有建立在信息優(yōu)勢(shì)基礎(chǔ)上的決策和攻擊優(yōu)勢(shì),同時(shí),由于傳統(tǒng)防御工作周期長、工作量大,零日攻防中攻擊方的優(yōu)勢(shì)更加明顯[2-4]。此外,和多數(shù)傳統(tǒng)病毒的“直接”“無差別”感染模式相比較,零日病毒攻擊通過分析目標(biāo)主機(jī)的資源信息,可選擇滿足特定條件的主機(jī)和恰當(dāng)時(shí)機(jī)發(fā)起攻擊,具有隱蔽性和針對(duì)性。零日病毒從存在到激活都存在時(shí)間差,也就是目前高級(jí)持續(xù)性威脅中普遍存在的潛伏性和潛伏周期,因此時(shí)滯問題也是零日病毒需要重點(diǎn)關(guān)注的。

        從近年來零日攻擊相關(guān)研究情況分析,相關(guān)成果主要集中兩個(gè)方面。一是零日病毒傳播機(jī)理和傳播行為建模。文獻(xiàn)[5]分析了零日病毒作用機(jī)理和基本流程,在經(jīng)典SIR(susceptible infected recovered, SIR)模型[6-7]基礎(chǔ)上,提出了零日病毒傳播SIZDR(susceptible infected zero-day damaged recovered, SIZDR)模型。文獻(xiàn)[8]借鑒傳染病動(dòng)力學(xué)理論以不同安全狀態(tài)網(wǎng)絡(luò)節(jié)點(diǎn)密度定義網(wǎng)絡(luò)攻防態(tài)勢(shì),分析網(wǎng)絡(luò)節(jié)點(diǎn)安全狀態(tài)轉(zhuǎn)移路徑;以網(wǎng)絡(luò)勒索病毒攻防博弈為例,使用NetLogo多Agent仿真工具開展不同場(chǎng)景下攻防態(tài)勢(shì)演化趨勢(shì)對(duì)比實(shí)驗(yàn)。針對(duì)零日病毒在內(nèi)的新型病毒潛伏特性。文獻(xiàn)[9]引入潛伏和隔離狀態(tài),提出了SEIQRS(susceptible escape infected quarantine remove susceptible)模型,研究了潛伏隔離機(jī)制下的病毒傳播規(guī)律。二是零日病毒的防御方法和策略。文獻(xiàn)[10]引入沙盒技術(shù),提出了一種基于信息系統(tǒng)狀態(tài)概率排序的分析模型,通過模型分析、跟蹤和評(píng)估系統(tǒng)狀態(tài)從而識(shí)別并阻止可能的零日攻擊。文獻(xiàn)[11]將低級(jí)操作碼、應(yīng)用程序許可和專有的 Android API 包作為輸入值,利用深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,實(shí)現(xiàn)了可在無須了解惡意特征的情況下,發(fā)掘疑似零日攻擊行為。文獻(xiàn)[12]考慮文檔類型零日漏洞檢測(cè)效果不佳,提出了一個(gè)以惡意文檔檢測(cè)為核心,漏洞特征判斷為輔助的文檔類型0Day漏洞檢測(cè)模型,通過該模型大大提高了對(duì)文檔類零日漏洞的檢測(cè)準(zhǔn)確率。文獻(xiàn)[13]為解決零日攻擊破壞性強(qiáng)的這一特點(diǎn),提出了基于NIDPS和蜜罐的零日攻擊傷害最小化混合系統(tǒng),實(shí)現(xiàn)了防御效果的最大化。以操作系統(tǒng)病毒為例,文獻(xiàn)[14]分析了病毒的時(shí)滯特性和感染力強(qiáng)等特點(diǎn),引入動(dòng)態(tài)防御理念和平臺(tái)動(dòng)態(tài)防御模式,提出了操作系統(tǒng)病毒的時(shí)滯傳播模型及抑制策略,研究了時(shí)滯導(dǎo)致的系統(tǒng)演化分叉行為和操作系統(tǒng)跳變對(duì)病毒傳播抑制的有效性??傮w上,前期研究主要關(guān)注零日病毒傳播的一般規(guī)律和防御模式,對(duì)零日病毒傳播和防御的研究還存在需要持續(xù)深入??紤]到零日病毒的潛伏特性和時(shí)滯因素的影響,通過傳播機(jī)理分析和時(shí)滯模型求解,研究時(shí)滯可能造成的系統(tǒng)演化分叉行為和條件。文獻(xiàn)[15]提出了一類具有2種不同時(shí)滯的病毒傳播模型,分析了模型穩(wěn)定性及系統(tǒng)Hopf 分岔行為產(chǎn)生條件。文獻(xiàn)[16]在SEIR(susceptible escape infected remove)模型[17]的基礎(chǔ)上,考慮感染及恢復(fù)過程中存在時(shí)延的情況,提出了SEIR-KS(susceptible exposed infected kill signals recovered)模型,通過模型穩(wěn)定性分析及 Hopf 分岔行為分析,給出了病毒防御方法。其次,適應(yīng)網(wǎng)絡(luò)攻防發(fā)展趨勢(shì),借鑒操作系統(tǒng)病毒傳播抑制策略和操作系統(tǒng)跳變模式[14],將動(dòng)態(tài)防御滲透到病毒傳播和免疫的行為建模和具體防御實(shí)踐中。文獻(xiàn)[18]在SIQRS(susceptible infected quarantine remove susceptible)模型的基礎(chǔ)上,考慮防病毒軟件殺死病毒的過程存在時(shí)滯,提出了時(shí)滯SIQRS 傳播模型并研究了模型穩(wěn)定性。張子振等人[19]考慮隔離病毒節(jié)點(diǎn)存在時(shí)滯這一情況,引入處理時(shí)滯,研究了無線傳感網(wǎng)絡(luò)中蠕蟲病毒的傳播問題。

        基于此,論文研究平臺(tái)動(dòng)態(tài)防御背景下零日病毒時(shí)滯傳播模型及其穩(wěn)定性。

        1 零日病毒時(shí)滯傳播模型

        根據(jù)對(duì)零日病毒傳播機(jī)理[5]的分析,結(jié)合平臺(tái)動(dòng)態(tài)防御的思想,零日病毒擴(kuò)散及免疫過程可簡化為初始感染、病毒傳播、病毒發(fā)作及損毀和平臺(tái)遷移4個(gè)階段。與零日病毒傳播機(jī)理不同,零日病毒時(shí)滯傳播及免疫的過程有所變化。在病毒傳播階段,目標(biāo)主機(jī)感染零日病毒的過程中存在耗時(shí)τ。在零日階段,將毀損狀態(tài)轉(zhuǎn)化為易感狀態(tài)的過程融入到零日狀態(tài)轉(zhuǎn)化為易感狀態(tài)的過程中。在平臺(tái)遷移階段,防御方利用平臺(tái)遷移技術(shù)以一定的概率將目標(biāo)主機(jī)中原有平臺(tái)遷移至其他平臺(tái)。由于平臺(tái)的轉(zhuǎn)變,使得針對(duì)原有平臺(tái)的零日攻擊無法正常進(jìn)行,從而達(dá)到了免疫的效果。結(jié)合以上論述,做出如下假設(shè):①網(wǎng)絡(luò)僅存在一種零日病毒,且該病毒僅能感染一種特定運(yùn)行平臺(tái)下的目標(biāo)主機(jī);②感染耗時(shí)為τ。感染過程一旦中斷,零日病毒無法成功感染該目標(biāo)主機(jī)。

        SIZDRS模型[5]是針對(duì)零日病毒傳播機(jī)理提出的模型,在對(duì)零日病毒傳播及免疫過程的分析基礎(chǔ)上,對(duì)SIZDRS模型進(jìn)行了改進(jìn)。本文重新定義了零日病毒執(zhí)行階段,同時(shí)引入了異構(gòu)平臺(tái)狀態(tài)。提出了SIZRO模型,其狀態(tài)轉(zhuǎn)移關(guān)系見圖1。

        圖1 SIZRO病毒傳播及免疫模型

        在SIZDRS模型的基礎(chǔ)上,針對(duì)新模型改進(jìn)部分進(jìn)行說明:

        1)易感狀態(tài)S→初始感染狀態(tài)I。易感狀態(tài)S節(jié)點(diǎn)與零日狀態(tài)Z節(jié)點(diǎn)接觸,經(jīng)過一定時(shí)間間隔τ后,轉(zhuǎn)化為初始感染狀態(tài)。其中,Z(t-τ)表示考慮零日病毒感染時(shí)滯τ的情況下在t時(shí)刻零日狀態(tài)節(jié)點(diǎn)數(shù)量。

        2)零日狀態(tài)Z→易感狀態(tài)S。由于部分計(jì)算機(jī)核心系統(tǒng)被控制或部分由計(jì)算機(jī)操控的工控系統(tǒng)被破壞導(dǎo)致整個(gè)網(wǎng)絡(luò)的性能下降,因此目標(biāo)主機(jī)在被損毀后,相關(guān)操作人員將對(duì)已損壞的設(shè)備進(jìn)行翻新或者使用新的設(shè)備。ω代表了由毀損狀態(tài)恢復(fù)為易感狀態(tài)的恢復(fù)率。

        3)易感狀態(tài)S、初始感染狀態(tài)I、零日狀態(tài)Z、免疫狀態(tài)R→其他平臺(tái)狀態(tài)O。在平臺(tái)遷移的過程中,防御方并不知悉網(wǎng)絡(luò)中每一節(jié)點(diǎn)的感染情況。因此,防御方為了防御效益最大化,將對(duì)整個(gè)網(wǎng)絡(luò)中的每一主機(jī)進(jìn)行平臺(tái)遷移。由于運(yùn)行平臺(tái)及環(huán)境的不同,針對(duì)原平臺(tái)的零日攻擊在其他平臺(tái)上無法進(jìn)行,從而達(dá)到免疫的效果。定義由原平臺(tái)遷移至其他平臺(tái)的遷移成功率為正向切換成功率P1。

        4)其他平臺(tái)狀態(tài)O→易感狀態(tài)S。處于其他平臺(tái)狀態(tài)的節(jié)點(diǎn),在成功阻止零日病毒的攻擊后,防御方將其他平臺(tái)狀態(tài)遷移至原平臺(tái)狀態(tài),定義該過程中平臺(tái)遷移成功率為反向切換成功率P2。

        5)免疫狀態(tài)R→易感狀態(tài)S。病毒在擴(kuò)散過程中可能會(huì)存在變異等行為,使得免疫節(jié)點(diǎn)對(duì)變異后病毒失去免疫能力,或者由于用戶更新系統(tǒng)等使具有免疫功能的節(jié)點(diǎn)重新轉(zhuǎn)化為易感節(jié)點(diǎn)。υ代表了免疫狀態(tài)轉(zhuǎn)化為易感狀態(tài)的轉(zhuǎn)化率。

        設(shè)網(wǎng)絡(luò)中節(jié)點(diǎn)總數(shù)N為各狀態(tài)節(jié)點(diǎn)數(shù)量和,在病毒傳播及免疫過程中保持不變,新增變量O(t)表示t時(shí)刻其他節(jié)點(diǎn)狀態(tài)節(jié)點(diǎn)的數(shù)量。根據(jù)條件可知,各狀態(tài)數(shù)量之間滿足:R(t)=N-S(t)-I(t)-Z(t)-O(t)。根據(jù)微分動(dòng)力學(xué)原理,可得模型對(duì)應(yīng)的動(dòng)力學(xué)方程:

        (1)

        2 穩(wěn)定性分析

        由式(1)求解可得平衡點(diǎn)P0(S0,I0,Z0,R0,O0)和P1(S1,I1,Z1,R1,O1)

        (2)

        式中:

        (3)

        引理1當(dāng)t→∞時(shí),S(t)≤S0。

        證明:設(shè)A(t)=S(t)+I(t)+R(t)+Z(t),式(1)可進(jìn)一步表示為:

        (4)

        (5)

        相應(yīng)的特征方程為:

        λ(λ+P1+P2)=0

        (6)

        定理1 當(dāng)R0≤1時(shí),式(1)表示的網(wǎng)絡(luò)系統(tǒng)在無病毒平衡點(diǎn)P0(S0,I0,R0,Z0,O0)處全局漸進(jìn)穩(wěn)定。

        證明:定義Lyapunov函數(shù)

        L(t)=

        (7)

        對(duì)式(7)求導(dǎo)可得:

        γ·I(t)-(P1+ω)Z(t)=

        (8)

        由引理1可知:

        L′(t)≤Z(t)(P1+ω)(R0-1)

        (9)

        當(dāng)R0≤1時(shí),L′(t)≤0,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。根據(jù)LaSalle不變?cè)恚?1)表示的網(wǎng)絡(luò)系統(tǒng)再無病毒平衡點(diǎn)P0(S0,I0,R0,Z0,O0)處全局漸進(jìn)穩(wěn)定。證畢。

        投入使用的節(jié)能技術(shù)應(yīng)充分考慮其成本,不能為了追求節(jié)能、高效而一味加大投資,使得建筑的開發(fā)成本不斷增加。所以,電氣設(shè)計(jì)師在優(yōu)化節(jié)能設(shè)計(jì)時(shí),應(yīng)著重考慮設(shè)備材料應(yīng)用及節(jié)能方式選擇,以盡量實(shí)現(xiàn)成本控制及節(jié)能性能優(yōu)化。

        定理2 當(dāng)R0>1時(shí),系統(tǒng)在有病毒平衡點(diǎn)處局部漸進(jìn)穩(wěn)定。

        證明:根據(jù)引理1,式(1)可化簡為:

        (10)

        對(duì)應(yīng)的特征方程為:

        λ3+(e+f+a)λ2+(ef+ae+af+bm)λ+aef+

        bmf+mcγ-(nγλ+anγ)e-λτ

        (11)

        式中:

        (12)

        令λ=iμ,利用歐拉公式并分離實(shí)部和虛部,式(11)可化為:

        (13)

        式中:

        (14)

        進(jìn)而可得:

        (15)

        令k=μ2,式(15)可化為:

        (16)

        (17)

        由以上分析可知:①基本再生數(shù)決定了網(wǎng)絡(luò)系統(tǒng)中零日病毒存在與否。當(dāng)R0≤1時(shí),網(wǎng)絡(luò)中不存在零日病毒,此時(shí)網(wǎng)絡(luò)系統(tǒng)在無病毒平衡點(diǎn)P0(S0,I0,R0,Z0,O0)處局部漸近穩(wěn)定;當(dāng)R0>1時(shí),零日病毒存在于網(wǎng)絡(luò)之中且最終感染病毒計(jì)算機(jī)數(shù)量趨于穩(wěn)定,此時(shí)系統(tǒng)在有病毒平衡點(diǎn)P1(S1,I1,R1,Z1,O1)處局部漸近穩(wěn)定。②零日病毒的感染時(shí)滯對(duì)網(wǎng)絡(luò)系統(tǒng)穩(wěn)定時(shí)的傳播規(guī)模沒有影響。③網(wǎng)絡(luò)中兩類平臺(tái)的數(shù)量僅取決于平臺(tái)切換概率(正、反向切換率),無論網(wǎng)絡(luò)中是否存在病毒,處于原有平臺(tái)和其他平臺(tái)的節(jié)點(diǎn)數(shù)量始終保持不變。

        3 仿真分析

        仿真分析平臺(tái)遷移成功率和時(shí)滯因子對(duì)零日病毒傳播的影響,驗(yàn)證模型及其穩(wěn)定性。平臺(tái)遷移成功率可通過完善硬件及軟件來進(jìn)行調(diào)節(jié),感染時(shí)滯因子主要是病毒自身特性。參照實(shí)驗(yàn)[5],本文實(shí)驗(yàn)采用MATLAB2019進(jìn)行模擬仿真,利用仿真軟件中求解時(shí)滯微分方程的工具ODE45,對(duì)動(dòng)力學(xué)方程組進(jìn)行求解,并成圖表示結(jié)果。其中,微分方程求解間隔為50,模型中各個(gè)參數(shù)的設(shè)置如下:β=0.6,K=6,α=0.2,υ=0.5,γ=0.6,P1=0.08,P2=0.15,ω=0.3,設(shè)節(jié)點(diǎn)總數(shù)N=1 000,初始狀態(tài)下不同狀態(tài)節(jié)點(diǎn)數(shù)為(S0,I0,Z0,R0,O0)=(700,50,50,100,100)。在仿真驗(yàn)證過程中,用易感狀態(tài)、零日狀態(tài)和異構(gòu)平臺(tái)狀態(tài)等3類狀態(tài)的節(jié)點(diǎn)數(shù)量變化,動(dòng)態(tài)演示零日病毒傳播規(guī)律及平臺(tái)遷移的免疫效果。

        3.1 平臺(tái)切換成功率

        調(diào)整平臺(tái)切換成功率P1和P2驗(yàn)證其對(duì)病毒傳播的影響及免疫效果。分別令P1=0.08,0.1,0.4,圖2所示為不同正向切換概率對(duì)應(yīng)的系統(tǒng)狀態(tài)。

        圖2 不同P1對(duì)應(yīng)的系統(tǒng)狀態(tài)

        圖2(a)、(b)、(c)分別對(duì)應(yīng)P1=0.08,0.1,0.4的系統(tǒng)狀態(tài)。仿真結(jié)果表明,當(dāng)P1=0.4(R0<1)時(shí),系統(tǒng)在平衡點(diǎn)P0(200,0,0,0,800)處局部漸進(jìn)穩(wěn)定;當(dāng)P1=0.1(R0>1)時(shí),系統(tǒng)在P1(167,118,176,39,500)處局部漸進(jìn)穩(wěn)定;當(dāng)P1=0.08(R0>1)時(shí),系統(tǒng)在P1(155,137,216,47,445)處局部漸進(jìn)穩(wěn)定;當(dāng)系統(tǒng)在局部漸進(jìn)穩(wěn)定平衡點(diǎn)P1處時(shí),零日狀態(tài)節(jié)點(diǎn)數(shù)隨著P1的增大而減小。可見,正向切換率越大,零日病毒在傳播及免疫過程中成功入侵目標(biāo)主機(jī)的概率越小,通過調(diào)節(jié)正向切換率P1,可以有效抑制零日病毒的傳播,達(dá)到較好的免疫效果。

        其他參數(shù)保持不變,分別令P2=0.01,0.1,0.2。圖3為不同反向切換率對(duì)應(yīng)的系統(tǒng)狀態(tài),圖3(a)、(b)、(c)分別對(duì)應(yīng)P2=0.01,0.1,0.2的系統(tǒng)狀態(tài)。

        圖3 不同P2對(duì)應(yīng)的系統(tǒng)狀態(tài)

        仿真結(jié)果表明,當(dāng)P2=0.01(R0<1)時(shí),系統(tǒng)在平衡點(diǎn)P0(108,0,0,1,891)處局部漸進(jìn)穩(wěn)定;當(dāng)P2=0.1(R0>1)時(shí),系統(tǒng)在P1(155,137,216,47,445)處局部漸進(jìn)穩(wěn)定;當(dāng)P2=0.2(R0>1)時(shí),系統(tǒng)在P1(155,191,302,66,286)處局部漸進(jìn)穩(wěn)定;當(dāng)系統(tǒng)在局部漸進(jìn)穩(wěn)定平衡點(diǎn)P1處時(shí),零日狀態(tài)節(jié)點(diǎn)數(shù)隨著P2的增大而增加??梢?,反向切換率越大,零日病毒在傳播及免疫過程中成功入侵目標(biāo)主機(jī)的概率越大,通過調(diào)節(jié)反向切換率P2,可以有效抑制零日病毒的傳播,達(dá)到較好的免疫效果。

        3.2 感染時(shí)滯τ

        圖4中不同顏色的曲線代表不同時(shí)滯下的零日節(jié)點(diǎn)狀態(tài)數(shù),由上至下τ=0.1,0.2,0.3,1,2,3,10,20,30。

        圖4 不同時(shí)滯τ對(duì)應(yīng)的零日狀態(tài)節(jié)點(diǎn)數(shù)

        仿真結(jié)果表明,當(dāng)τ取不同的數(shù)值時(shí),最終零日狀態(tài)節(jié)點(diǎn)數(shù)為216,網(wǎng)絡(luò)系統(tǒng)在P1(155,137,216,47,445)處達(dá)到平衡。因此,感染時(shí)滯的改變不影響零日病毒在網(wǎng)絡(luò)系統(tǒng)傳播的最終狀態(tài);但不同的感染時(shí)滯情況下,病毒擴(kuò)散至平衡狀態(tài)所需要的時(shí)間不同,零日病毒由初始狀態(tài)擴(kuò)散至平衡狀態(tài)所需時(shí)間隨著感染時(shí)滯的增加而增大。

        當(dāng)τ=10,20,30時(shí),病毒在傳播過程中出現(xiàn)了明顯的類周期現(xiàn)象。當(dāng)τ=10時(shí),零日節(jié)點(diǎn)數(shù)變化曲線的第1個(gè)極小值出現(xiàn)在t=10時(shí),此時(shí)網(wǎng)絡(luò)系統(tǒng)中各節(jié)點(diǎn)數(shù)為(354,89,131,28,398)。當(dāng)t=20時(shí),到達(dá)變化曲線的第2個(gè)極小值點(diǎn),此時(shí)網(wǎng)絡(luò)系統(tǒng)中各節(jié)點(diǎn)數(shù)為(212,121,188,41,438)。當(dāng)t=30時(shí),變化曲線出現(xiàn)第3個(gè)極小值,此時(shí)網(wǎng)絡(luò)系統(tǒng)中各節(jié)點(diǎn)數(shù)為(171,132,208,45,444)。當(dāng)τ=20(30)時(shí),網(wǎng)絡(luò)系統(tǒng)分別在t=20(30)、40(60)、60(90)、80(120)時(shí)出現(xiàn)極小值。綜合以上分析,在系統(tǒng)達(dá)到平衡狀態(tài)前,網(wǎng)絡(luò)系統(tǒng)分別在t=nτ(n=1,2,…)時(shí)出現(xiàn)極小值;當(dāng)τ=0.1,0.2,0.3,1,2,3時(shí),病毒傳播過程中未出現(xiàn)明顯的類周期現(xiàn)象。因此,感染時(shí)滯一方面影響了整個(gè)網(wǎng)絡(luò)系統(tǒng)從初始感染階段到平衡階段的病毒擴(kuò)散規(guī)模。另一方面,在感染時(shí)滯較大時(shí),感染時(shí)滯精準(zhǔn)刻畫了類周期變化的規(guī)律。

        圖5為不同時(shí)滯τ對(duì)應(yīng)的系統(tǒng)狀態(tài)。仿真結(jié)果表明,隨著感染時(shí)滯因子逐漸增大,節(jié)點(diǎn)數(shù)量變化越明顯。同時(shí),在時(shí)滯較大的情況下,隨著感染時(shí)滯的增加,曲線卷曲的情況越明顯,即零日狀態(tài)節(jié)點(diǎn)數(shù)出現(xiàn)類周期變化的現(xiàn)象越明顯。

        圖5 不同時(shí)滯τ對(duì)應(yīng)的系統(tǒng)狀態(tài)

        3.3 傳播及免疫效果對(duì)比

        實(shí)驗(yàn)[5]針對(duì)SIZDR模型進(jìn)行了模擬仿真。本節(jié)通過模擬相同或相似的環(huán)境,對(duì)比SIZRO模型與SIZDR模型對(duì)于零日病毒的免疫效果,驗(yàn)證SIZRO模型的免疫效果優(yōu)于SIZDR模型。根據(jù)文獻(xiàn)[5]中的模型及本文設(shè)置的參數(shù),令SIZDR模型中各參數(shù)取值分別為:β=0.6,K=6,α=0.2,υ=0.5,γ=0.6。設(shè)置節(jié)點(diǎn)總數(shù)N=1 000,初始狀態(tài)下,不同狀態(tài)節(jié)點(diǎn)數(shù)為(S0,I0,Z0,D0,R0)=(700,100,100,0,100)。為了構(gòu)建相似的網(wǎng)絡(luò)環(huán)境,需要通過參數(shù)設(shè)置將SIZDR模型中零日狀態(tài)到毀損狀態(tài)并最終轉(zhuǎn)化為易感狀態(tài)的過程簡化為SIZRO模型中零日狀態(tài)轉(zhuǎn)化為易感狀態(tài)的過程。因此,令ω=1,意味著毀損狀態(tài)節(jié)點(diǎn)最終全部轉(zhuǎn)化為易感狀態(tài)。同時(shí),為了滿足SIZRO模型中ω=0.3這一條件,令SIZDR模型中σ=0.3。SIZRO模型中各參數(shù)取值不變,初始狀態(tài)下,不同節(jié)點(diǎn)數(shù)為(S0,I0,Z0,R0,O0)=(700,100,100,100,0)。

        在整個(gè)網(wǎng)絡(luò)系統(tǒng)達(dá)到平衡狀態(tài)時(shí),零日節(jié)點(diǎn)數(shù)量的多少直接反映了整個(gè)網(wǎng)絡(luò)中處于高風(fēng)險(xiǎn)狀態(tài)的用戶主機(jī)數(shù)量的多少。零日節(jié)點(diǎn)數(shù)量越多,網(wǎng)絡(luò)系統(tǒng)的風(fēng)險(xiǎn)就越大;反之,整個(gè)網(wǎng)絡(luò)的風(fēng)險(xiǎn)就越小。因此,網(wǎng)絡(luò)系統(tǒng)達(dá)到穩(wěn)定狀態(tài)時(shí),零日節(jié)點(diǎn)的數(shù)量與總結(jié)點(diǎn)數(shù)量的比值定義為網(wǎng)絡(luò)風(fēng)險(xiǎn)率,記為ψ。

        圖6為不同病毒傳播模型的傳播及免疫效果對(duì)比圖。仿真結(jié)果表明,在相同條件下,SIZRO模型最終在有病毒平衡點(diǎn)P1(155,137,216,47,445)處局部漸近穩(wěn)定,SIZDR模型在有病毒平衡點(diǎn)P2(111,222,445,133,89)處局部漸近穩(wěn)定。在網(wǎng)絡(luò)系統(tǒng)達(dá)到穩(wěn)定狀態(tài)時(shí),SIZRO模型中零日節(jié)點(diǎn)數(shù)量為216,SIZDR模型中零日節(jié)點(diǎn)數(shù)量為445。因此,兩個(gè)模型的網(wǎng)絡(luò)風(fēng)險(xiǎn)率分別為ψ1=0.212,ψ2=0.445,ψ1<ψ2。綜上,在相同條件下,SIZRO模型能夠更好的抑制零日病毒的傳播。針對(duì)零日病毒,平臺(tái)動(dòng)態(tài)防御的思想可以起到良好的免疫效果。

        圖6 不同模型傳播及免疫效果對(duì)比圖

        4 結(jié)語

        本文在SIZDR模型的基礎(chǔ)上,考慮感染時(shí)滯因素并結(jié)合平臺(tái)層動(dòng)態(tài)目標(biāo)防御的思想,提出了SIZRO模型,通過穩(wěn)定性分析,討論了相關(guān)因素對(duì)病毒傳播及免疫效果的影響,對(duì)正向切換成功率、反向切換成功率及感染時(shí)滯3個(gè)參數(shù)開展了仿真,同時(shí)對(duì)比了SIZRO模型與SIZDR模型對(duì)零日病毒的免疫效果。理論分析和仿真結(jié)果表明,不同的感染時(shí)滯導(dǎo)致病毒擴(kuò)散規(guī)模到達(dá)穩(wěn)定狀態(tài)的時(shí)間不同。利用平臺(tái)動(dòng)態(tài)防御思想,可以有效抑制零日病毒的傳播。改變平臺(tái)切換成功概率可以有效抑制零日病毒的傳播規(guī)模,起到較好的免疫效果。論文中還存在一定的不足之處,下一步工作將圍繞零日病毒傳播及免疫模型,提出并分析相應(yīng)的免疫策略。

        猜你喜歡
        模型
        一半模型
        一種去中心化的域名服務(wù)本地化模型
        適用于BDS-3 PPP的隨機(jī)模型
        提煉模型 突破難點(diǎn)
        函數(shù)模型及應(yīng)用
        p150Glued在帕金森病模型中的表達(dá)及分布
        函數(shù)模型及應(yīng)用
        重要模型『一線三等角』
        重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
        3D打印中的模型分割與打包
        欧美人与动zozo| 啦啦啦中文在线观看日本| 香蕉视频在线精品视频| 久久这里只有精品9| 日本成人三级视频网站| 日韩不卡的av二三四区| 亚洲熟妇久久国产精品| 日韩毛片在线| 国产三级三级三级看三级日本| 美女主播网红视频福利一区二区| 国产成人精品午夜视频| 日韩在线精品国产成人| 亚洲二区三区在线播放| 草逼短视频免费看m3u8| 国产一区二区三区观看视频| 亚洲精品一区二区三区四区久久| 久久99国产综合精品| 国产又黄又猛又粗又爽的a片动漫| 亚洲成a人片在线观看中文!!!| 99精品人妻少妇一区二区三区| 国产亚洲精品成人aa片新蒲金| 99久久国产综合精品麻豆| 完整在线视频免费黄片| 日韩人妻精品视频一区二区三区| 无人区一码二码三码四码区| 亚洲中文无码久久精品1| 精品自拍偷拍一区二区三区 | 亚洲一区二区三在线播放| 日韩亚洲一区二区三区四区| 国产精品亚洲一区二区在线观看| 国产精品无码专区综合网| 亚洲精品国产熟女久久久| 亚洲av无码一区东京热 | 中文字幕乱码熟妇五十中出| 香蕉视频在线观看国产| 免费女同毛片在线不卡| 天天做天天爱夜夜夜爽毛片| 国产精品国产成人国产三级| 国产成人精品男人的天堂网站| 国产自拍偷拍视频免费在线观看| 亚洲第一页综合图片自拍|