亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        多體復合量子態(tài)基于可觀測量算子的糾纏測度

        2022-05-12 10:27:10楊麗麗閆棟華王銀珠
        關鍵詞:量子態(tài)互信息麗麗

        楊麗麗,閆棟華,王銀珠

        多體復合量子態(tài)基于可觀測量算子的糾纏測度

        楊麗麗,閆棟華,*王銀珠

        (太原科技大學應用科學學院,山西,太原 030024)

        近些年,人們對量子糾纏的量化已經(jīng)有了許多深入的研究,但是,許多已有的糾纏度量還是難以計算的。LuoShunlong基于互信息提出了兩體量子態(tài)的可觀測量關聯(lián),并得到了兩體量子態(tài)的一類糾纏測度。本文將兩體系統(tǒng)的糾纏測度推廣到多體復合量子系統(tǒng),并證明了其滿足糾纏測度的必要物理條件。

        多體量子系統(tǒng);量子態(tài);可觀測量關聯(lián);互信息;糾纏測度

        0 引言

        量子糾纏作為量子系統(tǒng)之間的一種非經(jīng)典關聯(lián),越來越受到人們的關注。量化糾纏的目的最初來自量子通信[1-2]。近年來,糾纏被認為是量子信息理論中的一種資源,并被廣泛應用于量子通信和信息處理任務中[3-4]。目前已經(jīng)有許多比較成熟的糾纏測度,比如Concurrence糾纏測度[5-10],形成糾纏測度[11-12],Negativity 糾纏測度[13]等。一般來說,糾纏度量應該滿足以下幾個公理[14]:

        產生的聯(lián)合概率分布為:

        Luo Shunlong基于互信息提出了兩體量子態(tài)的可觀測量關聯(lián),并得到了兩體量子態(tài)的一類糾纏測度[16]。本文將兩體系統(tǒng)的糾纏測度推廣到多體復合量子系統(tǒng),并證明了其滿足糾纏測度的必要物理性質。

        1 主要結果

        為了證明引理2,引入以下引理3。

        引理2證明 先證必要性成立。

        等號左邊可化簡為

        同時等號右邊可化簡為

        下面證明充分性成立。

        性質1 (糾纏測度的非負性)

        證明 由引理1有

        性質2 (糾纏測度的局部酉不變性)

        而對混合態(tài)來說,根據(jù)凸組合的結構,顯然成立。

        性質3 (糾纏測度的LOCC單調性)

        證明 根據(jù)文獻[20],有

        因此

        所以

        2 結論

        本研究,定義了多體復合量子態(tài)基于可觀測量算子的糾纏測度,并證明了該糾纏測度滿足非負性,局部酉不變性,LOCC單調性等性質。

        [1] Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels[J]. Phys. Rev. Lett,1996,78:2031 .

        [2] Bennett C H, Divincenzo D P ,Smolin J A ,et al. Mixed State Entanglement and Quantum Error Correction[J]. Physical Review A :Atomic Molecular and Optical Physics,1996, 54(5):3824.

        [3] Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states[J]. Phys. Rev. Lett, 1992,69:2881-2884.

        [4] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels[J]. Phys. Rev. Lett,1993,70:1895-1899.

        [5] Zhao H, Zhang M M, Fei S M, et al. Projection based lower bounds of concurrence for multipartite quantum systems[J].International Journal of Theoretical Physics,2020,59(6):1688-1698.

        [6] Zhu X N, Li M, Zhang M M, et al. Lower bounds of concurrence for multipaitite state[J]. American Institute of Physics, 2012, 77:1424.

        [7] Zhang L M, Gao T, Yan F L. Relations among k-ME concurrence, negativity, polynomial invariants, and tangle[J].Quantum Information Processing,2019,18(6):2223-2228.

        [8] Qi X F, Gao T, Yan F L.Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems[J].Quantum Information Processing,2017,16(1):23.

        [9] Li X S, Gao X H , Fei S M . Lower bound of concurrence based on positive maps[J]. Physical Review A,2011, 83(3):034303.

        [10] Qi X F, Gao T, Yan F L.Measuring coherence with entanglement concurrence[J].Journal of Physics A: Mathematical and Theoretical,2017,50(28):285301.

        [11] Chen K, Albeverio S, Fei S M. Entanglement of formation of bipartite quntum states[J]. Phys. Rev. Lett., 2005,95:210-501.

        [12] Wang Y Z, Wang D X. Entanglement of Formation for Multipartite k-NonseparableStates[J].International Journalof Theoretical Physics,2016,55(1):517-525.

        [13] Soojoon L, Chi D P, Oh S D, et al. Convex-roof extended negativity as an entanglement measure for bipartite quantum systems[J]. Phys. Rev. A,2003,68:062304.

        [14] Vedral V, Plenio M B , Rippin M A ,et al. Quantifying Entanglement[J]. Physical Review Letters,1997, 78(12):2275-2279.

        [15] Werner R F. Quantum states with Einstein - Podolsky -Rosen correletions admitting a hidden variable model[J].Phys. Rev.A,1989,40:4227-4281.

        [16] Luo S L. Entanglement measures based on observable correlations[J]. Theoretical and Mathematical Physics, 2008, 155(3):896-904.

        [17] Samuel R. Hedemann. Correlation and discordance: computable measures of nonlocal correlation[J]. Quantum information processing, 2020,19:189.

        [18] Cover T M, Thomas J A. Elements of Information Theory[M]. New York: Wiley, 2006.

        [19] SaiToh, Akira. Decoherence Suppression in Quantum Systems [M]. Singapore: World Scientific, 2009.

        [20] Guo Y, Hou J C, Wang Y C. Concurrence for infinite- dimensional quantum systems[J]. Quantum Information Processing,2013, 12(8):2641-2653.

        [21] Cover T M, Thomas J A. Elements of Information Theory[M].New York:Wiley,1991.

        THE ENTANGLEMENT MEASURE OF THE MULTIPARTITE COMPOSITE QUANTUM STATES BASED ON OBSERVABLE OPERATOR

        YANG Li-li,YAN Dong-hua,*WANG Yin-zhu

        (School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China)

        In recent years, there are many research results on the quantization of quantum entanglement, but many of the existing entanglement measures are still difficult to calculate. In the paper “Entanglement measures based on observable correlations”, LUO Shun-long proposed an observable correlation measure of bipartite quantum states based on mutual information, and obtained a class of entanglement measures of bipartite quantum states. In this paper, we generalize the entanglement measure of the bipartite system to the multipartite composite quantum system, and prove that it satisfies the necessary physical conditions of entanglement measure.

        multipartite quantum system; quantum states; observable correlations; mutual information; entanglement measure

        1674-8085(2022)03-0001-05

        O413.1

        A

        10.3969/j.issn.1674-8085.2022.03.001

        2021-11-29;

        2022-01-12

        國家自然科學基金項目(11901421);山西省自然科學基金面上項目(201901D111254)

        楊麗麗(1997-),女,山西臨汾人,碩士生,主要從事量子信息與量子計算方面的研究(E-mail:1043177300@qq.com);

        *王銀珠(1977-),男,山西朔州人,副教授,博士,主要從事量子信息與量子計算方面的研究(E-mail:2006wang.yinzhu@163.com).

        猜你喜歡
        量子態(tài)互信息麗麗
        快點 快點
        畫一畫
        一類兩體非X-型量子態(tài)的量子失諧
        極小最大量子態(tài)區(qū)分
        I love my family
        賴麗麗
        中國篆刻(2016年3期)2016-09-26 12:19:28
        基于互信息的貝葉斯網(wǎng)絡結構學習
        聯(lián)合互信息水下目標特征選擇算法
        改進的互信息最小化非線性盲源分離算法
        電測與儀表(2015年9期)2015-04-09 11:59:22
        基于增量式互信息的圖像快速匹配方法
        亚洲色图偷拍自拍在线| 人妻丰满多毛熟妇免费区| 99久久亚洲国产高清观看| 最新国产精品国产三级国产av| 亚洲在线视频免费视频| 国产一区二区三区我不卡 | 无码av一区在线观看| 蜜桃视频一区二区三区| 精品中文字幕在线不卡| 中国精品18videosex性中国| 亚洲精品久久无码av片软件| 国产精品日日摸夜夜添夜夜添| 亚洲一本之道高清在线观看| 在线视频自拍视频激情| 久久久久久人妻无码| 色777狠狠狠综合| 人与嘼av免费| 日韩女优中文字幕在线| 日韩人妻中文字幕专区| 国产伦理一区二区| 成人精品一级毛片| 18禁成人免费av大片一区| 中文字幕亚洲乱码成熟女1区| 人妻av中文字幕无码专区| 国产区精品| 亚洲精品中文字幕尤物综合| 亚洲精品中文字幕不卡| 99re6在线视频精品免费下载| 免费99精品国产自在在线| 欧美一片二片午夜福利在线快| 日韩精品首页在线观看| 人妻少妇被猛烈进入中文| 中文字幕亚洲欧美在线不卡| 精品人人妻人人澡人人爽牛牛| 免费a级毛片无码a∨免费| 精品乱色一区二区中文字幕| 国产一区二区三区乱码| 狠狠色综合网站久久久久久久 | 亚洲国产成人精品无码一区二区| 在线欧美精品二区三区| 手机在线观看成年人视频|