徐慶柳,楊昌其,郝銘佟
(中國民用航空飛行學(xué)院,四川廣漢 618307)
我國低空開放改革已經(jīng)邁入了快速發(fā)展的階段,隨著基礎(chǔ)建設(shè)的完善和通航企業(yè)的爆發(fā)式增長,低空飛行將迎來全新的發(fā)展篇章。通用航空(General Aviation,GA)是低空飛行的主要使用對象,所以有關(guān)通航飛行問題的研究,對未來推動低空開放具有重要理論價值。而基于智能體(Agent)的思想在處理低空飛行這類復(fù)雜問題上有其獨(dú)特的優(yōu)勢[1]。當(dāng)前,各國對于通用航空飛行行為的研究較少,但是在沖突解脫方面的研究較為深入:Alonso-Ayuso等分析了多機(jī)飛行沖突解脫下航空器間隔與時間的演變關(guān)系,提出了基于整數(shù)線性規(guī)劃的沖突探測與解脫模型[2];管祥民等提出了基于混合人工勢場與蟻群算法的航空器解脫方法[3];韓冬等通過引入支持向量機(jī)(SVM)的二元分類方法,實(shí)現(xiàn)了適用于低空飛行的高效沖突探測[4]。在Agent 建模方面,胡明華等通過構(gòu)建多類型Agent 模型實(shí)現(xiàn)多機(jī)場終端區(qū)空中交通智能仿真系統(tǒng)[5];徐肖豪等采用BDI(Beliefs-Desires-Intentions)Agent技術(shù)和MAGER平臺,開發(fā)了基于規(guī)則推理的沖突解脫系統(tǒng)[6]。根據(jù)以上研究,結(jié)合我國低空環(huán)境及通航運(yùn)行實(shí)際情況,構(gòu)建多種類通航Agent 及內(nèi)部邏輯框架;提出基于多智能體(Multi-Agent)的通航飛行協(xié)調(diào)規(guī)則與沖突解脫模型,根據(jù)低空運(yùn)行環(huán)境搭建了仿真平臺,借助Netlogo 軟件對Multi-Agent模型進(jìn)行了仿真實(shí)驗(yàn),并對空域內(nèi)飛行量對安全間隔、沖突數(shù)的影響程度進(jìn)行分析。
Agent是一種具有主動性、反饋性、學(xué)習(xí)能力,交互能力的智能實(shí)體,能夠根據(jù)從周圍環(huán)境獲取的信息,做出最符合客觀實(shí)際的行為。鑒于Agent這些特性,構(gòu)建出通用航空器Agent并對每個Agent主體賦予行為規(guī)則。
本文將每一個通用航空器看作具備自主飛行能力,能夠?qū)崟r獲取外界環(huán)境信息,能夠探測飛行沖突并能夠做出解脫行為的Agent。任一Agent 都具備自我行為意識與行動目標(biāo),并且能夠與其他Agent 做交互行為,同時根據(jù)自身與外界環(huán)境條件,針對不同狀態(tài)做出與之相適應(yīng)的決策行為。內(nèi)部結(jié)構(gòu)如圖1所示。
圖1 邏輯框架
飛行協(xié)調(diào)指當(dāng)空域中的兩架通航Agent 存在潛在沖突時,根據(jù)沖突類別,避讓規(guī)則等多方面因素自行進(jìn)行沖突解脫。低空相較于中高空來說情況更為復(fù)雜,沖突種類多且發(fā)生率更高,在此將沖突類別劃分為兩種:①航空器與航空器之間的沖突;②航空器與障礙物之間的沖突。低空飛行中應(yīng)遵循的協(xié)調(diào)規(guī)則如下:
1)通航Agent 遇到地形障礙物,由其自身主動采取避讓措施;
2)兩架通航Agent 同高度對頭相遇時,根據(jù)目視飛行規(guī)則應(yīng)當(dāng)各自向右避讓,并保持至少500米間隔;
3)若通航Agent 存在同高度層交叉飛行沖突,則距相交點(diǎn)更遠(yuǎn)的一方優(yōu)先考慮調(diào)速解脫策略。假如通航Agent所需速度大小不滿足自身速度性能范圍,則無法使用此解脫策略,此時應(yīng)該考慮調(diào)整航向,若不能滿足調(diào)整航向的解脫策略,則應(yīng)采用變更高度層的解脫策略;始終應(yīng)保持航行優(yōu)先級低的主動避讓航行優(yōu)先級高的一方,航行優(yōu)先級在仿真中規(guī)定;
4)特別的,若通航Agent之間發(fā)生交叉沖突,而其中一方為直升機(jī),則其可以優(yōu)先選擇空中懸停進(jìn)行避讓,在此過程中,若同一高度層兩機(jī)不滿足安全間距,則需要通過變更高度來解脫沖突;
5)在沖突解脫過程中,若通航Agent 與沖突Agent 之間距離大于等于ε倍的保護(hù)區(qū)半徑,表明沖突已經(jīng)解脫,ε為解脫系數(shù)。
建模前假設(shè):
a)將航空器看作質(zhì)點(diǎn),運(yùn)動方向?yàn)槠浜较颍?/p>
b)航空器能夠及時獲取飛行相關(guān)信息,并且各個通航Agent之間能夠通訊交互;
c)只考慮同一高度層的飛行,暫不考慮垂直飛行沖突;
d)暫不考慮惡劣天氣與公共運(yùn)輸飛行對通航飛行的影響;
e)調(diào)高度解脫為最終手段,假設(shè)其一定能解脫飛行沖突。
Reich 模型是碰撞風(fēng)險評估的經(jīng)典模型[7],依據(jù)本文所做假設(shè)對Reich模型進(jìn)行簡化,以航空器為中心點(diǎn)將周圍劃分保護(hù)區(qū)和探測區(qū),如圖2所示,保護(hù)區(qū)是航空器的絕對安全區(qū)域,不允許任何外來物進(jìn)入,即航空器最小水平安全間隔。
圖2 探測區(qū)與保護(hù)區(qū)
航空器A,B某一時刻在二維平面中的位置,航向,速度如圖3所示,二者相對位置矢量=(xB-xA,yB-yA),二者相對速度矢量,而與之間的夾角為θ,可知cos θ=,兩機(jī)最小相對距離L=|| sinθ,其中||為兩機(jī)之間歐式距離。本文認(rèn)為當(dāng)成立時,表明航空器A,B之間存在飛行沖突,需要及時采取解脫行為。
圖3 沖突判定條件
1)對頭沖突解脫模型
當(dāng)兩架航空器發(fā)生對頭沖突,根據(jù)我國目視飛行規(guī)則,航空器應(yīng)各自向右避讓,并保持至少500米的安全距離。如圖4所示,某時刻航空器A,B發(fā)生對頭沖突,它們的位置,速度,航向分別為(xA,yA,vA,θA)、(xB,yB,vB,θB)。則二者可以通過各自向右調(diào)整一定的航向角α來實(shí)現(xiàn)沖突解脫。由此可知:
圖4 對頭沖突解脫
2)基于調(diào)速的沖突解脫模型
調(diào)速模型基于相對運(yùn)動思想[8]。如圖5所示,某時刻航空器A,B的位置,航向分別為(xA,yA,θA)、(xB,yB,θB),相對位置矢量,相對速度矢量。此時兩機(jī)存在沖突,通過調(diào)節(jié)A的速度至,使得調(diào)節(jié)過后的相對速度矢量的延長線與B的保護(hù)區(qū)相切,即兩機(jī)能保持最小安全間隔,由此實(shí)現(xiàn)沖突解脫。
圖5 基于調(diào)速的沖突解脫
由表達(dá)式:
可得航空器A調(diào)整后的目標(biāo)速度:
航空器A調(diào)速后應(yīng)滿足:
3)基于調(diào)航向的沖突解脫模型
當(dāng)兩架飛機(jī)發(fā)生匯聚飛行沖突時,可以選擇調(diào)整航向來實(shí)現(xiàn)沖突解脫[9]。如圖6所示,某時刻航空器A,B的位置,航向分別為(xA,yA,θA)、(xB,yB,θB),相對位置矢量,相對速度矢量。由相對運(yùn)動思想可知,通過調(diào)節(jié)A的航向?yàn)?,使得調(diào)節(jié)過后的相對速度矢量的延長線與B的保護(hù)區(qū)相切,即兩機(jī)能保持最小安全間隔,由此實(shí)現(xiàn)沖突解脫。
圖6 基于調(diào)航向的沖突解脫
假設(shè)航空器改變航向過程中速度大小保持不變,則改變后A的航向角為,兩機(jī)相對速度的航向角為。觀察圖中的矢量三角形OAC,根據(jù)正弦定理,有:
整理后可得調(diào)整后的目標(biāo)航向?yàn)椋?/p>
或
改變后的航向角應(yīng)滿足:①航向調(diào)整量更?。虎谠诤较蛘{(diào)整范圍內(nèi)。
如圖7所示,設(shè)有一個通航機(jī)場,五個臨時起降點(diǎn),一個公共運(yùn)輸機(jī)場,一個地形障礙物,一片惡劣天氣區(qū)域,一個搶險救援點(diǎn)等。并劃設(shè)了四類通航飛行活動路線,其中報告空域半徑10km,管制空域半徑15km,,其余全為監(jiān)視空域。
圖7 通航飛行仿真場景
仿真環(huán)境部分參數(shù)設(shè)置如下:
表1 仿真參數(shù)
本文利用Netlogo 搭建基于Multi-Agent 的通航飛行行為仿真平臺,并將通用航空器飛行沖突探測與解脫模型編入,該平臺具備以下功能特點(diǎn)。
(1)飛行仿真控制:仿真環(huán)境所要用到的諸多參數(shù)均可根據(jù)需要自行設(shè)定,以便于探索不同參數(shù)下的通航飛行行為特點(diǎn);
(2)多場景切換:可根據(jù)實(shí)際需要變換場景中所設(shè)定的要素,例如各起降點(diǎn)位置,通航活動類別及飛行路線等;
(3)數(shù)據(jù)統(tǒng)計:運(yùn)行過程隨時能夠監(jiān)控,軟件會記錄數(shù)據(jù)并支持導(dǎo)出為excel,方便后續(xù)的數(shù)據(jù)處理;
(4)交通情景復(fù)現(xiàn):該場景較為真實(shí)地復(fù)現(xiàn)了實(shí)際交通情景,用戶能獲得更直觀的感受。
本文將隨機(jī)產(chǎn)生不同活動類別的通航Agent。從安全的角度思考空域中影響沖突發(fā)生量的因素及其之間的關(guān)系。我們以空域內(nèi)總體飛行為例,隨著空域內(nèi)總體飛行量的不斷增多,航空器的沖突數(shù)不斷增長。其中對頭沖突避讓、調(diào)速解脫與改變航向解脫為主要解脫方法。這說明調(diào)速與調(diào)航向措施在該低空飛行環(huán)境中具備更高的解脫效率。
將軟件仿真結(jié)果的相關(guān)數(shù)據(jù)導(dǎo)出,利用spss分析軟件繪制出飛行量與沖突架次、航空器平均間隔的散點(diǎn)圖,如圖8、9所示。通過分析其演化規(guī)律,可以看出隨著飛行量的不斷增加,該場景逐漸表現(xiàn)出自由、平穩(wěn)和較繁忙三個階段:第一階段(自由):飛行量低于35 架次,平均間隔超過90 公里,飛行間距能夠保持在較大的水平,沖突發(fā)生率極低,隨飛行量的增加平穩(wěn)緩慢增長,但總體沖突數(shù)量依舊很低,航空器飛行活動較為自由。第二階段(穩(wěn)定):飛行量在35~60 架次,平均間隔在80~90 公里,該階段空域內(nèi)沖突的發(fā)生總體表現(xiàn)為一個平穩(wěn)的趨勢,平均間隔隨飛行量的增加緩慢下降并平穩(wěn)維持在80公里左右,由于航空器間隔較大且沖突數(shù)較少,該階段航空器主要以調(diào)速解脫為主要解脫方式,整體飛行比較平穩(wěn)。第三階段(較繁忙):飛行量在60~80 架次,平均間隔基本保持在78公里,沖突數(shù)陡然激增然后保持在35架次,各活動類別的通航之間交互行為增加,同一航線上飛行密度增加,部分航空器無法通過調(diào)速解脫沖突,從而選擇調(diào)整航向進(jìn)行沖突解脫。航空器總體飛行速度下降,平均安全距離縮短,整體空域處于較繁忙狀態(tài)。
圖8 飛行量與沖突數(shù)關(guān)系
圖9 飛行量與平均間隔關(guān)系
本文利用智能體(Agent)思想,構(gòu)建了基于Multi-Agent的通航飛行行為模型,并建立了低空環(huán)境下的沖突解脫模型;借助Netlogo搭建了仿真平臺并進(jìn)行了仿真實(shí)驗(yàn)。由結(jié)果可知,此沖突探測與解脫模型能較好解析出低空通航飛行行為。低空環(huán)境下,通航飛行量與沖突數(shù)、安全間隔有著密切的關(guān)聯(lián),即伴隨飛行量的增長,沖突數(shù)緩慢而平穩(wěn)的增長,安全距離遞減趨勢較為明顯;但是當(dāng)飛行量到達(dá)一定架次時,沖突數(shù)急劇增長然后保持,安全間距則逐漸保持在平穩(wěn)水平。本文僅對低空通航飛行行為做了初步探索,將來可在此基礎(chǔ)之上做更多深入研究,為加速我國低空通航事業(yè)的發(fā)展提供客觀依據(jù)。