丁小婷,姚曉閨,劉紅琴
高階常系數(shù)非齊次線性微分方程的新解法
丁小婷,姚曉閨,劉紅琴
(陸軍炮兵防空兵學(xué)院 基礎(chǔ)部,安徽 合肥 230031)
通過引入常系數(shù)線性積分算子,得到了求解常系數(shù)非齊次線性微分方程的新方法,拓寬了教材中二階常系數(shù)線性微分方程的求解范圍,給出了更高階的常系數(shù)線性微分方程的一般解法,將復(fù)雜問題簡單化.通過例題驗證了方法的可行性.
常系數(shù);非齊次;線性微分方程;通解;積分算子
由數(shù)學(xué)歸納法可知,定理結(jié)論成立. 證畢.
[1] 同濟大學(xué)數(shù)學(xué)系.高等數(shù)學(xué):上[M].7版.北京:高等教育出版社,2014.
[2] 丁同仁,李秉治.常微分教程[M].北京:高等教育出版社,2000.
[3] 王高雄,周之銘,朱思銘,等.常微分教程[M].北京:高等教育出版社,2012.
[4] 葛渭高,田玉,廉海榮,等.應(yīng)用常微分教程[M].北京:科學(xué)出版社,2004.
[5] 于亞峰.階常系數(shù)線性微分方程的常數(shù)變異法[J].貴州師范大學(xué)學(xué)報(自然科學(xué)版),2015,33(6):83-86.
[6] 王鑰.復(fù)高階微分方程的解[J].?dāng)?shù)學(xué)學(xué)報,2017,60(4):651-660.
[7] 宋燕.高階常系數(shù)非齊次線性微分方程的解法[J].高等數(shù)學(xué)研究,2012,15(30):22-23.
[8] 孫法國,任麗娜.四階線性微分方程的算子解法[J].西安工程大學(xué)學(xué)報,2009,23(6):142-146.
[9] 鄭華盛.高階常系數(shù)非齊次線性微分方程的逆特征算子分解法[J].大學(xué)數(shù)學(xué),2014,30(4):76-81.
[10] 寧榮建,時軍.階常系數(shù)線性微分方程和階歐拉方程的積分因子解法[J].大學(xué)數(shù)學(xué),2017,33(5):44-48.
A new method for solving high order non-homogeneous linear differential equation with constant coefficients
DING Xiaoting,YAO Xiaogui,LIU Hongqin
(Department of Basic Courses,Army Academy of Artillery and Air Defense,Hefei 230031,China)
By introducing constant coefficient linear integral operator,a new method for solving higher order non-homogeneous linear differential equation with constant coefficients was obtained.It widens the solution range of second-order linear differential equations with constant coefficients in the textbook,gives the general solution of higher order linear differential equations with constant coefficients and simplifies complex problems.Finally,the feasibility of the method is verified by an example.
constant coefficient;non-homogeneous;linear differential equation;general solution;integral operator
1007-9831(2022)03-0005-03
O175.1
A
10.3969/j.jssn.1007-9831.2022.03.002
2021-10-13
陸軍炮兵防空兵學(xué)院2021年度教育教學(xué)研究項目(2021JGKT002)
丁小婷(1985-),女,安徽安慶人,講師,碩士,從事微分方程研究.E-mail:540212180@qq.com