韓嘉晟 吳華星 袁勝春
【摘要】 目的:探究STAT3 miR-146-b反饋回路抑制IL-6的NF-κB信號(hào)軸調(diào)控結(jié)直腸癌細(xì)胞的干性機(jī)制。方法:用Dulbecco改良的Eagle培養(yǎng)基(DMEM)培養(yǎng)結(jié)直腸癌細(xì)胞HCT116和正常人結(jié)腸上皮細(xì)胞CCD 841 CoN細(xì)胞。通過免疫熒光檢測IL-6和NF-κB信號(hào)軸。通過Western blot檢測p-STAT3、p-JAK2和miR-146-b蛋白表達(dá)水平。通過Transwell分析法檢測細(xì)胞遷移能力,通過TUNEL染色檢測細(xì)胞凋亡。通過CCK-8評估不同處理組細(xì)胞活力。通過Western blot檢測EMT間充質(zhì)標(biāo)志物波形蛋白(Vimentin,VIM),SNAIL和ZEB1及上皮標(biāo)志物E-鈣粘蛋白(CDH1)水平。通過PCR檢測CRC標(biāo)志物CD44、CD133、NANOG和Lgr5mRNA的表達(dá)。結(jié)果:與對照組相比,CRC組IL-6和NF-κB表達(dá)水平均升高(P<0.05),而IL-6抑制劑組較CRC組IL-6和NF-κB表達(dá)水平均降低(P<0.05)。與對照組相比,CRC組p-STAT3、p-JAK2和miR-146-b蛋白含量均升高(P<0.05),而IL-6抑制劑組較CRC組p-STAT3、p-JAK2和miR-146-b蛋白含量均降低(P<0.05)。與對照組相比,CRC組細(xì)胞遷移能力增加,細(xì)胞凋亡降低(P<0.05),而IL-6抑制劑組較CRC組細(xì)胞遷移能力降低,細(xì)胞凋亡增加(P<0.05)。與對照組相比,CRC組0 h細(xì)胞活力無差異(P>0.05),24、48和72 h細(xì)胞活力均增加(P<0.05),而IL-6抑制劑組較CRC組0 h細(xì)胞活力無差異(P>0.05),24、48和72 h細(xì)胞活力均降低(P<0.05)。與對照組相比,CRC組VIM、SNAIL和ZEB1蛋白含量均升高,CDH1蛋白含量降低(P<0.05),而IL-6抑制劑組較CRC組VIM、SNAIL和ZEB1蛋白含量均降低,CDH1蛋白含量升高(P<0.05)。與對照組相比,CRC組CD44、CD133、NANOG和Lgr5 mRNA的表達(dá)均升高(P<0.05),而IL-6抑制劑組較CRC組CD44、CD133、NANOG和Lgr5 mRNA的表達(dá)均降低(P<0.05)。結(jié)論:STAT3 miR-146-b反饋回路抑制IL-6的NF-κB信號(hào)軸調(diào)控結(jié)直腸癌細(xì)胞的干性。IL-6/STAT3/miR-146-b軸可以作為CRC的診斷標(biāo)記,并為結(jié)腸癌治療提供治療靶標(biāo)。
【關(guān)鍵詞】 結(jié)直腸癌 STAT3 miR-146-b IL-6 NF-κB 增殖 凋亡
Mechanism by STAT3 miR-146-b Feedback Loop Inhibits NF-κB Signal Axis of IL-6 in Regulating Stemness of Colorectal Cancer Cells/HAN Jiasheng, WU Huaxing, YUAN Shengchun. //Medical Innovation of China, 2022, 19(06): 0-029
[Abstract] Objective: To explore the mechanism by STAT3 miR-146-b feedback loop inhibits the NF-κB signal axis of IL-6 in regulating the stemness of colorectal cancer cells. Method: Colorectal cancer cell HCT116 and Normal human colonic epithelial cells CCD 841 CoN cells were cultured with Dulbecco’s modified Eagle medium (DMEM). The IL-6 and NF-κB signal axis were detected by immunofluorescence. The expression levels of p-STAT3, p-JAK2 and miR-146-b protein were detected by Western blot. The cell migration ability was detected by Transwell analysis method, and cell apoptosis was detected by TUNEL staining. The cell viabilities of different treatment groups were evaluated by CCK-8. The levels of EMT mesenchymal markers vimentin (Vimentin, VIM), SNAIL and ZEB1 and epithelial marker E-cadherin (CDH1) were detected by Western blot. The expressions of CRC markers CD44, CD133, NANOG and Lgr5 mRNA were detected by PCR. Result: Compared with the control group, the expression levels of IL-6 and NF-κB in the CRC group were increased (P<0.05), while the expression levels of IL-6 and NF-κB in the IL-6 inhibitor group were decreased compared with the CRC group (P<0.05). Compared with the control group, the protein contents of p-STAT3, p-JAK2 and miR-146-b in the CRC group were all increased (P<0.05), while the protein levels of p-STAT3, p-JAK2 and miR-146-b in the IL-6 inhibitor group were decreased compared with the CRC group (P<0.05). Compared with the control group, the CRC group had increased cell migration ability and decreased cell apoptosis (P<0.05), while the IL-6 inhibitor group had decreased cell migration ability and increased cell apoptosis compared with the CRC group (P<0.05). Compared with the control group, there was no difference in cell viability of the CRC group at 0 h (P>0.05), and increased cell viability at 24, 48 and 72 h (P<0.05), while the IL-6 inhibitor group had no difference in cell viability at 0 h compared with the CRC group (P>0.05), 24, 48 and 72 h cells reduced vitality (P<0.05). Compared with the control group, the protein contents of VIM, SNAIL and ZEB1 in the CRC group were increased, and the CDH1 protein content was decreased (P<0.05), while the IL-6 inhibitor group had decreased VIM, SNAIL and ZEB1 protein content and increased CDH1 protein content compared with the CRC group (P<0.05). Compared with the control group, the expression of CD44, CD133, NANOG and Lgr5 mRNA in the CRC group were all increased (P<0.05), while the expression of CD44, CD133, NANOG and Lgr5 mRNA in the IL-6 inhibitor group were decreased compared with the CRC group (P<0.05). Conclusion: STAT3 miR-146-b feedback loop inhibits NF-κB signal axis of IL-6 to regulate the stemness of colorectal cancer cells. IL-6/STAT3/miR-146-b axis can be used as a diagnostic marker for CRC and provide a therapeutic target for the treatment of colon cancer.
[Key words] Colorectal cancer STAT3 miR-146-b IL-6 NF-κB Proliferation Apoptosis
First-author’s address: Liaoyang Central Hospital, Liaoning Province, Liaoyang 111000, China
doi:10.3969/j.issn.1674-4985.2022.06.006
癌癥是西方世界主要的健康問題之一,轉(zhuǎn)移是最關(guān)鍵的問題,它占癌癥死亡率的90%以上[1]。原發(fā)性結(jié)腸直腸癌(colorectal cancer,CRC)起源于胃腸道內(nèi)的上皮細(xì)胞。在轉(zhuǎn)移過程中,癌細(xì)胞被認(rèn)為具有間充質(zhì)表型,從而使它們離開原發(fā)腫瘤的部位,侵入周圍組織,并遷移到遠(yuǎn)處的器官。接種后,這些細(xì)胞轉(zhuǎn)換回上皮表型并增殖形成轉(zhuǎn)移灶。細(xì)胞在上皮和間充質(zhì)表型之間轉(zhuǎn)換的過程稱為上皮-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)及其對應(yīng)的間充質(zhì)-上皮轉(zhuǎn)化(mesenchymal-epithelial transition,MET)。炎癥是在受傷后開始的生物學(xué)過程,以去除有害刺激并開始愈合過程,越來越多的證據(jù)表明炎癥會(huì)促進(jìn)EMT[2]。但是,如果炎癥延長,則可能對機(jī)體有害并促進(jìn)包括癌癥在內(nèi)的永久性疾病。大約25%的癌癥是由于慢性感染或其他類型的慢性炎癥而出現(xiàn)的。例如,炎癥性腸病或結(jié)腸炎是CRC的重要危險(xiǎn)因素。IL-6是炎癥促腫瘤作用的重要介質(zhì),IL-6是由幾種類型的免疫細(xì)胞和癌產(chǎn)生的促炎細(xì)胞因子,尤其是在腫瘤發(fā)生的后期[3]。血清中IL-6水平的升高與晚期階段、腫瘤大小、轉(zhuǎn)移和CRC患者生存率降低相關(guān),但對這些關(guān)聯(lián)的分子機(jī)制尚不甚了解。大量研究表明,微小RNA(microRNA,miRNA)在代表癌癥特征的生物過程中具有重要的調(diào)控功能,包括癌細(xì)胞的增殖、凋亡、侵襲和轉(zhuǎn)移。癌癥干細(xì)胞(CSC)的許多標(biāo)志物取決于癌癥類型,例如在結(jié)腸癌中,據(jù)報(bào)道細(xì)胞表面標(biāo)志物如CD133、CD44和ALDH是鑒定CSC的一類分子[4]。STAT3是STAT家族之一,參與細(xì)胞生長和存活、炎癥、免疫反應(yīng)和癌癥進(jìn)展。STAT3通過激活非受體蛋白酪氨酸激酶[如Janus激酶1(Janus kinase 1,JAK1)、JAK2、JAK3、EGFR和SRC信號(hào)傳導(dǎo)]與核輸入蛋白相互作用而二聚并進(jìn)入細(xì)胞核。本文主要研究STAT3 miR-146-b反饋回路抑制IL-6的NF-κB信號(hào)軸調(diào)控結(jié)直腸癌細(xì)胞的干性的機(jī)制?,F(xiàn)報(bào)道如下。
1 材料與方法
1.1 細(xì)胞培養(yǎng) 結(jié)直腸癌細(xì)胞HCT116(ATCC?HTB-247?)購自美國典型培養(yǎng)物保藏中心(ATCC公司,美國)。正常人結(jié)腸上皮細(xì)胞CCD 841 CoN購自賽默飛世爾科技(中國)有限公司(美國)。用Dulbecco改良的Eagle培養(yǎng)基(DMEM)培養(yǎng)HCT116和CCD 841 CoN細(xì)胞。此外,對于HCT116細(xì)胞系,應(yīng)添加10%FBS和1%青霉素/鏈霉素(Gibco公司,美國)。正常結(jié)腸上皮細(xì)胞也在DMEM中生長。15%FBS,4 mM L-谷氨酰胺和1%青霉素/鏈霉素對于這些細(xì)胞的生長是必需的。具有5%CO2濕潤氣氛的細(xì)胞培養(yǎng)箱適用于所有細(xì)胞培養(yǎng)。
1.2 分組 對照組:正常結(jié)腸上皮細(xì)胞;CRC組:結(jié)直腸癌細(xì)胞;IL-6抑制劑組:經(jīng)500 mg/mL的IL-6抑制劑(美國Sigma公司)處理結(jié)直腸癌細(xì)胞48 h。每組3個(gè)復(fù)孔。利用以上各組材料進(jìn)行后續(xù)檢測分析。
1.3 免疫熒光 不同處理組結(jié)直腸癌細(xì)胞用4%甲醛固定,在0.1%Triton X-100中透化。將固定的結(jié)直腸癌細(xì)胞用1×PBS洗滌,并在室溫下用1×PBS中的2%牛血清白蛋白(BSA)封閉30 min。將固定的細(xì)胞與IL-6或NF-κB抗體的特異性一抗(Cell Signaling公司,美國)在4 ℃孵育過夜。洗滌后,將細(xì)胞與Alexa Fluor 546山羊兔IgG抗體(Life Technologies公司,美國)(1︰1 000)在室溫下孵育1 h。洗滌兩次后,用4,6-二mid基-2-苯基吲哚(DAPI,Sigma公司,美國)將細(xì)胞核染色。STAT3和DAPI染色的細(xì)胞圖像是通過Delta Vision成像系統(tǒng)(Applied Precision公司,美國)拍攝的。
1.4 蛋白質(zhì)印跡 將HCT116細(xì)胞在含有磷酸酶抑制劑(Sigma公司,美國)的RIPA緩沖液(50 mM Tris-HCl,150 mM NaCl,2 mM EDTA和1%Triton X-100)中裂解。蛋白酶抑制劑(Roche公司,德國)。將蛋白質(zhì)樣品在8%~15%的十二烷基硫酸鈉-聚丙烯酰胺凝膠(SDS-PAGE)上分離,并轉(zhuǎn)移到硝酸纖維素膜上。將膜與PARP的一抗,裂解的PARP,裂解的p-STAT3、p-JAK2、miR-146-b、VIM、SNAIL、ZEB1、CDH1蛋白和GAPDH一起孵育(Sigma公司,美國)。將它們在3%牛血清白蛋白(BSA)和PBS-Tween 20(1︰500~1︰2 000)中于4 ℃稀釋過夜,用PBS-Tween20洗滌3次,最后與HRP耦聯(lián)的二抗孵育(1︰2 000)。通過使用ECL Western印跡檢測試劑(GE Healthcare公司,英國)將表達(dá)可視化。
1.5 Transwell遷移測定 CRC細(xì)胞遷移的能力通過Transwell分析法(Thermo公司,美國)確定,將癌細(xì)胞鋪在帶有可滲透膜的細(xì)胞培養(yǎng)插入物的上層,將測試劑置于細(xì)胞滲透膜下方,將細(xì)胞孵育3~18 h并計(jì)數(shù)細(xì)胞。
1.6 TUNEL檢測 為了檢測細(xì)胞死亡,根據(jù)制造商的說明(Roche Molecular Biochemicals公司,德國)使用了DeadEnd?熒光TUNEL系統(tǒng)套件(Promega公司,美國)。將HCT116細(xì)胞用IL-6抑制劑處理24 h,用冷PBS洗滌。用4%多聚甲醛固定細(xì)胞30 min,并用PBS洗滌兩次,2 min/次。洗滌通透溶液(0.1%Triton X-100和0.1%檸檬酸鈉)中的固定細(xì)胞,并與TUNEL測定混合物孵育60 min。TUNEL染色的細(xì)胞通過Delta Vision成像系統(tǒng)(Applied Precision公司,美國)可視化。
1.7 CCK8分析 根據(jù)Cell Counting Kit-8分析(CCK-8)試劑盒(Dojindo公司,日本)評估細(xì)胞活力。將2×103細(xì)胞接種到96孔板中,并在37 ℃的含有5%CO2的潮濕室內(nèi)孵育24、48或72 h。將CCK-8溶液(10 μL)加入每個(gè)孔中,并將板在37 ℃下孵育1 h。在酶標(biāo)儀(Bio-Rad,美國)中測量450 nm處細(xì)胞的吸光度(OD450)。
1.8 RNA分離和定量實(shí)時(shí)聚合酶鏈反應(yīng)(PCR) 使用ReliaPrep RNA Cell Miniprep System(Promega Corp.,Z6010,Madison,WI,United States)從HCT116細(xì)胞中提取總RNA 1 μg,以總RNA為模板,通過逆轉(zhuǎn)錄酶合成cDNA,再以cDNA為模板,采用Superscript One Step RT-PCR試劑盒(Invitrogen公司,美國)進(jìn)行Platinum Taq聚合酶擴(kuò)增。HB Nucleic mix(Heimbiotek公司,韓國)合成的引物序列。為了進(jìn)行PCR擴(kuò)增,進(jìn)行以下步驟。最初的步驟是在50 ℃下進(jìn)行30 min,在94 ℃下進(jìn)行2 min,在94 ℃下進(jìn)行30次循環(huán)15 s,在55 ℃下進(jìn)行30 s,在72 ℃下進(jìn)行1 min,最后一步在72 ℃下進(jìn)行10 min。使用HB Real-Time PCR預(yù)混液試劑盒(Heimbiotek公司,韓國)進(jìn)行RT-qPCR。
1.9 統(tǒng)計(jì)學(xué)處理 采用SPSS 20.0軟件對所得數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,計(jì)量資料用(x±s)表示,組間比較采用單因素方差分析或者重復(fù)測量的方差分析,組間兩兩比較采用LSD-t檢驗(yàn);計(jì)數(shù)資料以率(%)表示,比較采用字2檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 免疫熒光檢測IL-6和NF-κB信號(hào)軸 與對照組相比,CRC組IL-6和NF-κB表達(dá)水平均升高(P<0.05),而IL-6抑制劑組較CRC組IL-6和NF-κB表達(dá)水平均降低(P<0.05),見表1。
2.2 Western blot檢測p-STAT3、p-JAK2和miR-146-b蛋白水平 與對照組相比,CRC組p-STAT3、p-JAK2和miR-146-b蛋白含量均升高(P<0.05),而IL-6抑制劑組較CRC組p-STAT3、p-JAK2和miR-146-b蛋白含量均降低(P<0.05),見圖1、表2。
2.3 細(xì)胞遷移和細(xì)胞凋亡測定 與對照組相比,CRC組細(xì)胞遷移能力增加,細(xì)胞凋亡降低(P<0.05),而IL-6抑制劑組較CRC組細(xì)胞遷移能力降低,細(xì)胞凋亡增加(P<0.05),見圖2、表3。
2.4 Western blot檢測EMT間充質(zhì)標(biāo)志物相關(guān)蛋白表達(dá)水平 與對照組相比,CRC組VIM、SNAIL和ZEB1蛋白含量均升高,CDH1蛋白含量降低(P<0.05),而IL-6抑制劑組較CRC組VIM、SNAIL和ZEB1蛋白含量均降低,CDH1蛋白含量升高(P<0.05),見圖3、表4。
2.5 CCK8分析細(xì)胞活力 CRC組0 h細(xì)胞活力與對照組相比,差異無統(tǒng)計(jì)學(xué)意義(P>0.05),24、48和72 h細(xì)胞活力較對照組均增加(P<0.05);而IL-6抑制劑組與CRC組0 h細(xì)胞活力比較,差異無統(tǒng)計(jì)學(xué)意義(P>0.05),24、48和72 h細(xì)胞活力較CRC組均降低(P<0.05)。見表5。
2.6 三組CRC標(biāo)志物mRNA表達(dá)量比較 與對照組相比,CRC組CD44、CD133、NANOG和Lgr5 mRNA的表達(dá)均升高(P<0.05),而IL-6抑制劑組較CRC組CD44、CD133、NANOG和Lgr5 mRNA的表達(dá)均降低(P<0.05),見表6。
3 討論
CRC是第三大常見癌癥,約占所有癌癥病例的10%,全世界每年診斷出的新病例超過100萬[5]。手術(shù)是結(jié)直腸癌和化學(xué)療法的主要治療方法,分子靶向治療是輔助治療。越來越多的證據(jù)表明,在早期發(fā)現(xiàn)的CRC患者中大約有90%可以通過手術(shù)治愈,但是不幸的是,大多數(shù)患者被診斷為晚期,導(dǎo)致預(yù)后不良[6]。因此,迫切需要找到新的診斷和預(yù)后標(biāo)志物。
miRNA是一種小型非編碼RNA,它們通過與3’非翻譯區(qū)(UTR)結(jié)合而與其靶基因mRNA相互作用,可減少蛋白質(zhì)豐度并調(diào)節(jié)多種信號(hào)通路,與血管生成、增殖、骨重塑和癌癥進(jìn)展有關(guān)[7]。據(jù)報(bào)道,許多miRNA可以調(diào)節(jié)多種生物學(xué)過程,例如增殖、分化、遷移和凋亡。此外新出現(xiàn)的證據(jù)表明,miRNA是用于癌癥診斷和預(yù)后的有前途的生物標(biāo)志物。miRNA經(jīng)常形成反饋環(huán),因?yàn)樗鼈儽旧硎苻D(zhuǎn)錄因子調(diào)控,它們直接或間接靶向[8]。這種自我穩(wěn)定的電路可以是表觀遺傳開關(guān)的核心組成部分,其中細(xì)胞表型和表達(dá)模式從一種穩(wěn)定的表觀遺傳狀態(tài)轉(zhuǎn)換為另一種,而DNA序列沒有變化[9]。表觀遺傳開關(guān)需要啟動(dòng)事件(炎癥),但是新細(xì)胞類型的表型在沒有啟動(dòng)信號(hào)的情況下遺傳并通過自我維持的反饋回路維持[10]。
大腸癌是全世界與癌癥相關(guān)的死亡的主要原因之一[11]。幾種致癌分子與大腸癌的發(fā)展有關(guān),包括信號(hào)轉(zhuǎn)導(dǎo)子和STAT3[12]。本研究中,確定了一個(gè)IL-6觸發(fā)的反饋環(huán),該環(huán)涉及STAT3介導(dǎo)的miR-146-b抑制,并控制EMT和結(jié)腸腫瘤的進(jìn)展。筆者分析顯示,IL-6/STAT3/miR-146-b環(huán)存在于所有具有間充質(zhì)并因此具有轉(zhuǎn)移性狀的癌細(xì)胞中,這暗示它可能代表了一種新的致癌統(tǒng)一機(jī)制。盡管如此,IL-6/STAT3/miR-146-b環(huán)的活化可能存在組織和細(xì)胞類型特異性差異,因?yàn)镾TAT3活化可以通過多種其他信號(hào)途徑來實(shí)現(xiàn),例如在癌癥中失活的受體酪氨酸激酶[13]。最近的觀察表明,在轉(zhuǎn)移過程中,腫瘤細(xì)胞獲得了一種間充質(zhì)表型,從而使它們離開原發(fā)腫瘤的部位,侵入周圍組織,并遷移到遠(yuǎn)處的器官,而在播種后,這些細(xì)胞又轉(zhuǎn)換回上皮表型,從而有效地轉(zhuǎn)移[14-15]。IL-6對IL-6/STAT3/miR-146-b環(huán)的激活會(huì)誘導(dǎo)EMT,并可能使細(xì)胞表型向間質(zhì)狀態(tài)轉(zhuǎn)移,這有利于轉(zhuǎn)移級聯(lián)的浸潤,內(nèi)滲和外滲步驟[16]。相反,IL-6抑制劑對環(huán)的干擾會(huì)誘導(dǎo)MET,并可能使細(xì)胞轉(zhuǎn)換回上皮狀態(tài),從而造成轉(zhuǎn)移的集落和向外生長[17]。IL-6/STAT3/miR-146-b環(huán)的可逆特性有望實(shí)現(xiàn)旨在阻止其前轉(zhuǎn)移活性的多種治療干預(yù)。
IL-6/STAT3/miR-146-b環(huán)成分的幾個(gè)已知靶標(biāo)可能對癌癥進(jìn)展很重要,例如STAT3可以直接誘導(dǎo)EMT激活劑ZEB1。此外,文獻(xiàn)[18]表明,另一種公認(rèn)的EMT誘導(dǎo)物SNAIL是miR-146-b的直接靶標(biāo)。其他研究表明,SNAIL誘導(dǎo)IL-6,從而提供可能增強(qiáng)循環(huán)的其他反饋[19]??偟膩碚f,這些結(jié)果表明SNAIL是IL-6/STAT3/miR-146-b環(huán)的重要效應(yīng)子。IL-6還可以通過STAT3/SNAIL信號(hào)通路促進(jìn)頭頸部腫瘤轉(zhuǎn)移和EMT。
CSC取決于癌癥類型,占據(jù)不同的標(biāo)志物,例如SOx2、CD133、EpCAM、CD166、CD24、CD29、Lgr5、Klf4和ALDH[20]。本研究結(jié)果顯示,與對照組相比,CRC組CD44、CD133、NANOG和Lgr5 mRNA的表達(dá)均升高,而IL-6抑制劑組較CRC組CD44、CD133、NANOG和Lgr5 mRNA的表達(dá)均降低。
綜上所述,STAT3 miR-146-b反饋回路抑制IL-6的NF-κB信號(hào)軸調(diào)控結(jié)直腸癌細(xì)胞的干性。IL-6/STAT3/miR-146-b軸可以作為CRC的診斷標(biāo)記,并為結(jié)腸癌治療提供治療靶標(biāo)。
參考文獻(xiàn)
[1] ABDULRIDHA M K,AL-MARZOQI A H,GHASEMIAN A.The Anticancer Efficiency of Citrullus colocynthis Toward the Colorectal Cancer Therapy[J].J Gastrointest Cancer,2020,51(2):439-444.
[2] PERIASAMY S,WU W H,CHIEN S P,et al.Dietary Ziziphus jujuba Fruit Attenuates Colitis-Associated Tumorigenesis:A Pivotal Role of the NF-κB/IL-6/JAK1/STAT3 Pathway[J].Nutr Cancer,2020,72(1):120-132.
[3] LI Z W,SUN B,GONG T,et al.GNAI1 and GNAI3 Reduce Colitis-Associated Tumorigenesis in Mice by Blocking IL6 Signaling and Down-regulating Expression of GNAI2[J].Gastroenterology,2019,156(8):2297-2312.
[4] LEE J W,STONE M L,PORRETT P M,et al.Hepatocytes direct the formation of a pro-metastatic niche in the liver[J].Nature,2019,567(7747):249-252.
[5] XU K,ZHAN Y,YUAN Z,et al.Hypoxia Induces Drug Resistance in Colorectal Cancer through the HIF-1α/miR-338-5p/IL-6 Feedback Loop[J].Mol Ther,2019,27(10):1810-1824.
[6] WANG T,SONG P,ZHONG T,et al.The inflammatory cytokine IL-6 induces FRA1 deacetylation promoting colorectal cancer stem-like properties[J].Oncogene, 2019, 38(25):4932-4947.
[7] WANG S,DONG W,LIU L,et al.Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis[J].Mol Carcinog,2019,58(7):1155-1167.
[8] KUANG Y,GUO W,LING J,et al.Iron-dependent CDK1 activity promotes lung carcinogenesis via activation of the GP130/STAT3 signaling pathway[J].Cell Death Dis,2019,10(4):297.
[9] WANG J,ZHOU J,JIANG C,et al.LNRRIL6,a novel long noncoding RNA,protects colorectal cancer cells by activating the IL-6-STAT3 pathway[J].Mol Oncol,2019,13(11):2344-2360.
[10] XU J,QIAN J,ZHANG W,et al.LYPD8 regulates the proliferation and migration of colorectal cancer cells through inhibiting the secretion of IL-6 and TNF-α[J].Oncol Rep,2019,41(5):2389-2395.
[11] FANG W,ZHU S,NIU Z,et al.The protective effect of syringic acid on dextran sulfate sodium-induced experimental colitis in BALB/c mice[J].Drug Dev Res,2019,80(6):731-740.
[12] WEI J,MA L,LAI Y H,et al.Bazedoxifene as a novel GP130 inhibitor for Colon Cancer therapy[J].J Exp Clin Cancer Res,2019,38(1):63.
[13] ZHANG B,XU Y,LIU S,et al.Dietary Supplementation of Foxtail Millet Ameliorates Colitis-Associated Colorectal Cancer in Mice via Activation of Gut Receptors and Suppression of the STAT3 Pathway[J].Nutrients,2020,12(8):2367.
[14] TIAN Y,XU J,LI Y,et al.MicroRNA-31 Reduces Inflammatory Signaling and Promotes Regeneration in Colon Epithelium,and Delivery of Mimics in Microspheres Reduces Colitis in Mice[J].Gastroenterology,2019,156(8):2281-2296.
[15] WANG A,DENG S,CHEN X,et al.miR-29a-5p/STAT3 Positive Feedback Loop Regulates TETs in Colitis-Associated Colorectal Cancer[J].Inflamm Bowel Dis,2020,26(4):524-533.
[16] HUANG H,NIU J,WANG F,et al.A natural compound derivative P-13 inhibits STAT3 signaling by covalently inhibiting Janus kinase 2[J].Invest New Drugs,2019,37(3):452-460.
[17] RAJ V,BHADAURIA A S,SINGH A K,et al.Novel 1,3,4-thiadiazoles inhibit colorectal cancer via blockade of IL-6/COX-2 mediated JAK2/STAT3 signals as evidenced through data-based mathematical modeling[J].Cytokine,2019,118(23):144-159.
[18] FUJITA J,SAKURAI T.The Oncoprotein Gankyrin/PSMD10 as a Target of Cancer Therapy[J].Adv Exp Med Biol,2019,1164(5):63-71.
[19] KE Z,WANG C,WU T,et al.PAR2 deficiency enhances myeloid cell-mediated immunosuppression and promotes colitis-associated tumorigenesis[J].Cancer Lett,2020,469(15):437-446.
[20] MA H,WANG J,ZHAO X,et al.Periostin Promotes Colorectal Tumorigenesis through Integrin-FAK-Src Pathway-Mediated YAP/TAZ Activation[J].Cell Rep,2020,30(3):793-806.
(收稿日期:2021-06-24) (本文編輯:程旭然)