亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        血清反應因子N端片段對鼻咽癌細胞增殖及遷移能力的影響*

        2022-03-28 02:39:10袁建玲邵鐘銘鄒園伍彩霞鄭阿秀邢敬慈白建榮揭偉申志華
        中國病理生理雜志 2022年3期
        關鍵詞:孔板單克隆培養(yǎng)液

        袁建玲, 邵鐘銘, 鄒園, 伍彩霞, 鄭阿秀, 邢敬慈,白建榮, 揭偉,2△, 申志華△

        血清反應因子N端片段對鼻咽癌細胞增殖及遷移能力的影響*

        袁建玲1,3, 邵鐘銘1, 鄒園1, 伍彩霞1, 鄭阿秀1, 邢敬慈1,白建榮1, 揭偉1,2△, 申志華1△

        (1廣東醫(yī)科大學基礎醫(yī)學院病理生理學教研室,廣東 湛江 524023;2海南醫(yī)學院急救與創(chuàng)傷研究教育部重點實驗室,海南 海口 571199;3北京大學深圳醫(yī)院病理科,廣東 深圳 518036)

        探討血清反應因子N端剪切片段(SRF-N)對鼻咽癌(NPC)細胞增殖和遷移能力的影響與機制。應用SRF全長(SRF-Full,1~508 aa)、SRF-N(1~254 aa)及陰性對照(NC)慢病毒顆粒感染人NPC細胞系6-10B,經嘌呤霉素抗性篩選結合Western blot檢測Flag標簽化融合蛋白的表達獲得單克隆細胞株,CCK-8實驗分析細胞活力的改變,劃痕損傷修復實驗和Transwell實驗分析細胞遷移能力,細胞-基質黏附實驗分析細胞黏附能力,Western blot檢測細胞增殖相關蛋白增殖細胞核抗原(PCNA)和上皮-間充質轉化(EMT)相關指標的表達,雙螢光素酶報告基因實驗檢測SRF-Full和SRF-N對啟動子的調節(jié)效應。成功用SRF-Full、SRF-N及NC慢病毒感染6-10B細胞,經嘌呤霉素抗性篩選結合Flag標簽蛋白的表達獲得相應的單克隆細胞株,分別標記為6-10BSRF-Full、6-10BSRF-N和6-10BNC。與6-10BNC細胞相比,6-10BSRF-Full細胞活力、遷移能力和與基質的黏附能力均顯著增強(<0.01),而6-10BSRF-N細胞較6-10BSRF-Full細胞活力、遷移能力及黏附能力均顯著下降(<0.01)。6-10BSRF-Full細胞中波形蛋白(vimentin)、神經鈣黏素(N-cadherin)和Snail1的表達水平較6-10BNC細胞顯著升高(<0.01),上皮鈣黏素(E-cadherin)表達水平顯著下降(<0.01);而6-10BSRF-N細胞中vimentin、N-cadherin和Snail1的表達水平較6-10BSRF-Full細胞顯著下降(<0.05),E-cadherin表達水平顯著上升(<0.05)。雙螢光素酶活性實驗結果表明,與NC相比,SRF-Full顯著激活啟動子(<0.001);與SRF-Full相比,SRF-N顯著抑制啟動子活性(<0.01)。SRF-Full促進而SRF-N抑制NPC細胞的增殖和遷移;SRF-N抑制啟動子活性而介導NPC的EMT;SRF-N具有潛在的抗NPC作用。

        鼻咽癌;血清反應因子N端片段;細胞增殖;細胞遷移;上皮-間充質轉化

        鼻咽癌(nasopharyngeal carcinoma, NPC)是起源于鼻咽黏膜的上皮性惡性腫瘤,遠處轉移和局部復發(fā)是影響患者預后的關鍵因素。目前對NPC侵襲轉移的機制仍不甚清楚。課題組前期已經報道了部分基因的表達異常與NPC的增殖轉移相關,豐富了NPC發(fā)病學理論[1-3]。新近,有關單細胞測序技術在NPC上的應用,更為闡明基因、環(huán)境因素在NPC的發(fā)病機制提供了新思路[4-5]。盡管如此,進一步發(fā)現和鑒定介導NPC細胞侵襲轉移的關鍵因素,仍然是NPC防治研究的重要內容。

        血清反應因子(serum response factor, SRF)屬于MADS(Mcm1, Agamous, Deficiens and SRF)轉錄因子家族成員,進化保守,在生物體內普遍存在。通過與輔因子相互作用并結合CArG序列元件[CC(A/T)6GG],SRF調控了超過200個下游靶基因的轉錄表達,涉及細胞的生長、遷移、骨架形成等方面,其表達和活性的異常與包括腫瘤在內的很多人類疾病關系密切[6-9]。SRF過表達促進某些腫瘤的臨床進展,提示SRF可能是潛在的腫瘤預后判斷和治療靶標[8-10]。

        2003年Chang等[11]報道在心力衰竭的心臟組織中全長SRF(SRF-Full, 1~508 aa)可被caspase-3剪切成N端片段(SRF-N, 1~254 aa)及C端片段(SRF-C, 255~508 aa)。由于SRF-N含有完整MADS結合域但不含有催化結構域,因此可與SRF-Full競爭性結合靶基因的CArG盒,從而抑制下游基因的轉錄激活。本研究假設SRF-N具有一定的抗腫瘤特性,以NPC細胞系6-10B為對象,體外研究過表達SRF-N對NPC細胞增殖、遷移、黏附、上皮-間充質轉化(epithelial-mesenchymal transition, EMT)等特性的影響,為基于SRF-N靶點的抗NPC研究提供參考資料。

        材料和方法

        1 細胞系

        NPC細胞系6-10B為南方醫(yī)科大學病理學系惠贈,我室常規(guī)培養(yǎng)傳代后液氮凍存。293T細胞購自中國科學院上海細胞庫。

        2 主要試劑及儀器

        基于pEZX-PG04.1構建的啟動子、陰性對照(negative contorl, NC)及突變型(mutant, Mut)啟動子過表達質粒,螢光素酶表達質粒,SRF-Full和SRF-N過表達質粒(上海吉凱基因化學技術有限公司);Matrigel(Corning);鼠抗人Flag單克隆抗體(Sigma);兔抗人E-cadherin和增殖細胞核抗原(proliferating cell nuclear antigen, PCNA)單克隆抗體(CST);鼠抗人N-cadherin、vimentin和β-actin單克隆抗體,兔抗人Snail1單克隆抗體,HRP或FITC標記的II抗(武漢三鷹技術有限公司);X-tremeGENE? HP DNA轉染試劑和定量PCR試劑盒(Roche);Dual-Luciferase?Reporter Assay System (Promega);RNA抽提試劑盒、RT試劑盒和Lipofectamine 3000(Invitrogen);PCR引物(上海生工生物工程有限公司);胎牛血清(fetal bovine serum, FBS)、RPMI-1640培養(yǎng)液和DMEM培養(yǎng)液(HyClone);蛋白酶抑制劑、RIPA蛋白裂解液和BCA試劑盒(江蘇碧云天生物技術有限公司)。ECL發(fā)光劑、PVDF膜、細胞培養(yǎng)箱、全波長酶標儀(Thermo Fisher Scientific);定量PCR儀(Roche);熒光顯微鏡(Olympus);凝膠成像分析系統(tǒng)(上海天能科技有限公司);蛋白電泳儀(Bio-Rad)。

        3 方法

        3.1細胞培養(yǎng)用新配制的RPMI-1640完全培養(yǎng)液(含10% FBS、1×105U/L青霉素和0.1 mg/L鏈霉素)重懸復蘇后離心沉淀的6-10B細胞,經吹打混勻后接種于培養(yǎng)皿,并置于37 ℃、5% CO2及飽和濕度培養(yǎng)箱內培養(yǎng),每2~3 d更換培養(yǎng)液,倒置顯微鏡下觀察細胞形態(tài)。待貼壁細胞完全生長匯合后,用0.25%胰酶(含0.02% EDTA)消化傳代,待細胞擴增至一定數量后,收獲細胞進行相關實驗。293T細胞用含10% FBS的DMEM培養(yǎng)液重懸,置于37 ℃、5% CO2及飽和濕度培養(yǎng)箱內培養(yǎng),每2~3 d更換培養(yǎng)液。

        3.2慢病毒感染SRF-N過表達、SRF-Full過表達及NC過表達慢病毒顆粒參考既往方法獲得[12]。6-10B細胞常規(guī)培養(yǎng),0.25%胰酶消化后完全培養(yǎng)液重懸,以每孔4×104個細胞接種于6孔板中,分為3組,標記為陰性對照病毒(6-10BNC)組、SRF-N過表達慢病毒(6-10BSRF-N)組及SRF-Full過表達慢病毒(6-10BSRF-Full)組。當細胞融合度達到60%~70%時,進行病毒感染。以感染復數100 感染6-10B細胞,計算SRF-Full、SRF-N及NC病毒的體積,0.5 mL polybrene病毒工作液稀釋各組病毒;將稀釋好的病毒液加入6孔板內進行感染,12 h 內棄去病毒液,更換2 mL新鮮的完全培養(yǎng)液;24 h后換液;48 h后添加嘌呤霉素(2.0 mg/L)篩選;72 h后換液,在熒光顯微鏡下觀察GFP信號來判斷感染效果,培養(yǎng)細胞以備后續(xù)實驗。

        3.3單克隆細胞株篩選6-10BSRF-Full、6-10BSRF-N和6-10BNC混合克隆細胞經過2.0 mg/L嘌呤霉素抗性篩選3 d后,以0.5 mg/L的濃度維持培養(yǎng)。采用有限稀釋法,將這3種細胞分別用0.25%胰酶消化并轉移至96孔板,調整濃度為每孔1個細胞,待生長出單克隆細胞團后,熒光顯微鏡下觀察綠色熒光情況,并在孔板背面相應位置做好標記。將轉染陽性的單克隆細胞株經消化傳代擴大培養(yǎng),并通過Western blot檢測含Flag標簽化的融合蛋白的表達水平。

        3.4CCK-8法檢測細胞活力將上述3組細胞按每孔2×103個共100 μL接種于96孔板, 每組6個復孔,邊緣孔用無菌PBS填充,過夜孵育。貼壁后,分別在培養(yǎng)時點0、24、48及72 h向每孔細胞加入10 μL CCK-8試劑,輕輕敲擊培養(yǎng)板混勻液體,37 ℃繼續(xù)孵育4 h,使用酶標儀測定450 nm吸光度()值。

        3.5Western blot提取各組細胞總蛋白,BCA法定量蛋白濃度,取50 μg蛋白用于凝膠電泳。蛋白轉移至PVDF膜,經脫脂奶粉封閉后加入Ⅰ抗(Flag, 1∶3 000; PCNA, 1∶1 000; N-cadherin, 1∶500; E-cadherin, 1∶500; vimentin, 1:500; Snail1, 1∶1 000; β-actin, 1∶2 000)4 ℃過夜孵育,TBST洗滌,HRP標記的IgG Ⅱ抗(1∶3 000)室溫孵育2 h,ECL發(fā)光后凝膠成像系統(tǒng)掃描獲得目的蛋白條帶。

        3.6細胞基質黏附實驗配制Matrigel,每孔2 μg鋪于96孔板內。挑選對數生長期狀態(tài)良好的上述3種細胞,消化計數,調整細胞濃度,以每孔4×104接種在鋪膠的96孔板中,每組4個復孔;置于37 ℃、5% CO2培養(yǎng)箱內培養(yǎng)2和4 h;棄上清,PBS沖洗3次;每孔加入100 μL含10% FBS的RPMI-1640培養(yǎng)液和10 μL CCK-8液,繼續(xù)培養(yǎng)4 h;酶聯免疫檢測儀上450 nm處測定各孔的值(代表黏附細胞數)。

        3.7Transwell遷移實驗Transwell小室置于24孔板。上述3種培養(yǎng)細胞消化后用含0.5% FBS的DMEM培養(yǎng)液重懸,取2×104個細胞接種于Transwell小室的上室,體積為200 μL。Transwell小室的下室中加含10% FBS的DMEM培養(yǎng)液500 μL,置于37°C、5% CO2、飽和濕度的培養(yǎng)箱中繼續(xù)培養(yǎng)24 h,培養(yǎng)結束后取出小室并用4%中性甲醛固定15 min,0.1%結晶紫液染色5 min,用棉簽小心擦除小室上室面細胞,PBS洗滌后在20×顯微鏡物鏡下觀察并拍照。以穿膜的細胞數差異代表細胞運動能力的改變。每張膜選2個典型視野,每組重復3孔。

        3.8劃痕損傷修復實驗參考既往方法進行操作[2]。簡言之,將上述3種細胞接種6孔板培養(yǎng)至單層匯合狀態(tài),用200 μL吸頭尖每孔劃3條平行線,PBS洗去未貼壁細胞,加入含0.5% FBS的RPMI-1640培養(yǎng)液,于培養(yǎng)時點0、24和48 h鏡下觀察并拍照,ImageJ 8.0軟件分析傷口愈合程度。

        3.9雙螢光素酶報告基因實驗293T細胞接種24孔板,按照X-tremeGENE? HP轉染試劑使用說明書將表達質粒轉染至目的細胞。實驗分組:Promoter-NC+SRF-Full組(SRF-Full過表達質粒組)、Promoter-NC+SRF-N組(SRF-N過表達質粒組)、Promoter-Snail1+SRF-Full組(啟動子和SRF-Full過表達質粒組)、Promoter-Snail1+SRF-N組(啟動子和SRF-N過表達質粒組)、Promoter-Mut+SRF-Full(啟動子突變體和SRF-Full過表達質粒組)和Promoter-Mut+SRF-N組(啟動子突變體和SRF-N過表達質粒組)。每孔啟動子質粒、SRF表達質粒和螢光素酶表達質粒按0.5 μg∶0.5 μg∶0.02 μg轉染,每組3個復孔,按照說明書操作檢測螢光素酶活性。根據軟件預測,人基因啟動子存在4個潛在的SRF結合位點,分別位于轉錄起始位點上游118~101 nt (#1, 5'-CTTCACTAAACGAGGCTG-3')、786~775 nt (#2, 5'-GCCCAAGTGAGG-3')、1 395~1 378 nt (#3, 5'-AAACACTGGATAAGGGAA-3')和1 935~1 924 nt (#4, 5'-GGCCTTATCTGC-3')處。本研究使用的突變體啟動子序列將上述#1和#3位點同時突變?yōu)?'-GGGCTCTATGGGGGGTTT-3', #2和#4位點同時突變?yōu)?'-CTATGGGGGGTT-3'。

        4 統(tǒng)計學處理

        使用GraphPad Prism 8.0軟件進行分析。計量資料數據采用均數±標準差(Mean±SD)表示。組間比較采用單因素方差分析或非配對檢驗。以<0.05為差異有統(tǒng)計學意義。

        結果

        1 成功篩選SRF-Full及SRF-N過表達單克隆6-10B細胞

        按照感染復數為100加入SRF-Full、SRF-N過表達和NC慢病毒,72 h后熒光顯微鏡下觀察到6-10B細胞中有較強的胞核綠色熒光信號,經嘌呤霉素篩選后感染效率達95%以上(圖1A),通過Western blot成功在預測分子量大小的位置檢測到SRF-Full-Flag及SRF-N-Flag融合蛋白(圖1B)。采用有限稀釋法, 將轉染陽性細胞接種至96孔板進行單克隆細胞篩選,最終挑選出4個NC,2個SRF-N和4個SRF-Full過表達單克隆細胞。Western blot結果顯示,10個單克隆細胞株的融合蛋白SRF-Full-Flag及SRF-N-Flag的表達水平不等(圖2)。結合細胞形態(tài)改變的情況,最終挑選第1號(#1)6-10BNC、第1號(#1)6-10BSRF-N及第3號(#3)6-10BSRF-Full單克隆作為后續(xù)實驗對象。

        Figure 1.Observation of lentivirus-infected 6-10B cells and identification of the expression of Flag-tagged fusion protein. A: the GFP fluorescence 72 h after infection of 6-10B cells with lentivirus (scale bars=200 μm); B: the expression of Flag-tagged fusion protein in virus-infected 6-10B cells.

        Figure 2.The expression of Flag-tagged fusion protein in monoclonal cell lines.

        2 SRF-Full和SRF-N過表達后細胞增殖能力的變化

        CCK-8實驗結果顯示,隨著時間推移,6-10BSRF-Full的活力較同一時點的6-10BNC細胞增加(<0.01),而6-10BSRF-N的活力較6-10BSRF-Full卻降低(<0.01),見圖3A。通過Western blot檢測細胞增殖相關蛋白PCNA的表達,提示6-10BNC及6-10BSRF-N細胞PCNA的表達情況差異不顯著,6-10BSRF-Full細胞中PCNA表達水平較二者均顯著增加(<0.01),見圖3B。

        Figure 3.The effects of overexpression of SRF-Full and SRF-N on the proliferation of 6-10B cells. A: cell viability detected by CCK-8 assay; B: Western blot detection of PCNA protein level in virus-infected 6-10B cells. Mean±SD. n=3. **P<0.01 vs 0 day; ##P<0.01 vs SRF-Fullgroup.

        3 SRF-Full和SRF-N過表達后細胞遷移能力的變化

        劃痕損傷修復實驗結果表明,與6-10BNC細胞相比,48 h后6-10BSRF-Full細胞劃痕傷口的面積顯著減?。?0.01),而6-10BSRF-N細胞傷口的面積較6-10BSRF-Full顯著增大(<0.01),見圖4A。進一步采用Transwell實驗分析SRF-Full和SRF-N過表達后對6-10B細胞遷移能力的影響,結果顯示,6-10BSRF-Full細胞穿膜細胞數比6-10BNC細胞顯著增多(<0.01),而6-10BSRF-N細胞穿膜細胞數較6-10BSRF-Full細胞顯著減少(<0.01),見圖4B。

        Figure 4.Impacts of overexpression of SRF-Full and SRF-N on the migration of 6-10B cells. A: representative images of wound healing assay (scale bar=200 μm) and the quantitative results; B: representative images of Transwell migration assay (scale bar=50 μm) and the quantitative results. Mean±SD. n=6. **P<0.01 vs NC group; ##P<0.01 vs SRF-N group; △△P<0.01 vs 24 h.

        4 SRF-Full和SRF-N過表達后細胞黏附能力的變化

        將與Matrigel黏附的細胞用CCK-8液孵育后,酶標儀測定其吸光度值,結果顯示6-10BSRF-Full細胞平均吸光度為3.41±0.12,與6-10BNC細胞的平均吸光度(1.47±0.01)相比顯著升高(<0.01)。6-10BSRF-N細胞的平均吸光度為1.50±0.01,較6-10BSRF-Full細胞顯著降低(<0.01),見圖5。

        Figure 5.Impacts of overexpression of SRF-Full and SRF-N on the adhesion of 6-10B cell to matrix. Mean±SD. n=4. **P<0.01 vs NC group; ##P<0.01 vs SRF-N group.

        5 過表達SRF-Full和SRF-N后EMT相關蛋白表達的改變

        Western blot檢測結果顯示,與6-10BNC相比,6-10BSRF-Full細胞的間充質細胞標志物(N-cadherin和vimentin)和轉錄因子Snail1顯著增加(均<0.01),而上皮細胞標志物E-cadherin顯著減少(<0.01);與6-10BSRF-Full相比,6-10BSRF-N細胞的間充質細胞標志物(N-cadherin和vimentin)和轉錄因子Snail1顯著減少(<0.05),上皮標志物E-cadherin表達量顯著增加(<0.05),見圖6。

        Figure 6.Western blot analysis of EMT-related proteins in 6-10B cells. Mean±SD. n=3. **P<0.01 vs NC group; #P<0.05, ##P<0.01 vs SRF-N group.

        6 SRF-Full和SRF-N對Snail1啟動子活性的影響

        通過構建SRF-Full、SRF-N、NC啟動子、啟動子及啟動子突變體質粒,按照既定分組將質粒共轉染到293T細胞中,分別收集各組細胞培養(yǎng)48 h后的培養(yǎng)液上清進行螢光素酶活性檢測。結果顯示,與Promoter-NC+SRF-Full相比,Promoter-Snail1+SRF-Full組啟動子活性顯著增強(<0.01),且Promoter-Snail1+SRF-Full組較Promoter-Snail1+SRF-N組具有更高的啟動子活性(<0.01);與Promoter-Snail1+SRF-Full組相比,Promoter-Snail1-Mut+SRF-Full組啟動子其活性顯著下降(<0.01);Promoter-Snail1-Mut+SRF-Full組與Promoter-Snail1-Mut+SRF-N組啟動子活性無顯著差異,見圖7。

        Figure 7.The effects of SRF-Full and SRF-N on the activity of Snail1 promoter assessed by dual-luciferase reporter assay. Mean±SD. n=3. **P<0.01 vs Promoter-NC+SRF-Full group; ##P<0.01 vs Promoter-NC+SRF-N group; △△P<0.01 vs Promoter-Snail1+SRF-Full group.

        討論

        SRF表達異常與人類某些疾病的病理生理過程關系密切,如腫瘤、纖維化、神經損傷再生及心功能衰竭等[13]。有報道稱SRF在人類多種腫瘤中高表達,目前已經觀察到SRF高表達可促進人類胃癌[9]、肝癌[14]、甲狀腺癌[15]和宮頸癌[16]等多種惡性腫瘤的進展。因此,靶向SRF對腫瘤的分子治療具有潛在的臨床意義。有報道顯示CCG-100602可以抑制TGF-β1誘導的SRF的表達[17],但該抑制劑的特異性不強,因而挖掘內源性SRF抑制分子具有重要的意義。針對前述的SRF-Full可被剪切產生SRF-N分子的事實,結合SRF-N的結構特點[11],促使我們思考SRF-N是否具有抗腫瘤特性。本研究即應用NPC細胞模型來進行驗證。

        我們首先委托上海賽業(yè)生物技術有限公司基于慢病毒載體pEZ-Lv201分別構建了SRF-Full、SRF-N和NC的過表達質粒,包裝了相應的慢病毒顆粒并經過相應質檢,提示慢病毒包裝成功并具有較高滴度(未發(fā)表資料)。將相應慢病毒分別感染6-10B細胞,熒光顯微鏡下觀察到GFP信號。由于當前針對SRF-N的商品化抗體同時也可以和SRF-Full結合,抗體的檢測結果特異性不強,因而我們采用檢測Flag與目的蛋白的融合蛋白方式來進行外源性蛋白表達的驗證。結果顯示,從慢病毒感染的細胞中分別檢測到分子量分別約70 kD和接近40 kD的Flag融合蛋白條帶。這些陽性條帶大小與預期的SRF-Full-Flag和SRF-N-Flag的分子量大小一致,提示目的基因成功表達和慢病毒成功感染。繼而采用經典的單克隆細胞挑選法獲得相應單克隆細胞株,這些表型相對均一的單克隆細胞為后續(xù)研究奠定了扎實的基礎。

        在獲得合格的細胞模型后,我們從體外實驗角度分析SRF-N對NPC細胞增殖、遷移、黏附及EMT的影響。結果表明,與6-10BNC細胞相比,6-10BSRF-Full的增殖能力增加,而6-10BSRF-N細胞的增殖活力較6-10BSRF-Full減弱,提示過表達SRF-Full可促進NPC細胞增殖,而過表達SRF-N片段在一定程度上抑制了細胞增殖,這一結果與Western blot檢測到的PCNA蛋白的趨勢是一致的。此外,本實驗結果也證實,過表達SRF-Full可以促進6-10B細胞的遷移和基質黏附能力,而SRF-N具有一定的抑制6-10B細胞遷移和基質黏附的能力,進一步提示了SRF-N具有拮抗NPC進展的生物學特性。

        越來越多的證據表明SRF過表達可能影響腫瘤細胞EMT過程[18-21]。EMT即上皮源性腫瘤細胞獲得間充質源性細胞表型,通常表現為上皮細胞標志物如E-cadherin和ZO-1表達下降,而間充質細胞標志物如vimentin和N-cadherin等表達上升,同時功能上發(fā)生EMT的腫瘤細胞侵襲、運動能力增加。本研究通過Western blot檢測EMT相關蛋白表達的變化,觀察到過表達SRF-Full能有效誘導6-10B細胞N-cadherin、vimentin和Snail1表達增加,同時E-cadherin表達減弱,過表達SRF-N則出現與SRF-Full相反的趨勢。由此提示,SRF-Full能促進NPC細胞EMT進展,而SRF-N能部分阻斷EMT進程。這一結果也與功能上細胞劃痕損傷修復、遷移與基質粘附的結果趨勢相一致。由此可見,NPC中SRF-Full過表達可以通過EMT機制來促進腫瘤細胞的侵襲和轉移,而SRF-N過表達后顯示出一定程度的負性調控EMT的作用而抑制腫瘤細胞的侵襲和轉移。

        EMT被認為是由相關轉錄因子信號觸發(fā)的,這些轉錄因子主要包括Snail1、Slug、ZEB1、ZEB2和Twist1等,它們的激活被認為是使細胞獲得侵襲性的關鍵過程[22-23]。既往報道,Snail1是最早被認為可通過與E-box基序結合直接抑制E-cadherin轉錄來驅動EMT的轉錄因子之一[24]。研究表明,SRF從胞質移位入核以上調Snail1的表達,Snail1和SRF的亞細胞定位影響細胞的表型和功能[25],因此,SRF/Snail1信號的活化促進細胞發(fā)生EMT[26]。本實驗也顯示SRF過表達顯著增加6-10B細胞中Snail1的表達。為探究NPC中SRF與Snail1之間的調控關系,我們通過啟動子活性分析實驗證明,SRF-Full增強了Snail1啟動子活性,而SRF-N在一定程度上抑制Snail1的轉錄活性,這與預期結果相一致。由此可見,SRF-N通過直接抑制Snail1的轉錄活性來實現減弱EMT的作用。需要注意的是,本啟動子活性實驗中,細胞在培養(yǎng)過程中產生的內源性SRF也可能發(fā)揮了一定作用。此外,Snail1突變型啟動子與SRF-Full和SRF-N較之NC對照啟動子仍具有較高的活性,很可能與SRF與Snail1結合位點未完全突變有關,

        總之,本研究結果提示SRF-Full過表達促進NPC細胞的增殖和遷移能力,而SRF-N過表達在一定程度上抑制了NPC細胞的增殖、遷移和黏附能力。機制上,SRF-N通過抑制Snail1啟動子的轉錄活性來實現調控NPC細胞的EMT,SRF-N是SRF-Full的內源性拮抗因子。進一步明確SRF-N在抗腫瘤治療中的作用具有重要意義和潛在的臨床轉化價值。本研究為體外細胞學實驗,后期需要從動物實驗及臨床隊列研究的角度進一步驗證。

        [1]賈亞楠,李汝佳, 王可可, 等. 受體酪氨酸激酶Axl高表達促進鼻咽癌臨床進展[J]. 中國病理生理雜志, 2017, 33(8):1386-1392.

        Jia YN, Li RJ, Wang KK, et al. High expression of Axl promotes clinical progression of nasopharyngeal carcinoma[J]. Chin J Pathophysiol, 2017, 33(8):1386-1392.

        [2] Wu Y, Shen Z, Wang K, et al. High FMNL3 expression promotes nasopharyngeal carcinoma cell metastasis: role in TGF-β1-induced epithelia-to-mesenchymal transition[J]. Sci Rep, 2017, 7:42507.

        [3]賈亞楠, 王可可, 王思思, 等. SATB1高表達通過促進上皮-間充質轉化而介導鼻咽癌細胞侵襲和轉移[J]. 中國病理生理雜志, 2018, 34(9):1578-1585.

        Jia YN, Wang KK, Wang SS, et al. Over- expression of SATB1 mediates invasion and metastasis of nasopharyngeal carcinoma cells through epithelial-mesenchymal transition[J]. Chin J Pathophysiol, 2018, 34(9):1578-1585.

        [4] Jin S, Li R, Chen MY, et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma[J]. Cell Res, 2020, 30(11):950-965.

        [5] Gong L, Kwong DL, Dai W, et al. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma[J]. Nat Commun, 2021, 12(1):1540-1558.

        [6] Onuh JO, Qiu H. Serum response factor-cofactor interactions and their implications in disease[J]. FEBS J, 2021, 288(10):3120-3134.

        [7] Miano JM. Role of serum response factor in the pathogenesis of disease [J]. Lab Invest, 2010, 90(9) : 1274-1284.

        [8] Müller S, Gla? M, Singh AK, et al. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner [J]. Nucleic Acids Res, 2019, 47(1):375-390.

        [9] Yin J, Lv X, Hu S, et al. Overexpression of serum response factor is correlated with poor prognosis in patients with gastric cancer[J]. Hum Pathol, 2019, 85:10-17.

        [10] Lionarons DA, Hancock DC, Rana S, et al. RAC1P29Sinduces a mesenchymal phenotypic switch via serum response factor to promote melanoma development and therapy resistance[J]. Cancer Cell, 2019, 36(1):68-83.e9.

        [11] Chang J, Wei L, Otani T, et al. Inhibitory cardiac transcription factor, SRF-N, is generated by caspase 3 cleavage in human heart failure and attenuated by ventricular unloading[J]. Circulation, 2003, 108(4):407-413.

        [12] 雷洪, 王可可, 哈艷平, 等. 血清反應因子全長及N端片段過表達慢病毒載體的構建及其對心臟干細胞分化的影響[J]. 臨床與實驗病理學雜志, 2017, 33(10):1109-1115.

        Lei H, Wang KK, Ha YP, et al. Construction of the full length and N-terminal fragment of serum response factor over-expressing lentiviral plasmid and its impacts on cardiac stem cell differentiation[J]. J Clin Exp Pathol, 2017, 33(10):1109-1114.

        [13] He X, Xu H, Zhao M, et al. Serum response factor is overexpressed in esophageal squamous cell carcinoma and promotes Eca-109 cell proliferation and invasion [J]. Oncol Lett, 2013, 5(3):819-824.

        [14] Bae JS, Noh SJ, Kim KM, et al. Serum response factor induces epithelial to mesenchymal transition with resistance to sorafenib in hepatocellular carcinoma[J]. Int J Oncol, 2014, 44(1):129-136.

        [15] Kim HJ, Kim KR, Park HS, et al. The expression and role of serum response factor in papillary carcinoma of the thyroid[J]. Int J Oncol, 2009, 35(1):49-55.

        [16] Ma L, Yu Y, Qu X. Suppressing serum response factor inhibits invasion in cervical cancer cell lines via regulating Egr-1 and epithelial-mesenchymal transition[J]. Int J Mol Med, 2019, 43(1):614-620.

        [17] Choi YJ, Koo JB, Kim HY, et al. Umbilical cord/placenta-derived mesenchymal stem cells inhibit fibrogenic activation in human intestinal myofibroblasts via inhibition of myocardin-related transcription factor A[J]. Stem Cell Res Ther, 2019, 10(1):291-307.

        [18] Zhao L, Li C, Jiang W, et al. Serum response factor increases renal cell carcinoma migration and invasion through promoting epithelial-mesenchymal transition[J]. Int J Urol, 2020, 27(9):808-816.

        [19] Park MY, Kim KR, Park HS, et al. Expression of the serum response factor in hepatocellular carcinoma: implications for epithelial-mesenchymal transition[J]. Int J Oncol, 2007, 31(6):1309-1315.

        [20] Zhao X, He L, Li T, et al. SRF expedites metastasis and modulates the epithelial to mesenchymal transition by regulating miR-199a-5p expression in human gastric cancer[J]. Cell Death Differ, 2014, 21(12):1900-1913.

        [21] 馮嵐, 曹鵬博, 周鋼橋. 血清應答因子通過誘導肝癌細胞上皮間充質轉化增強其遷移能力[J]. 軍事醫(yī)學, 2018, 42(11):810-816.

        Feng L, Cao PB, Zhou GQ. Serum response factor promotes hepatocellular carcinoma cell migration by inducing epithelial-mesenchymal transition[J]. Mil Med Sci, 2018, 42(11):810-816.

        [22] Ell B, Kang Y. Transcriptional control of cancer metastasis[J]. Trends Cell Biol, 2013, 23(12):603-611.

        [23] Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis[J]. Science, 2011, 331(6024):1559-1564.

        [24] Batlle E, Sancho E, Francí C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumourcells [J]. Nat Cell Biol, 2000, 2(2):84-89.

        [25] He L, Lou W, Ji L, et al. Serum response factor accelerates the high glucose-induced epithelial-to-mesenchymal transition (EMT) via snail signaling in human peritoneal mesothelial cells[J]. PLoS One, 2014, 9(10):e108593.

        [26] Zhao L, Chi L, Zhao J, et al. Serum response factor provokes epithelial-mesenchymal transition in renal tubular epithelial cells of diabetic nephropathy[J]. Physiol Genomics, 2016, 48(8):580-588.

        Effects of N-terminal fragment of serum response factor on proliferation and migration of nasopharyngeal carcinoma cells

        YUAN Jian-ling1,3, SHAO Zhong-ming1, ZOU Yuan1, WU Cai-xia1, ZHENG A-xiu1, XING Jing-ci1, BAI Jian-rong1, JIE Wei1,2△, SHEN Zhi-hua1△

        (1,,,524023,;2,,,571199,;3,,518036,)

        To explore the effects of the N-terminal fragment of serum response factor (SRF-N) on the proliferation and migration of nasopharyngeal carcinoma (NPC) cells and its mechanisms.The full-length SRF (SRF-Full, 1 to 508 aa) overexpression, SRF-N (1 to 254 aa) overexpression and negative control (NC) lentiviral particles were used to infect human NPC 6-10B cells, and the monoclonal cells were obtained by puromycin resistance screening. Western blot was applied to detect the expression of Flag-tagged fusion protein. The cell viability, migration and adhesion were analyzed by CCK-8 assay, wound healing assay, Transwell assay and matrix-adhesion assay. The changes in proliferation-associated protein proliferating cell nuclear antigen (PCNA) and epithelial-mesenchymal transition (EMT)-related factors were assessed by Western blot. Finally, dual-luciferase reporter assay was used to detect the regulatory effects of SRF-Full and SRF-N onpromoter.The 6-10B cells were successfully infected with SRF-Full, SRF-N and NC lentiviruses. The corresponding monoclonal cell lines, which were obtained by puromycin resistance screening combined with the expression of Flag tag protein, were labeled as 6-10BSRF-Full, 6-10BSRF-Nand 6-10BNC, respectively. Compared with 6-10BNCcells, increased viability, migration and adhesion to the matrix were observed in 6-10BSRF-Fullcells (<0.01), while these capabilities of 6-10BSRF-Ncells were decreased compared with 6-10BSRF-Fullcells (<0.01). Compared with 6-10BNCcells, the expression of vimentin, N-cadherin and Snail1 in 6-10BSRF-Fullcells were significantly increased (<0.01), while the expression of E-cadherin was significantly decreased (<0.01). Compared with 6-10BSRF-Fullcells, the expression of vimentin, N-cadherin and Snail1 in 6-10BSRF-Ncells was significantly decreased (<0.05), while the expression of E-cadherin was significantly increased (<0.05). The results of dual-luciferase reporter assay showed that SRF-Full significantly activatedpromoter compared with NC (<0.01), while SRF-N significantly inhibitedpromoter compared with SRF-Full (<0.01).SRF-Full promotes but SRF-N inhibits the proliferation and migration of NPC cells. SRF-N inhibitspromoter activity and mediates EMT of NPC. SRF-N may serve as a potential anti-NPC target.

        Nasopharyngeal carcinoma; N-terminal fragment of serum response factor; Cell proliferation; Cell migration; Epithelial-mesenchymal transition

        R 363.2; R739.6

        A

        10.3969/j.issn.1000-4718.2022.03.019

        1000-4718(2022)03-0535-08

        2021-10-11

        2022-01-13

        [基金項目]國家自然科學基金資助項目(No. 81402415);廣東省揚帆計劃高層次人才項目(No. 4YF16007G)

        申志華 Tel: 0759-2388587; E-mail: szh75@126.com; 揭偉 Tel: 0898-66968217; E-mail: wei_jie@hainmc.edu.cn

        ▲共同第一作者:并列第1作者

        (責任編輯:林白霜,羅森)

        猜你喜歡
        孔板單克隆培養(yǎng)液
        核電廠高壓安注系統(tǒng)再循環(huán)管線節(jié)流孔板的分析與改進
        從一道試題再說血細胞計數板的使用
        中學生物學(2021年8期)2021-11-02 04:53:14
        單克隆抗體在新型冠狀病毒和其他人冠狀病毒中的研究進展
        限流孔板的計算與應用
        廣州化工(2020年6期)2020-04-18 03:30:20
        調整蔗糖、硼酸和pH值可優(yōu)化甜櫻桃花粉萌發(fā)培養(yǎng)液
        長距離礦漿管道系統(tǒng)中消能孔板的運行優(yōu)化
        不同培養(yǎng)液對大草履蟲生長與形態(tài)的影響研究
        抗HPV18 E6多肽單克隆抗體的制備及鑒定
        超級培養(yǎng)液
        科學啟蒙(2015年8期)2015-08-07 03:54:46
        TSH受體單克隆抗體研究進展
        欧美丝袜激情办公室在线观看| 国产综合无码一区二区辣椒| 亚洲精品中文字幕无码蜜桃 | 在线观看亚洲视频一区二区| 色综合久久网| 国产一区二区三区最新地址| 国产精品永久久久久久久久久| 无码粉嫩虎白一线天在线观看| av无码天堂一区二区三区 | 巨胸喷奶水www视频网站| 在线精品一区二区三区| 久久精品国产热| 一区二区三区精品亚洲视频| 日本真人添下面视频免费| 国内精品伊人久久久久影院对白| 91福利国产在线观一区二区 | 成人一区二区三区蜜桃| 久久精品中文少妇内射| 边做边流奶水的人妻| 国产清品夜色一区二区三区不卡| 成人爽a毛片免费网站中国| 久久精品国产亚洲av无码偷窥| 日韩精品人妻系列无码专区免费| 亚洲欧美日韩综合在线观看| 亚洲大尺度动作在线观看一区| 日韩麻豆视频在线观看| 国产成人亚洲精品无码av大片| 五月天综合网站| 亚洲一区不卡在线导航| 久久精品国产亚洲av性瑜伽| 射精区-区区三区| 久久无码高潮喷水| 精品久久免费一区二区三区四区| 高清不卡av在线播放| 在线观看的网站| 国产真实伦在线观看| 精品久久久久久午夜| 人妻av中文字幕精品久久| 国产高清在线精品一区app| 久久中文精品无码中文字幕| 开心激情站开心激情网六月婷婷|