王圓明 倪欽帥 安康 于曦 朱琳
[摘要] 目的 探討腦蛋白水解物-Ⅰ(CH-Ⅰ)對(duì)D-半乳糖致衰老小鼠的抗衰老作用。方法 將32只C57小鼠隨機(jī)分為對(duì)照組、模型組、CH-Ⅰ低劑量組(3 mg/kg)和CH-Ⅰ高劑量組(6 mg/kg),模型組及CH-Ⅰ組小鼠頸背部皮下注射D-半乳糖150 mg/kg,對(duì)照組小鼠頸背部皮下注射等量生理鹽水,注射3周后,給藥組小鼠腹腔注射相應(yīng)劑量的CH-Ⅰ,對(duì)照組及模型組小鼠腹腔注射等量生理鹽水,持續(xù)給藥5周后,進(jìn)行老化度評(píng)分和曠場(chǎng)實(shí)驗(yàn)。比色法檢測(cè)小鼠海馬組織中超氧化物歧化酶(SOD)、谷胱甘肽過(guò)氧化物酶(GSH-Px)活性和丙二醛(MDA)含量。尼氏染色觀察小鼠海馬區(qū)神經(jīng)元損傷。 結(jié)果 與對(duì)照組相比,模型組小鼠的老化度評(píng)分明顯增高(P<0.01),自主活動(dòng)和探索行為減弱,海馬組織中SOD、GSH-Px活性明顯降低(P<0.01),MDA含量顯著增加(P<0.01),海馬CA1區(qū)神經(jīng)元顯著損傷。經(jīng)CH-Ⅰ治療后,可顯著降低衰老小鼠的老化度評(píng)分(P<0.05,P<0.01),提高小鼠的自主行為能力,提高海馬組織中SOD、GSH-Px活性(P<0.05,P<0.01),減少M(fèi)DA含量(P<0.05,P<0.01),改善海馬組織CA1區(qū)神經(jīng)元損傷。結(jié)論 CH-Ⅰ可以有效改善D-半乳糖模型小鼠的老化程度和自主行為,提高海馬組織的抗氧化能力,減少海馬神經(jīng)元損傷。
[關(guān)鍵詞] 腦蛋白水解物-Ⅰ;D-半乳糖;衰老;C57小鼠;海馬
[中圖分類(lèi)號(hào)] R965? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A ? ? ? ? [文章編號(hào)] 1673-9701(2022)05-0030-04
[Abstract] Objective To investigate the anti-aging effect of cerebroprotein hydrolysate-Ⅰ(CH-Ⅰ) on D-galactose-induced aging mice. Methods A total of 32 C57 mice were randomly divided into the control group, the model group, the CH-Ⅰ low-dose group (3 mg/kg) and the CH-Ⅰ high-dose group (6 mg/kg). The model group and the two CH-Ⅰ groups were injected with 150 mg/kg D-galactose subcutaneously on the back of the neck. The control group were injected with the same amount of normal saline subcutaneously on the back of the neck. At 3 weeks after injection, the two CH-Ⅰ groups were injected intraperitoneally with the corresponding dose of CH-Ⅰ, and the control group and the model group were intraperitoneally injected with the same amount of normal saline. After continuous administration for 5 weeks, the aging degree scoring and open field experiment were performed. Colorimetric method was used to detect superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity and malonaldehyde (MDA) content in hippocampal tissue. Nissl staining method was used to observe neuronal damage in hippocampus. Results Compared with the control group, the aging score in the model group was significantly increased (P<0.01), autonomous activities and exploratory behaviors were weakened, SOD and GSH-Px activities in hippocampus tissue were significantly reduced (P<0.01), MDA content was significant increased(P<0.01), and neurons in CA1 area of hippocampus were significantly damaged. CH-Ⅰ treatment significantly reduced aging score of aging mice (P<0.05,P<0.01), improved autonomous activities, increased SOD and GSH-Px activities in hippocampus (P<0.05,P<0.01), reduced MDA content (P<0.05,P<0.01), and improved neuron damage in CA1 area of hippocampus. Conclusion CH-Ⅰ can effectively improve aging score and autonomous activities of D-galactose model mice, improve antioxidant capacity of hippocampal tissue, and reduce neuron damage of hippocampus.
[Key words] Cerebroprotein hydrolysate -Ⅰ; D-galactose; Aging; C57 mice; Hippocampus
衰老是大多數(shù)神經(jīng)退行性疾病的主要危險(xiǎn)因素,伴隨衰老常出現(xiàn)神經(jīng)元損傷,特別是海馬區(qū)神經(jīng)元損傷,并最終導(dǎo)致認(rèn)知和自主行為障礙[1]。目前,對(duì)于衰老相關(guān)的神經(jīng)退行性疾?。ㄈ缋夏晷园V呆和帕金森病)尚缺少特效的治療方法,這些疾病往往以不可逆轉(zhuǎn)的方式發(fā)展,并造成巨大的社會(huì)和經(jīng)濟(jì)負(fù)擔(dān)[2]。衰老相關(guān)的神經(jīng)元損傷涉及復(fù)雜的細(xì)胞和分子過(guò)程,包括氧化應(yīng)激、炎性損傷、細(xì)胞凋亡、自噬等[3]。其中,氧化應(yīng)激是海馬神經(jīng)元衰老和行為能力下降的重要原因,在許多神經(jīng)退行性疾病中,神經(jīng)元內(nèi)氧化應(yīng)激升高是普遍存在的[4]。腦蛋白水解物-Ⅰ(cerebroprotein hydrolysate-Ⅰ,CH-Ⅰ)是從豬腦組織中提取的低分子量神經(jīng)肽類(lèi)混合物,具有類(lèi)神經(jīng)營(yíng)養(yǎng)因子的作用[5]。在體內(nèi),CH-Ⅰ已被證明可以促進(jìn)神經(jīng)發(fā)生,減輕神經(jīng)炎癥,抑制自由基的形成,具有神經(jīng)保護(hù)作用[6-7]。本課題組前期研究提示,CH-Ⅰ可以通過(guò)提高端粒酶活性而延緩D-半乳糖誘導(dǎo)PC12細(xì)胞的衰老損傷,減輕D-gal誘導(dǎo)小鼠海馬組織的衰老損傷[8]。但目前關(guān)于CH-Ⅰ對(duì)衰老小鼠氧化應(yīng)激方面的影響尚不十分清楚。因此,本研究通過(guò)建立D-半乳糖誘導(dǎo)的衰老小鼠模型,觀察CH-Ⅰ抗小鼠衰老的作用和可能的機(jī)制。
1? 材料與方法
1.1? 材料來(lái)源
SPF級(jí)雄性8周齡C57/BL 6N小鼠32只,體重(21±3)g,購(gòu)于北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)公司(SCXK2016-0006)。注射用腦蛋白水解物-Ⅰ(CH-Ⅰ)購(gòu)于河北智同生物制藥公司(0190501-1,30 mg/支),D-半乳糖(D-galactose,D-gal)購(gòu)于上海阿拉丁試劑公司(K1915124,純度≥99%),尼氏染色試劑盒購(gòu)于北京索萊寶科技有限公司,超氧化物歧化酶(superoxide dismutase,SOD)、丙二醛(malonaldehyde,MDA)和谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GSH-Px)試劑盒均購(gòu)于上海碧云天生物技術(shù)有限公司。本實(shí)驗(yàn)符合青島大學(xué)醫(yī)學(xué)部醫(yī)學(xué)倫理委員會(huì)審批(倫審批件號(hào):WZLL26128)
1.2? 動(dòng)物分組及處理
C57小鼠32只,飼養(yǎng)于SPF級(jí)動(dòng)物室,自由飲食,適應(yīng)性飼養(yǎng)1周后,將小鼠隨機(jī)分為對(duì)照組、模型組、CH-Ⅰ低劑量(CH-ⅠL)組、CH-Ⅰ高劑量(CH-ⅠH)組,每組各8只。除對(duì)照組外,各小鼠頸背部皮下注射150 mg/kg D-gal,對(duì)照組小鼠頸背部皮下注射等量生理鹽水,1次/d,持續(xù)8周。D-gal注射3周后,CH-Ⅰ低劑量組、高劑量組小鼠分別腹腔注射CH-Ⅰ3 mg/kg和6 mg/kg,對(duì)照組、模型組小鼠分別腹腔注射等量生理鹽水,1次/d,持續(xù)5周。實(shí)驗(yàn)過(guò)程嚴(yán)格遵守動(dòng)物倫理學(xué)要求,動(dòng)物全部存活,無(wú)死亡或脫失。
1.3? 老化度評(píng)分
給藥結(jié)束后,參考既往文獻(xiàn)的老化度評(píng)分標(biāo)準(zhǔn),從反應(yīng)性、皮毛光澤、皮毛粗糙程度、脫毛程度、皮膚潰瘍等指標(biāo),對(duì)小鼠進(jìn)行客觀評(píng)分,積分越高表明老化度越高[9]。
1.4? 曠場(chǎng)實(shí)驗(yàn)
給藥結(jié)束7 d后,使用曠場(chǎng)實(shí)驗(yàn)檢測(cè)小鼠的自主活動(dòng)和探索行為。每只小鼠放置于曠場(chǎng)中相同角落并面向墻壁,隨后小鼠自由活動(dòng)5 min,錄像系統(tǒng)記錄小鼠的行為活動(dòng)。每只小鼠實(shí)驗(yàn)結(jié)束后擦拭干凈,避免留下氣味和污物。
1.5? 氧化應(yīng)激指標(biāo)檢測(cè)
每組隨機(jī)選取4只小鼠,10%水合氯醛腹腔注射麻醉,經(jīng)心臟灌注生理鹽水,完整取腦,冰上分離海馬組織,按照99:1比例加RIPA裂解液,勻漿器研磨,10 000 rpm離心5 min,取上清液(即蛋白提取液)置于EP管中。再次加入0.5~1.0倍的RIPA裂解液,重復(fù)離心1次,獲得蛋白提取液,BCA法測(cè)定蛋白濃度,-80℃保存。根據(jù)試劑盒的說(shuō)明,使用比色法檢測(cè)SOD(四氮唑-8,WST-8法)、GSH-Px活性(還原型輔酶Ⅱ,NADPH法)和MDA(硫代巴比妥酸,TBA法))含量,分別以U/mg、U/mg和μM/mg表示。
1.6? 尼氏染色
曠場(chǎng)實(shí)驗(yàn)結(jié)束后,每組隨機(jī)選取4只小鼠,10%水合氯醛腹腔麻醉,經(jīng)心臟依次灌注生理鹽水和4%多聚甲醛,完整取腦。腦組織常規(guī)梯度脫水、石蠟包埋,海馬區(qū)連續(xù)冠狀切片。切片常規(guī)脫蠟至水后,置于含焦油紫染液的染色缸中,于56℃溫箱中1 h,雙蒸水沖洗2 min。隨后將切片于尼氏分化液中分化1 min,常規(guī)脫水、透明,中性樹(shù)膠封片。倒置顯微鏡下觀察海馬CA1區(qū)染色情況,每張切片隨機(jī)選取5個(gè)不重疊的高倍(400×)視野觀察神經(jīng)細(xì)胞尼氏小體的形態(tài)結(jié)構(gòu)。
1.7? 統(tǒng)計(jì)學(xué)分析
應(yīng)用Graphpad Prism 8.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料以(x±s)表示。多組間的數(shù)據(jù)比較采用單因素方差分析,兩兩比較采用LSD -t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2? 結(jié)果
2.1? CH-Ⅰ對(duì)小鼠老化度評(píng)分的影響
老化度評(píng)分結(jié)果顯示,與對(duì)照組小鼠相比,模型組小鼠的老化度評(píng)分明顯增高(P<0.01)。而給予CH-Ⅰ處理后,CH-ⅠL組和CH-ⅠH組的老化度評(píng)分較模型組小鼠均明顯降低(P<0.05,P<0.01),CH-ⅠL組、CH-ⅠH組之間比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。見(jiàn)表1。
2.2? CH-Ⅰ對(duì)小鼠自主行為能力的影響
曠場(chǎng)實(shí)驗(yàn)結(jié)果顯示,模型組小鼠在5 min內(nèi)站立次數(shù)較對(duì)照組顯著減少(P<0.01),說(shuō)明小鼠的自主活動(dòng)能力減弱,且模型組小鼠在中央?yún)^(qū)的運(yùn)動(dòng)時(shí)間和距離縮短(P<0.01),小鼠的探索能力減弱。給予CH-Ⅰ處理后,CH-ⅠL組和CH-ⅠH組的小鼠站立次數(shù)較模型組明顯增加(P<0.05,P<0.01),在中央?yún)^(qū)的運(yùn)動(dòng)時(shí)間和距離明顯延長(zhǎng)(P<0.05,P<0.01),CH-ⅠL組、CH-ⅠH組之間比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05),說(shuō)明CH-Ⅰ可以提高小鼠的自主行為能力。見(jiàn)表2、圖1。
2.3? CH-Ⅰ對(duì)小鼠海馬組織中氧化應(yīng)激損傷的影響
與對(duì)照組相比,衰老模型組小鼠的海馬組織中SOD和GSH-Px活性顯著下降(P<0.01),MDA含量顯著增加(P<0.01),說(shuō)明衰老小鼠海馬組織的氧化應(yīng)激損傷明顯增加。給予藥物治療后,CH-ⅠL組和CH-ⅠH組小鼠的海馬組織中SOD和GSH-Px活性均有升高(P<0.05,P<0.01),MDA含量均明顯降低(P<0.05,P<0.01),而CH-ⅠL組、CH-ⅠH組之間比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05),表明CH-Ⅰ能顯著提高小鼠海馬組織中抗氧化能力。見(jiàn)表3。
2.4? CH-Ⅰ對(duì)小鼠海馬CA1區(qū)神經(jīng)元損傷的影響
對(duì)照組小鼠海馬CA1區(qū)的尼氏小體較多,排列整齊,廣泛分布;模型組小鼠海馬CA1區(qū)的尼氏小體明顯減少,排列紊亂,分布稀疏,說(shuō)明海馬神經(jīng)元出現(xiàn)損傷。給予CH-Ⅰ治療后,CH-ⅠL組和CH-ⅠH組小鼠的尼氏小體較模型組均有明顯增加,排列整齊,分布均勻,說(shuō)明CH-Ⅰ可以改善衰老小鼠海馬區(qū)神經(jīng)元的病理狀態(tài)。見(jiàn)封三圖6。
3? 討論
衰老是一個(gè)不可避免的復(fù)雜生物過(guò)程,主要是指生物結(jié)構(gòu)的改變和各種因素導(dǎo)致的功能退化[10]。伴隨衰老常常會(huì)出現(xiàn)認(rèn)知、自主行為能力的下降,而海馬組織與自主行為功能密切相關(guān),在人類(lèi)和動(dòng)物中,海馬組織特別容易受到衰老的影響[11]。近年來(lái),天然活性產(chǎn)物在衰老中的應(yīng)用已成為一個(gè)熱門(mén)話(huà)題[12]。CH-Ⅰ是一種從豬腦組織中提取的神經(jīng)肽類(lèi)物質(zhì),用于治療血管性癡呆、創(chuàng)傷性腦損傷、腦卒中和阿爾茨海默病,具有一定的神經(jīng)營(yíng)養(yǎng)和神經(jīng)保護(hù)作用[13-14]。但CH-Ⅰ對(duì)D-gal誘導(dǎo)的小鼠自主行為障礙和神經(jīng)損傷的影響尚不明確。因此,本研究探討CH-Ⅰ對(duì)D-gal誘導(dǎo)的衰老模型小鼠的作用。
D-gal是乳糖的主要成分,在糖代謝中起到代謝作用。然而,D-gal的過(guò)度積累會(huì)導(dǎo)致代謝紊亂,最終導(dǎo)致衰老[15]。本研究結(jié)果表明,給予D-gal處理后,與對(duì)照組小鼠相比,模型組小鼠的反應(yīng)性、皮毛光澤、脫毛程度、皮膚潰瘍等老化度評(píng)分明顯增加。此外,D-gal顯著降低小鼠的自主活動(dòng)和探索行為能力。給予不同劑量的CH-Ⅰ(3、6 mg/kg)治療后,衰老小鼠的老化度評(píng)分明顯降低,自主活動(dòng)和探索行為增加。尼氏小體可以反映神經(jīng)元的損傷情況,當(dāng)神經(jīng)元受到損傷時(shí),尼氏小體減少甚至消失,而在損傷恢復(fù)過(guò)程中,尼氏小體又重新增多[16]。本實(shí)驗(yàn)利用尼氏染色觀察海馬組織中尼氏小體的分布情況,結(jié)果表明,模型小鼠海馬組織CA1區(qū)的尼氏小體明顯減少,而CH-Ⅰ可以增加衰老小鼠海馬組織的尼氏小體數(shù)量,說(shuō)明CH-Ⅰ可以減輕海馬組織的神經(jīng)元損傷。
氧化應(yīng)激是導(dǎo)致細(xì)胞衰老的主要因素之一,既往研究表明,伴隨衰老,海馬神經(jīng)元內(nèi)活性氧(reactive oxygen species,ROS)水平增加,抗氧化能力下降,最終導(dǎo)致神經(jīng)元衰老和死亡[17]。氧化損傷程度可以通過(guò)評(píng)估抗氧化酶(如SOD、GSH-Px)的活性和氧化損傷相關(guān)產(chǎn)物(如MDA)的含量確定[18]。大量研究表明,D-gal代謝產(chǎn)生的ROS會(huì)在大腦中積累,通過(guò)氧化應(yīng)激造成腦組織損傷,進(jìn)而引起神經(jīng)生化變化和行為障礙,最終導(dǎo)致腦衰老[20]。Benito等[21]研究表明,增加BDNF和STAT3的磷酸化水平,可以促進(jìn)神經(jīng)再生,改善神經(jīng)損傷,并通過(guò)增加BDNF的表達(dá)和磷酸化STAT3也可以改善大鼠的記憶缺陷。本課題組前期研究表明,CH-I可顯著提高D-gal衰老小鼠海馬組織中的BDNF表達(dá)水平[8]。本實(shí)驗(yàn)長(zhǎng)期給予小鼠注射D-gal,增加小鼠海馬組織中的氧化應(yīng)激損傷,表現(xiàn)為海馬組織中的SOD活性和GSH-Px活性顯著降低,抗氧化功能減弱,而MDA含量增加,說(shuō)明氧化損傷加重,與既往的實(shí)驗(yàn)結(jié)果一致[22-23]。本實(shí)驗(yàn)給予CH-Ⅰ干預(yù)后,衰老模型小鼠的海馬組織中SOD、GSH-Px活性均顯著增加,MDA含量顯著降低,提示CH-Ⅰ可以提高海馬神經(jīng)元的抗氧化能力,從而減輕神經(jīng)元衰老損傷,起到神經(jīng)保護(hù)作用。
綜上所述,CH-Ⅰ可有效降低衰老小鼠的老化度評(píng)分,改善衰老小鼠的自主行為障礙,減輕衰老小鼠的海馬神經(jīng)元損傷,這可能是通過(guò)提高海馬神經(jīng)元抗氧化能力,減輕氧化應(yīng)激損傷實(shí)現(xiàn)的。
[參考文獻(xiàn)]
[1]? ?Foster TC,Defazio RA,Bizon JL. Characterizing cognitive aging of spatial and contextual memory in animal models[J]. Front Aging Neurosci,2012,4(12):12-30.
[2]? ?Pluvinage JV,Wyss-Coray T. Systemic factors as medi- ators of brain homeostasis,ageing and neurodegeneration[J].Nat Rev Neurosci,2020,21(2):93-102.
[3]? ?Pourhanifeh MH,Shafabakhsh R,Reiter RJ,et al. The effect of resveratrol on neurodegenerative disorders:Possible protective actions against autophagy,apoptosis,inflammation and oxidative stress[J].Curr Pharm Design,2019,25(19):2178-2191.
[4]? ?Bettio LEB,Rajendran L,Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline[J]. Neurosci Biobehav Rev,2017,79:66-86.
[5]? ?Cao W,Zhang C,Chen R,et al. A novel cerebroprotein hydrolysate,CH1,ameliorates chronic focal cerebral ischemia injury by promoting white matter integrity via the Shh/Ptch-1/Gli-1 signaling pathway[J].Neuropsych Dis Treat,2020,16:3209-3224.
[6]? ?Zhang Y,Chopp M,Gang Zhang Z,et al. Prospective,randomized,blinded,and placebo-controlled study of cerebrolysin dose-response effects on long-term functional outcomes in a rat model of mild traumatic brain injury[J]. J Neurosurg,2018,129(5):1295-1304.
[7]? ?Yang Y,Zhang Y,Wang Z,et al. Attenuation of acute phase injury in rat intracranial hemorrhage by cerebrolysin that inhibits brain edema and inflammatory response[J]. Neurochem Res,2016,41(4):748-757.
[8]? ?Zhu L,Liu Y,Wu X,et al. Cerebroprotein hydrolysate-Ⅰ protects senescence-induced by D-galactose in PC12 cells[J]. Food Sci Nutr,2021,9(5):3722-3731.
[9]? ?Hosokawa M,Kasai R,Higuchi K,et al. Grading score system:A method for evaluation of the degree of senescence in senescence accelerated mouse(SAM)[J]. Mech Ageing Dev,1984,26(1):91-102.
[10]? Wang ZL,Chen LB,Qiu Z,et al. Ginsenoside Rg1 ame-liorates testicular senescence changes in D galinduced aging mice via anti inflammatory and antioxidative mechan- isms[J]. Mol Med Rep,2018,17(5):6269-6276.
[11]? Smith KL,Kassem MS,Clarke DJ,et al. Microglial cell hyper-ramification and neuronal dendritic spine loss in the hippocampus and medial prefrontal cortex in a mouse model of PTSD[J].Brain Behav Immun,2019,80:889-899.
[12]? McCubrey JA,Lertpiriyapong K,Steelman LS,et al. Effects of resveratrol,curcumin,berberine and other nutraceuticals on aging,cancer development,cancer stem cells and microRNAs[J].Aging(Albany NY),2017,9(6):1477-1536.
[13]? Zhao H,Liu Y,Zeng J,et al. Troxerutin cerebroprotein hydrolysate injection ameliorates neurovascular injury induced by traumatic brain injury-via endothelial nitric oxide synthase pathway regulation[J].Int J Neurosci,2018, 128(12):1118-1127.
[14]? Ma W,Wang S,Liu X,et al. Protective effect of troxerutin and cerebroprotein hydrolysate injection on cerebral ischemia through inhibition of oxidative stress and promotion of angiogenesis in rats[J].Mol Med Rep,2019, 19(4):3148-3158.
[15]? Rockenstein E,Desplats P,Ubhi K,et al. Neuropeptide treatment with cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer′s disease[J].Stem Cell Res,2015,15(1):54-67.
[16]? Lu X,Zhou Y,Wu T,et al. Ameliorative effect of black rice anthocyanin on senescent mice induced by D-galactose[J]. Food Funct,2014,5(11):2892-2897.
[17]? Yu C,Bai YX,Xu XP,et al. Behavioral abnormality along with NMDAR-related CREB suppression in rat hippocampus after shortwave exposure[J].Biomed Environ Sci,2019,32(3):189-198.
[18]? Martínez E,Navarro A,Ordóez C,et al. Oxidative stress induces apolipoprotein D overexpression in hippocampus during aging and Alzheimer's disease[J].J Alzheimers Dis,2013,36(1):129-144.
[19]? Vanni S,Colini Baldeschi A,Zattoni M,et al. Brain aging:A Ianus-faced player between health and neurod egener- ation[J]. J Neurosci Res,2020,98(2):299-311.
[20]? Sha JY,Zhou YD,Yang JY,et al. Maltol(3-hydroxy-2-methyl-4-pyrone)slows D-galactose-induced brain aging process by damping the Nrf2/HO-1-mediated oxidative stress in mice[J].J Agric Food Chem,2019,67(37):10 342-10 351.
[21]? Benito C,Davis CM,Gomez-Sanchez JA,et al. STAT3 controls the long-term survival and phenotype of repair Schwann cells during nerve regeneration[J].J Neurosci,2017,37(16):4255-4269.
[22]? Khan M,Ullah R,Rehman SU,et al.17β-Estradiol modu- lates SIRT1 and halts oxidative stress-mediated cognitive impairment in a male aging mouse model[J]. Cells,2019, 8(8):928-948.
[23]? Garcez ML,Cassoma RCS,Mina F,et al. Folic acid prev- ents habituation memory impairment and oxidative stress in an aging model induced by D-galactose[J].Metab Brain Dis,2021,36(2):213-224.
(收稿日期:2021-08-03)