2.D 提示:重物下降時,做自由落體運動,只有重力做功,機械能守恒,選項A 錯誤。重物上升時,繩子的拉力對重物做功,機械能增加,選項B 錯誤。從重物開始下降到速度減小為零的過程中,初、末速度均為0,根據(jù)可知,其中下落的時間t=0.4 s,著地時的速度v=gt=4 m/s,全程的總時間t'=0.4 s+0.05 s=0.45 s,地面施加作用力的時間t1=0.05 s,根據(jù)動量定理得mgt'-Ft1=0-0,解得F=5 400 N,地面作用力的沖量I=Ft1=5 400×0.05 N·s=270 N·s,選項C錯誤,D 正確。
3.B 提示:圓盤轉動的同時,子彈在水平方向上做勻速直線運動,且兩個運動具有同時性,根據(jù)1,2,…),其中s,整理得v=顯見,當k=0時,子彈的飛行速度為600 m/s。
4.C 提示:根據(jù)v-t圖像可知,2 s~4 s內(nèi)吊桶勻速上升,輕繩的拉力等于重力,0~2 s內(nèi)吊桶加速上升,輕繩的拉力大于重力,因此2 s~4 s內(nèi)輕繩的拉力小于0~2 s內(nèi)輕繩的拉力,選項A 錯誤。根據(jù)v-t圖像可知,第3 s末輕繩的拉力等于重力,因為每根輕繩與豎直方向之間的夾角θ滿足cosθ=根據(jù)平衡條件得4Tcosθ=mg,解得T=10 250 N,選項B 錯誤。根據(jù)v-t圖像可知,4 s~8 s內(nèi)吊桶勻減速上升,且加速度大小a==5 m/s2,根據(jù)mg-4T1cosθ=ma,解得T1=5 125 N,選項C正確,D 錯誤。
5.D 提示:貨箱緩慢傾斜,貨箱所受合外力為零,因此車廂對貨箱的作用力與貨箱的重力等大反向,選項A、B 錯誤。傾角θ緩慢增大時,隔板對工件的彈力F1與貨箱右壁對工件的彈力F2之間的夾角保持不變,因此由重力mg、F1、F2三力組成的閉合三角形的三個頂點在同一個圓周上,如圖1所示。傾角θ從0 緩慢增大到37°的過程中,F2逐漸增大,F1逐漸減小,根據(jù)牛頓第三定律可知,工件對隔板的壓力逐漸減小,工件對貨箱右壁的壓力逐漸增大,選項C錯誤,D正確。
圖1
6.A 提示:根據(jù)a-t圖像可知,0~2 s內(nèi)小滑塊與長木板相對靜止,二者之間的靜摩擦力f0=m1a隨加速度的增大而增大,選項A 正確。t=2 s時刻小滑塊與長木板恰相對滑動,根據(jù)μm1g=m1a得μ=0.1,選項B錯誤。0~2 s內(nèi)對由小滑塊和長木板組成的整體有kt=(m1+m2)a1,2 s~3 s內(nèi)對長木板有kt-f0=m2a2,結合a-t圖像的斜率,解得m1=m2,選項C錯誤。t=2 s時刻小滑塊與長木板共速,t=3 s時刻滑塊與長木板脫離,2 s~3 s內(nèi)小滑塊和長木板的速度增量分別為矩形和梯形的面積,即Δv1=1×1 m/s=1 m/s,Δv2=×1 m/s=1.5 m/s,選項D 錯誤。
7.BD 提示:A、B兩齒輪耦合線速度大小相同,角速度不同,選項A 錯誤。此裝置通過葉輪和轉軸將水流的動能轉化為機械能,選項B正確。水流速度越大,葉輪轉動越快,相同時間內(nèi)木榫E擊打P點的次數(shù)越多,對應的周期越小,選項C 錯誤。木榫E擊打P點時整體繞轉軸O勻速轉動,同軸轉動的角速度相同,因為O、Q兩點之間的距離大于O、P兩點之間的距離,所以Q點的線速度比P點的大,選項D 正確。
8.BC 提示:空間站中雖為完全失重狀態(tài),但重力加速度不為零,選項A 錯誤。飛船和空間站在A點時離地的距離相等,根據(jù)可知,二者的加速度相同,選項B 正確。根據(jù)萬有引力提供向心力可知,飛船在B點的速度大于空間站在A點的速度,選項C正確。根據(jù)=m(R+h)ω2可知,地球的質(zhì)量M=,地球的密度,選項D 錯誤。
9.CD 提示:小煤塊滑到傳送帶N前的瞬間,相對傳送帶N的速率v==1 m/s,選項A 錯誤。小煤塊在傳送帶N上滑動時所受摩擦力f=μmg=2 N,方向如圖2所示,小煤塊相對傳送帶N做勻減速直線運動的加速度a==2 m/s2,小煤塊從滑上傳送帶N到小煤塊相對傳送帶N靜止所用的時間t==0.5 s,選項B 錯誤。小煤塊在傳送帶N上滑動的劃痕長度x滿足v2=2ax,解得x=0.25 m,選項C 正確。小煤塊在傳送帶N上滑動的過程中,因摩擦而產(chǎn)生的熱量Q=μmgx=0.5 J,選項D 正確。
圖2
10.AC 提示:小球的加速度為零時速度最大,設此時彈簧的壓縮量為x1,則mgsin 45°=kx1cos 45°,因此兩小球下落的高度均為h==5 cm,根據(jù)2mgh=可得,兩小球的最大動能Ekmax=0.1 J,選項A 正確。小球沿細桿先做加速度減小的加速運動,后做加速度增大的減速運動,選項B錯誤。設小球下落高度為H時的速度減小為零,則2mgH=,解得H=10 cm>9 cm,故小球將從桿的最低點脫落,選項C 正確。當兩小球運動到桿的最低點時彈簧的彈性勢能最大,此時彈簧的壓縮量為0.18 m,根據(jù)Ep=,解得Ep=0.324 J,選項D 錯誤。
11.(1)11 5 (2)有 (3)相等 3k=2b
12.(1)C (2)在相鄰相等時間內(nèi)的位移差是相同的 如圖3所示y(3)b2.32 (4)C
圖3
13.(1)設運動員在水平軌道上的運動距離為x1(水平軌道末端)時的速率為v1,在傾斜軌道上的運動距離為x2(P點)時的速率為v2,根據(jù)v2-x圖像知v1=8 m/s,v2=35 m/s,x1=12.8 m,x2=303.05 m。在傾斜軌道上,根據(jù)位移與速度的關系式得v22-v21=2a2(x2-x1),根據(jù)牛頓第二定律得mgsinθ-f=ma2,解得a2=2 m/s2,f=72 N。(2)運動員在水平軌道上運動時,根據(jù)位移與速度的關系式得v21=2a1x1,根據(jù)速度公式得v1=a1t1,解得a1=2.5 m/s2,t1=3.2 s。運動員在傾斜軌道上運動的時間,因此運動員從開始運動到下滑至P點所用的總時間t=t1+t2=16.7 s。
14.(1)因為小球垂直擋板或平臺側壁撞擊時能等速率反彈,所以小球在豎直方向上的分速度不受撞擊影響。小球在豎直方向上做自由落體運動,在水平方向上做折返的勻速直線運動。在豎直方向上,根據(jù)H=,解得t=1 s;在水平方向上,根據(jù)x=v0t,解得x=6 m。根據(jù)x=5s可知,小球恰好三次撞擊擋板,兩次撞擊平臺,最后落在擋板與地面的交界處。(2)根據(jù)小球在豎直方向上做自由落體運動可知,相鄰相等時間時隔內(nèi)的豎直位移之比為1∶3∶5∶7∶9。設小球拋出點與擋板上第一個撞擊點的高度差為h,根據(jù)h+3h+5h+7h+9h=H,解得h=0.2 m。因此擋板上第一、二兩撞擊點的間距h1=3h+5h=1.6 m,第二、三兩撞擊點的間距h2=7h+9h=3.2 m。
15.(1)力F隨時間t呈線性變化,則力F的沖量18 N·s。設小物體滑上長木板時的速度為v0,根據(jù)動量定理得I=mv0-0,解得v0=6 m/s。小物體在長木板上滑動,摩擦力使長木板做加速運動,根據(jù)牛頓第二定律得μmg=Ma,解得a=10 m/s2。若長木板一直加速運動到BC處,則根據(jù)位移與速度的關系得v21=2a(d-L),解得v1=m/s。以長木板和小物體組成的整體為研究對象,根據(jù)動量守恒定律得mv0=(m+M)v,解得v=4 m/s。因為v1>v,所以長木板先加速后勻速,最后以速度v=4 m/s 撞擊BC。(2)長木板做加速運動的時間0.4 s,長木板的位移,小物體的位移,小物體在長木板上的劃痕長度Δx=x2-x1=1.2 m。長木板停止后小物體繼續(xù)減速滑行的距離,因此小物體在平臺AB上滑行的距離s=x3-(L-Δx)=0.8 m。
16.(1)設第1個滑環(huán)在細線剛繃緊前的速度為v1,在細線繃緊后的速度為v1',根據(jù)位移與速度的關系式得v20-v21=2μgl,根據(jù)動量守恒定律得mv1=2mv1',解得v1'=0.375 m/s。(2)設第3個滑環(huán)在細線剛繃緊前的速度為v3,在細線繃緊后的速度為v3',根據(jù)動量守恒定律得3mv3=4mv3',又有,解得(3)第1個滑環(huán)向左運動至細線繃直的過程中有Ek1-Ek0=-μmgl;第2 個滑環(huán)向左運動至細線繃直的過程中有Ek2-=-2μmgl,變形為2Ek2-Ek1=-22μmgl;第3個滑環(huán)向左運動至細線繃直的過程中有=-3μmgl,變形為3Ek3-2Ek2=-32μmgl;……;第8個滑環(huán)向左運動至細線繃直的過程中有8Ek8-7Ek7=-82μmgl。各式相加得8Ek8-Ek0=-μmgl(12+22+32+…+82),欲使所有細線均被拉直,應使E8>0,故Ek0≥μmgl(12+22+32+…+82),其中,解得v0≥2 51 m/s。