丁振宇,雷紅
精密與超精密加工
鋯元素誘導(dǎo)非球形磨粒對氧化鋯陶瓷的化學(xué)機(jī)械拋光性能
丁振宇,雷紅
(上海大學(xué) 理學(xué)院 納米科學(xué)與技術(shù)研究中心,上海 200444)
為了提高氧化鋯陶瓷手機(jī)背板的化學(xué)機(jī)械拋光(CMP)性能,合成新型非球形二氧化硅磨粒,并分析非球形二氧化硅磨粒在CMP過程中的作用機(jī)理。利用Zr4+陽離子對球形二氧化硅納米顆粒間作用力進(jìn)行調(diào)控,制備Zr4+與SiO2的質(zhì)量比分別為0、0.025、0.050、0.075、0.100的拋光磨粒;利用納米粒度電位儀和電子掃描顯微鏡(SEM)分析拋光液膠體穩(wěn)定性和磨粒形貌;采用表面粗糙度(Sa)和材料去除率(MRR)來分析磨粒的化學(xué)機(jī)械拋光性能;利用改裝后的摩擦因數(shù)儀和X射線光電子能譜儀(XPS)揭示非球形二氧化硅對氧化鋯陶瓷的作用機(jī)理。在鋯元素相對含量(以質(zhì)量分?jǐn)?shù)計)為0.075%時,得到了分散性良好的非球形二氧化硅磨粒拋光液,相較于球形二氧化硅磨粒拋光液,MRR提升了40.5%,并得到了Sa為1.74 nm的光滑表面;XPS分析結(jié)果表明,在拋光過程中二氧化硅磨??膳c氧化鋯發(fā)生固相化學(xué)反應(yīng),生成更易去除的ZrSiO4。摩擦因數(shù)測量結(jié)果表明,非球形二氧化硅磨粒與陶瓷片的摩擦因數(shù)從球形磨粒時的0.276提高到0.341。非球形的二氧化硅磨粒在拋光過程中具有更高的摩擦因數(shù)和化學(xué)機(jī)械協(xié)同作用,能高效地去除表面粗糙峰,并獲得粗糙度為納米級的平整表面,實現(xiàn)對氧化鋯陶瓷手機(jī)背板的高效、高精度拋光。
非球形二氧化硅;氧化鋯陶瓷背板;化學(xué)機(jī)械拋光;材料去除率;表面粗糙度
氧化鋯陶瓷具有耐磨損、手感溫潤、無信號屏蔽作用、耐摔等優(yōu)勢,其成為5G手機(jī)背板材料的最佳選擇之一[1-3]。在氧化鋯陶瓷背板的成形工藝中,為了得到良好的外觀和手感,去除前期工序中的加工缺陷,超精密加工是不可或缺的。為了高效地實現(xiàn)氧化鋯陶瓷的表面平坦化,應(yīng)用了化學(xué)機(jī)械拋光(CMP)[4-6]、超聲振動輔助加工[7-8]、激光輔助磨削[9-10]、電化學(xué)拋光[11-12]、金剛石刀具切削[13]等一系列技術(shù)。Qiao等[7]在5軸CNC加工中心上安裝了超聲心軸,用來輔助磨削,獲得了鏡面效果。Latd等[11]通過向氧化鋯基體中添加碳納米管,提高了陶瓷的電導(dǎo)率,成功使用電火花加工(EDM)技術(shù)對氧化鋯陶瓷進(jìn)行表面加工。Kumar等[9]利用激光對陶瓷表面照射引入熱裂紋后,再利用干式微研磨去除這些受損部分。無論是在可操作性還是成本等方面,上述的加工方法不足以滿足大規(guī)模商業(yè)應(yīng)用的要求。CMP作為一種能夠?qū)崿F(xiàn)納米級表面平整的超精密加工技術(shù),在氧化鋯陶瓷的拋光領(lǐng)域有著其他方法難以企及的應(yīng)用潛力。
制約化學(xué)機(jī)械拋光在氧化鋯陶瓷手機(jī)背板工藝中應(yīng)用的主要因素是較低的材料去除率(MRR)。在眾多磨粒中,二氧化硅具有硬度適中,拋光后的表面粗糙度較低,制備過程簡單安全等優(yōu)點,從而被廣泛應(yīng)用。目前,商業(yè)使用的球形二氧化硅磨粒的材料去除率較低,不能滿足氧化鋯陶瓷產(chǎn)業(yè)化的拋光需求。近年來,非球形磨粒由于其特殊的形貌特征可以提高材料去除率,從而被研究者所廣泛關(guān)注[14-16]。Xu[4]和Dai[5]等分別使用非均相體系和表面活性劑定位生長等方法成功制備了花狀和爆米花狀二氧化硅磨粒的拋光液,并應(yīng)用在陶瓷的化學(xué)拋光領(lǐng)域,得到了理想的MRR值和較低的表面粗糙度。Liang[17]和Dong[18]等在活性硅酸水解過程中引入陽離子作為誘導(dǎo)劑,制備了啞鈴形和心形的非球形二氧化硅,對二氧化硅晶片和藍(lán)寶石晶片實現(xiàn)了高效拋光。在這些非球形磨粒的制備過程中,需要加入有機(jī)溶劑,且實驗流程耗時長,因此文中擬通過在硅溶膠晶種中添加鋯離子,制備用于氧化鋯陶瓷手機(jī)背板的非球形二氧化硅拋光液,采用摩擦因數(shù)儀測定不同鋯元素含量下拋光液的摩擦因數(shù),采用XPS分析CMP過程中的化學(xué)反應(yīng),以解釋非球形二氧化硅磨粒的拋光機(jī)理,有望為氧化鋯陶瓷手機(jī)后蓋的化學(xué)機(jī)械拋光提供一種可行性方案。
非球形二氧化硅磨粒的制備流程見圖1。首先,將一定濃度的水玻璃溶液經(jīng)過732型陽離子交換樹脂制得活性硅酸備用;其次,將商業(yè)硅溶膠(40 nm)稀釋至5%(質(zhì)量分?jǐn)?shù)),加入Zr(NO3)4·5H2O,強(qiáng)烈攪拌下加熱到沸騰,保持15 min;接下來,將新制硅酸滴加到上述混合溶液中,同時滴加質(zhì)量分?jǐn)?shù)為1%的NaOH溶液,保持系統(tǒng)pH大約為10。根據(jù)水的蒸發(fā)速度來確定硅酸的滴加速度,以保持生長過程中液面的穩(wěn)定。分別制得鋯元素相對含量(相對于SiO2)為0.000%、0.025%、0.050%、0.075%和0.100%的非球形二氧化硅溶膠,最后配制成固體質(zhì)量分?jǐn)?shù)為10%、pH為10的拋光液。
圖1 非球形二氧化硅磨粒的制備流程
拋光實驗在中國沈陽科晶儀器有限公司生產(chǎn)的自動壓力研磨拋光機(jī)(UNIPOL-1000S)平臺上進(jìn)行,拋光實驗涉及參數(shù)見表1。
表1 拋光實驗參數(shù)
Tab.1 Polishing experiment parameters
通過MRR以及平均表面粗糙度(Sa)來評價拋光液的拋光性能。在拋光前后,氧化鋯陶瓷片依次經(jīng)丙酮、乙醇、清洗劑以及去離子水清洗,干燥后,用精密天平測量質(zhì)量,通過式(1)計算材料的去除率(MRR)[19]。
氧化鋯陶瓷片拋光前后的Sa通過表面輪廓儀(Ambios Xi-100 surface profiler,USA)測得,測量面積為100 μm×100 μm。
采用掃描電子顯微鏡(Nova NanoSEM 450,USA)觀察不同鋯元素改性二氧化硅顆粒的形貌,見圖2。當(dāng)鋯元素含量為0時,顆粒的形貌為球形;當(dāng)鋯元素含量提高到0.075%時,視野中絕大多數(shù)為非球形顆粒,顆粒的分散性良好;當(dāng)鋯元素含量為0.100%時,顆粒會發(fā)生團(tuán)聚,并出現(xiàn)粒徑較小的顆粒。
通過Zeta電位可以表征膠體的穩(wěn)定性,在圖3中給出了不同鋯元素含量磨粒的Zeta電位值。一般認(rèn)為Zeta電位的絕對值大于30 mV時,膠體穩(wěn)定存在[20]。鋯元素含量為0.075%,顆粒在未生長前處于穩(wěn)定與不穩(wěn)定的臨界狀態(tài),此時顆粒之間的靜電排斥力下降,部分顆粒開始接觸,帶正電的鋯元素起到橋梁作用,并最終形成非球形的二氧化硅[17,21-22]。隨著帶負(fù)電活性硅酸的不斷加入,正負(fù)電荷間的平衡重新恢復(fù),Zeta電位的絕對值上升至30 mV以上,顆粒的雙電層表現(xiàn)為斥力,使顆粒分散。當(dāng)加入的鋯元素的含量達(dá)到0.100%后,膠體呈現(xiàn)出強(qiáng)烈的不穩(wěn)定性,顆粒開始大規(guī)模無序團(tuán)聚,導(dǎo)致膠體沉淀。此時滴加的活性硅酸會優(yōu)先在團(tuán)聚處生長,同時游離在膠體內(nèi)帶正電荷的鋯元素會誘導(dǎo)活性硅酸自縮聚形成較小的次生顆粒。
圖2 不同鋯元素含量磨粒的掃描電鏡圖
圖3 鋯元素含量對磨粒Zeta電位的影響
鋯元素含量對陶瓷去除速率的影響見圖4。測量了3次拋光實驗的MRR值,并計算其平均值和標(biāo)準(zhǔn)偏差。從圖4中可以明顯看出,所有鋯元素改性磨粒的MRR值均高于純二氧化硅磨粒,這表明鋯元素改性的非球形復(fù)合磨粒比球形純二氧化硅磨粒具有更高的平整效率。MRR先隨著鋯元素含量的增大而增大,在鋯元素含量為0.075%時達(dá)到峰值(202 nm/h),隨后下降。這說明相比球形顆粒而言,非球形的顆粒可以有效提高氧化鋯陶瓷的MRR值。當(dāng)鋯元素含量為0.100%時,膠體的穩(wěn)定性較差,參與拋光進(jìn)程中的有效顆粒數(shù)減少,從而導(dǎo)致MRR值下降[23]。
圖4 鋯元素含量對陶瓷去除速率的影響
表面輪廓儀可以精確測量表面的粗糙度,提供更直觀的表面形貌圖像。陶瓷片三維表面輪廓見圖5,拋光前表面存在明顯的粗糙峰和劃痕,表面粗糙度較高,Sa為7.72 nm;拋光后陶瓷片的表面質(zhì)量均得到改善,粗糙峰降低,劃痕變淺;經(jīng)鋯元素改性磨粒拋光后的表面比純二氧化硅磨粒拋光后的表面更光滑。在鋯元素含量為0.075%時,陶瓷片表面粗糙峰和劃痕可以被有效去除,表面質(zhì)量最佳。在鋯元素含量升高到0.100%后,表面依舊可以觀察到有劃痕存在,這歸因于拋光顆粒越大,則在拋光過程中對陶瓷片的沖擊力也就越大,容易出現(xiàn)劃痕等現(xiàn)象[24]。
圖5 不同鋯元素含量磨粒拋光后的氧化鋯陶瓷片表面3D輪廓
圖6展示了使用不同鋯元素改性磨粒拋光后的陶瓷片的Sa值,數(shù)值為測量5個點的平均值。拋光后陶瓷片的Sa均明顯下降,Sa隨鋯元素含量的變化趨勢與MRR的趨勢相似。隨著鋯元素含量的增加,Sa值先減小后增大。在鋯元素相對含量為0.075%時出現(xiàn)最低點,Sa值為1.74 nm。當(dāng)鋯元素含量升高到0.100%后,表面粗糙度明顯增高。
圖6 鋯元素含量對陶瓷表面粗糙度的影響
化學(xué)機(jī)械拋光是機(jī)械作用和化學(xué)作用共同協(xié)同的結(jié)果。二氧化硅的莫氏硬度為7,氧化鋯的莫氏硬度為8.5,較軟的二氧化硅能夠完美地拋光較硬的氧化鋯陶瓷,被認(rèn)為是拋光過程可以發(fā)生固相化學(xué)反應(yīng)[21,25]。XPS常用于表征化學(xué)機(jī)械拋光中的固相化學(xué)反應(yīng)[26-27]。將鋯元素相對含量為0.075%的非球形二氧化硅拋光液拋后的樣品離心洗滌,烘干后進(jìn)行XPS分析。以284.8 eV,C 1s為標(biāo)準(zhǔn)峰校正后進(jìn)行擬合。如圖7a所示,Si 2p的峰值較寬,有2組擬合峰,結(jié)合能(BE)為103.84 eV[28]和103.33 eV[28]的峰,分別歸屬于SiO2的Si 2p態(tài)和ZrSiO4的Si 2p態(tài)。O 1s的光譜見圖7b。O 1s有3個峰,結(jié)合能為533.46 eV[29]和532.88 eV[30]的峰,分別歸屬于ZrSiO4的Zr-O-Si鍵中的O 1s態(tài)和SiO2的O 1s態(tài)。結(jié)合能532.51 eV[29]處的峰對應(yīng)ZrO2的O 1s態(tài)。
根據(jù)以上對Si和O的XPS分析,可以認(rèn)為二氧化硅與氧化鋯發(fā)生了固相化學(xué)反應(yīng),生成的反應(yīng)物以ZrSiO4的形式存在。主要反應(yīng)方程見式(2)。
ZrO2+SiO2=ZrSiO4(2)
圖7 拋后的非球形二氧化硅磨粒中Si和O元素的XPS譜圖
ZrSiO4的硬度相較于氧化鋯的硬度更低、更易去除,磨粒的機(jī)械作用可以將生成的反應(yīng)層去除,實現(xiàn)化學(xué)作用與機(jī)械作用間的動態(tài)平衡,有助于去除陶瓷片表面的粗糙峰,得到較高的材料去除率和較低的表面粗糙度。為了更形象地說明非球形二氧化硅磨料與氧化鋯晶片之間的接觸磨損,以單個球形和非球形磨料為例,建立了二氧化硅磨料與氧化鋯陶瓷晶片的接觸磨損模型。CMP過程中的機(jī)械作用機(jī)制見圖8。
磨粒在拋光墊與工件表面之間存在滑動和/或滾動的相對運動,不同的運動方式會導(dǎo)致不同的反應(yīng)層去除效果。研究表明,由于非球形膠體二氧化硅具有抗?jié)L動的形狀特性,磨粒與工件表面的相對運動具有較高的滑動比,這導(dǎo)致摩擦因數(shù)(COF)更高[15-16]。更高的COF意味著在化學(xué)機(jī)械拋光過程中,磨粒與工件表面之間的摩擦力更高,從而可以去除更多的表面材料。根據(jù)Wang等[31]提出的公式:
圖8 二氧化硅磨料與氧化鋯晶片的接觸磨損模型
從式(3)可見,顆粒與拋光工件間的摩擦因數(shù)的增大會使材料去除率也隨之增大。對薄膜摩擦因數(shù)儀進(jìn)行改裝(見圖9),通過加裝可容納拋光液的水槽,在水槽底部貼拋光墊,并將陶瓷片固定在滑塊底部,近似模擬了拋光環(huán)境,此時摩擦因數(shù)儀所測量的值為陶瓷片、拋光墊和拋光液之間的摩擦因數(shù)[24]。每組拋光液測量10次,取其平均值,測試參數(shù)見表2。
表2 摩擦因數(shù)測試參數(shù)
Tab.2 Parameters of friction coefficient test
圖9 改裝的摩擦因數(shù)儀
從圖10中可以發(fā)現(xiàn),摩擦因數(shù)的變化趨勢與材料去除率相似,隨著鋯元素相對含量的增大而增大,且當(dāng)鋯元素相對含量達(dá)到0.075%時,摩擦因數(shù)為峰值(0.341)。摩擦因數(shù)測試說明,非球形二氧化硅顆粒相較于球形顆粒,可以使拋光工件間的摩擦因數(shù)更大。
圖10 不同鋯元素含量磨粒與陶瓷片的摩擦因數(shù)
非球形二氧化硅磨粒的高機(jī)械作用可以及時將生成的反應(yīng)層去除,并重新露出新的表面,露出的新鮮表面又會繼續(xù)發(fā)生固相化學(xué)反應(yīng),生成新的反應(yīng)層,促進(jìn)了固相化學(xué)反應(yīng)的進(jìn)行,有助于去除陶瓷片表面的粗糙峰。
通過鋯元素誘導(dǎo)合成了具有膠體穩(wěn)定性的非球形二氧化硅磨粒,在對氧化鋯手機(jī)陶瓷背板的化學(xué)機(jī)械拋光中展現(xiàn)了優(yōu)于球形磨粒的拋光性能。非球形二氧化硅與氧化鋯陶瓷片之間可以發(fā)生固相化學(xué)反應(yīng),能生成較易去除的ZrSiO4。非球形的磨粒相較于傳統(tǒng)球形磨粒,可增大磨粒與氧化鋯陶瓷片的摩擦因數(shù),進(jìn)而增大化學(xué)機(jī)械拋光中的機(jī)械作用,高的機(jī)械作用可以及時地將ZrSiO4去除,進(jìn)一步促進(jìn)固相化學(xué)反應(yīng)進(jìn)行,實現(xiàn)對氧化鋯陶瓷片的高效拋光。
[1] KLISHIN A P, GHYNGAZOV S A, RUDNEV S V, et al. Fabrication of Zirconia Ceramics by Sintering in a Magnetic Field[J]. Ceramics International, 2021, 47(5): 6955-6964.
[2] FENG Ming, WANG You-liang, WU Yong-bo, et al. Investigation on Polishing of Zirconia Ceramics Using Magnetic Compound Fluid: Relationship between Mate-rial Removal and Surface Roughness[J]. International Jour-nal of Automation Technology, 2021, 15(1): 17-23.
[3] YANG Zhi-chao, ZHU Li-da, LIN Bin, et al. The Grin-ding Force Modeling and Experimental Study of ZrO2Cera-mic Materials in Ultrasonic Vibration Assisted Grin-ding[J]. Ceramics International, 2019, 45(7): 8873-8889.
[4] XU Lei, LEI Hong, WANG Tian-xian, et al. Preparation of Flower-Shaped Silica Abrasives by Double System Template Method and Its Effect on Polishing Performance of Sapphire Wafers[J]. Ceramics International, 2019, 45(7): 8471-8476.
[5] DAI San-wei, LEI Hong, FU Ji-fang. Self-Assembly Preparation of Popcorn-Like Colloidal Silica and Its Application on Chemical Mechanical Polishing of Zirco-nia Ceramic[J]. Ceramics International, 2020, 46(15): 24225-24230.
[6] 王光靈, 劉衛(wèi)麗, 劉宇翔, 等. 化學(xué)機(jī)械拋光工藝參數(shù)對氧化鋯陶瓷拋光速率的影響[J]. 表面技術(shù), 2018, 47(9): 266-271.
WANG Guang-ling, LIU Wei-li, LIU Yu-xiang, et al. Effects of Chemical-Mechanical Polishing Parameters on Material Removal Rate of Zirconia Ceramic[J]. Surface Technology, 2018, 47(9): 266-271.
[7] QIAO Jia-ping, FENG Ming, LI Yang, et al. A Study on Tangential Ultrasonic-Assisted Mirror Grinding of Zir-co-nia Ceramic Curved Surfaces[J]. The International Jour-nal of Advanced Manufacturing Technology, 2021, 112 (9/10): 2837-2851.
[8] ZHAO Bo, WU Yan, LIU C S, et al. The Study on Ductile Removal Mechanisms of Ultrasonic Vibration Grinding Nano-ZrO2Ceramics[J]. Key Engineering Materials, 2006, 304/305: 171-175.
[9] KUMAR M, MELKOTE S, LAHOTI G. Laser-Assisted Microgrinding of Ceramics[J]. CIRP Annals, 2011, 60(1): 367-370.
[10] SAMANT A N, DAHOTRE N B. Laser Machining of Structural Ceramics—A Review[J]. Journal of the Euro-pean Ceramic Society, 2009, 29(6): 969-993.
[11] MELK L, ANTTI M L, ANGLADA M. Material Removal Mechanisms by EDM of Zirconia Reinforced MWCNT Nanocomposites[J]. Ceramics International, 2016, 42(5): 5792-5801.
[12] FERRARIS E, REYNAERTS D, LAUWERS B. Micro- EDM Process Investigation and Comparison Performance of Al3O2and ZrO2Based Ceramic Composites[J]. CIRP Annals, 2011, 60(1): 235-238.
[13] BIAN Rong, FERRARIS E, HE Ning, et al. Process Investigation on Meso-Scale Hard Milling of ZrO2by Diamond Coated Tools[J]. Precision Engineering, 2014, 38(1): 82-91.
[14] LIANG Chen-liang, LIU Wei-li, ZHENG Yong-hui, et al. Fractal Nature of Non-Spherical Silica Particles via Facile Synthesis for the Abrasive Particles in Chemical Mecha-nical Polishing[J]. Colloids and Surfaces A: Physico-chemical and Engineering Aspects, 2016, 500: 146-153.
[15] LEE H, KIM M, JEONG H. Effect of Non-Spherical Colloidal Silica Particles on Removal Rate in Oxide CMP[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(13): 2611-2616.
[16] SALLEH S, SUDIN I, AWANG A. Effects of Non-Sphe-rical Colloidal Silica Slurry on Al-NiP Hard Disk Sub-strate CMP Application[J]. Applied Surface Science, 2016, 360: 59-68.
[17] LIANG Chen-liang, WANG Liang-yong, LIU Wei-li, et al. Non-Spherical Colloidal Silica Particles—Preparation, Application and Model[J]. Colloids and Surfaces A: Phy-sicochemical and Engineering Aspects, 2014, 457: 67-72.
[18] DONG Yue, LEI Hong, LIU Wen-qing. Preparation of Irre-gular Silica Nano-Abrasives for the Chemical Mecha-nical Polishing Behaviour on Sapphire Substrates[J]. Micro & Nano Letters, 2019, 14(13): 1328-1333.
[19] LI Zhong-yang, DENG Zhao-hui, HU Yang-xuan. Effects of Polishing Parameters on Surface Quality in Sapphire Double-Sided CMP[J]. Ceramics International, 2020, 46(9): 13356-13364.
[20] JOHNSON P M, VAN KATS C M, VAN BLAADEREN A. Synthesis of Colloidal Silica Dumbbells[J]. Langmuir, 2005, 21(24): 11510-11517.
[21] DONG Yue, LEI Hong, LIU Wen-qing. Effect of Mixed- Shaped Silica Sol Abrasives on Surface Roughness and Material Removal Rate of Zirconia Ceramic Cover[J]. Ceramics International, 2020, 46(15): 23828-23833.
[22] KONG Hui, WANG Dan, LIU Wei-li, et al. Preparation of Non-Spherical Colloidal Silica Nanoparticle and Its Application on Chemical Mechanical Polishing of Sap-phire[J]. Journal of Wuhan University of Technology- Mater Sci Ed, 2019, 34(1): 86-90.
[23] KHANNA A J, GUPTA S, KUMAR P, et al. Quan-tification of Shear Induced Agglomeration in Chemical Mechanical Polishing Slurries under Different Chemical Environments[J]. Microelectronic Engineering, 2019, 210: 1-7.
[24] SHI Xiao-lei, PAN Guo-shun, ZHOU Yan, et al. Chara-cterization of Colloidal Silica Abrasives with Different Sizes and Their Chemical-Mechanical Polishing Perfor-mance on 4H-SiC (0 0 0 1)[J]. Applied Surface Science, 2014, 307: 414-427.
[25] XU Lei, LEI Hong. Nano-Scale Surface of ZrO2Ceramics Achieved Efficiently by Peanut-Shaped and Heart-Shaped SiO2Abrasives through Chemical Mechanical Poli-shing [J]. Ceramics International, 2020, 46(9): 13297-13306.
[26] ZHOU Yan, PAN Guo-shun, SHI Xiao-lei, et al. XPS, UV-Vis Spectroscopy and AFM Studies on Removal Mechanisms of Si-Face SiC Wafer Chemical Mechanical Polishing (CMP)[J]. Applied Surface Science, 2014, 316: 643-648.
[27] VOVK E A, BUDNIKOV A T, DOBROTVORSKAYA M V, et al. Mechanism of the Interaction between Al2O3and SiO2during the Chemical-Mechanical Polishing of Sap-phire with Silicon Dioxide[J]. Journal of Surface Inve-stigation, 2012, 6(1): 115-121.
[28] TANIZAWA Y, SUZUKI T. Effects of Silicate Ions on the Formation and Transformation of Calcium Phosphates in Neutral Aqueous Solutions[J]. Journal of the Chemical Society, Faraday Transactions, 1995, 91(19): 3499.
[29] GUITTET M J, CROCOMBETTE J P, GAUTIER- SOYER M. Bonding and XPS Chemical Shifts in ZrSiO4Versus SiO2and ZrO2: Charge Transfer and Electrostatic Effects[J]. Physical Review B, 2001, 63(12): 125117.
[30] KALLURY K M R, DEBONO R F, KRULL U J, et al. Covalent Binding of Amino, Carboxy, and Nitro-Sub-stituted Aminopropyltriethoxysilanes to Oxidized Silicon Surfaces and Their Interaction with Octadecanamine and Octadecanoic Acid Studied by X-Ray Photoelectron Spectroscopy and Ellipsometry[J]. Journal of Adhesion Science and Technology, 1991, 5(10): 801-814.
[31] WANG Yong-guang, CHEN Yao, QI Fei, et al. A Material Removal Model for Silicon Oxide Layers in Chemical Mechanical Planarization Considering the Promoted Chemical Reaction by the down Pressure[J]. Tribology International, 2016, 93: 11-16.
Chemical Mechanical Polishing Performance of Non-Spherical Abrasives on Zirconia Ceramics
,
(Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China)
The work aims to synthesize new non-spherical silica abrasives and analyze the mechanism of the non-spherical silica abrasives in the polishing process, so as to improve the chemical mechanical polishing performance of the zirconia ceramic backplate of mobile phone. By adjusting the force between spherical silica nano-particles by Zr4+cations, polishing abrasives with Zr4+: SiO2mass ratios of 0, 0.025, 0.050, 0.075, and 0.100 were prepared. Laser particle analyzer and potentiometer and scanning electron microscope (SEM) were used to study the colloidal stability and abrasive grain morphology of polishing slurry. The chemical mechanical polishing performance of abrasives was analyzed from surface roughness (Sa) and material removal rate (MRR). The modified friction coefficient meter and X-ray photoelectron spectroscopy (XPS) were used to reveal the mechanism of the non-spherical silica on zirconia ceramics. The results showed that the well-dispersed non-spherical abrasives silica polishing slurry could be obtained with a relative content of 0.075wt.% of zirconium. Compared with the spherical abrasives silica polishing solution, the MRR of non-spherical silica abrasives was increased by 40.5%, and a smooth surface with Sa of 1.74 nm was obtained. XPS examination showed that silicon dioxide can react with zirconia in a solid phase to produce ZrSiO4, which was easier to be removed during the polishing process. The friction coefficient measurement results showed that the friction coefficient between non-spherical silica abrasives and ceramic wafer was 0.341, which was higher than 0.276 of spherical silica abrasives. The non-spherical silica abrasives can bring a higher coefficient of friction and chemical-mechanical synergy during polishing. It can efficiently remove the surface roughness peaks, obtain a flat surface with nano-level roughness, and realize efficient and high-precision polishing of the zirconia ceramic mobile phone backplane.
non-spherical silica; zirconia ceramic backplate; chemical mechanical polishing; material removal rate; surface roughness
TG356.28
A
1001-3660(2022)02-0306-07
10.16490/j.cnki.issn.1001-3660.2022.02.030
2021-04-28;
2021-08-09
2021-04-28;
2021-08-09
國家自然科學(xué)基金(51975343)
Supported by the National Natural Science Foundation of China (51975343)
丁振宇(1996—),男,碩士研究生,主要研究方向為納米拋光材料及原子級表面平整技術(shù)。
DING Zhen-yu (1996—), Male, Master, Research focus: Nano polishing materials and atomic level surface planarization technology.
雷紅(1968—),男,博士,研究員,主要研究方向為納米拋光材料及原子級表面平整技術(shù)。
LEI Hong (1968—), Male, Doctor, Professor, Research focus: Nano polishing materials and atomic level surface planarization technology
丁振宇,雷紅. 鋯元素誘導(dǎo)非球形磨粒對氧化鋯陶瓷的化學(xué)機(jī)械拋光性能研究[J]. 表面技術(shù), 2022, 51(2): 306-312.
DING Zhen-yu,Lei Hong. Chemical Mechanical Polishing Performance of Non-spherical Abrasives on Zirconia Ceramics[J]. Surface Technology, 2022, 51(2): 306-312.