王亞坤,臺(tái)玉萍,李新忠,3
(1 河南科技大學(xué)物理工程學(xué)院,河南洛陽(yáng)471023)
(2 河南科技大學(xué)化工與制藥學(xué)院,河南洛陽(yáng)471023)
(3 中國(guó)科學(xué)院西安光學(xué)精密機(jī)械研究所瞬態(tài)光學(xué)與光子技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安710119)
近年來(lái),研究人員根據(jù)空間傍軸波動(dòng)方程在不同坐標(biāo)系下的解,產(chǎn)生了不同的光束模式[1-5],并對(duì)其光場(chǎng)結(jié)構(gòu)、波前分布等進(jìn)行了深入的研究。在此基礎(chǔ)上,由多光束疊加產(chǎn)生的復(fù)合光場(chǎng),因光束之間的相互作用,產(chǎn)生了許多新穎的特性,促進(jìn)了研究人員對(duì)光的本質(zhì)的理解,使其在大容量光通信[6-7]、微小粒子捕獲及輸運(yùn)[8-9]、微納材料成型[10]領(lǐng)域發(fā)揮了重要的應(yīng)用價(jià)值。
一般來(lái)說(shuō),多光束組合可以分為兩種:一種是由同一光束族組合產(chǎn)生的復(fù)合光場(chǎng),稱為縱向疊加光場(chǎng)。研究人員利用多個(gè)參數(shù)不同的同種光束組合產(chǎn)生了復(fù)雜的結(jié)構(gòu)光場(chǎng),包括多個(gè)平面波[11]、高斯光束[12]、因斯-高斯光束[13]、厄米-高斯光束[14]、拉蓋爾-高斯光束[15-16]、貝塞爾光束[17-18]等。通過改變組合光束的相關(guān)參量實(shí)現(xiàn)光場(chǎng)振幅、相位的調(diào)控,其調(diào)控方式具有一致性,即組合光束的調(diào)控參量一致,而且分別調(diào)控相同參量時(shí),其產(chǎn)生的結(jié)果也具有一致性。此外,不同光束族的光束組合產(chǎn)生的復(fù)雜光場(chǎng)稱為橫向疊加光場(chǎng)。該光場(chǎng)的產(chǎn)生通常是將一種光束嵌入到另一種光束中,進(jìn)而產(chǎn)生所需要的復(fù)合光場(chǎng)。利用平面波與渦旋光束組合產(chǎn)生的螺旋形光場(chǎng),可以實(shí)現(xiàn)三維手性微材料成型[10];通過非線性雙波混頻,厄米-高斯光束和拉蓋爾-高斯光束組合后可以得到新的因斯-高斯模式[19-20];在艾里光束中嵌入渦旋光束可以得到艾里渦旋光束[21]。
在不同的疊加模式中,存在一種特殊的復(fù)合光場(chǎng),即艾里渦旋光束。其中,艾里光束自實(shí)驗(yàn)產(chǎn)生以來(lái)[2],因其在傳輸過程中具有自加速[2]、無(wú)衍射[22]和自愈[23]特性,受到了廣泛的研究,并被應(yīng)用于光學(xué)清掃[24]和等離子體通道產(chǎn)生[25]等領(lǐng)域。由一維拓展到二維,艾里光束可以表示為兩個(gè)相互垂直的一維艾里光束的乘積[2]。另外,渦旋光束因其攜帶軌道角動(dòng)量和螺旋形相位波前[26],在光通信[6-7]、微粒操縱[8]等領(lǐng)域展現(xiàn)出了諸多應(yīng)用前景。將螺旋相位嵌入到立方相位中即可得到艾里渦旋光束。因此,該復(fù)合光場(chǎng)不僅存在縱向疊加模式(兩個(gè)相互垂直的一維艾里光束),而且還包含橫向疊加模式(艾里光束和渦旋光束)。通過交叉模式的疊加,使艾里渦旋光束具有特殊的性質(zhì)以及更加豐富的光場(chǎng)結(jié)構(gòu)及相位分布。通過組合光束的參量變化可以間接對(duì)這些結(jié)構(gòu)進(jìn)行調(diào)控。但是,該復(fù)合光場(chǎng)受限于一定的傳播方向[27],而且通常采用相位或振幅調(diào)制[28]、晶體介質(zhì)[29]等方式實(shí)現(xiàn)對(duì)其傳播軌跡的調(diào)制,調(diào)控方式較為復(fù)雜。此外,受艾里主瓣的影響,嵌入光學(xué)渦旋的拓?fù)浜芍档臋z測(cè)也存在一定的干擾。
因此本文基于多坐標(biāo)變換技術(shù),依次對(duì)一維艾里光束、二維艾里光束以及艾里渦旋光束進(jìn)行組合與拆解,并在傅里葉面產(chǎn)生了準(zhǔn)艾里光束[27,30],實(shí)現(xiàn)了艾里光束的兩個(gè)邊瓣和嵌入的光學(xué)渦旋在不同空間維度的自由調(diào)控,使調(diào)控后的光束可以沿任意拋物線軌跡及傳播方向運(yùn)動(dòng),并分析了其不同情況下的傳播特性,同時(shí)提出了一種嵌入的光學(xué)渦旋拓?fù)浜傻脑粶y(cè)量方法,實(shí)驗(yàn)結(jié)果與理論推導(dǎo)相吻合。該方案促進(jìn)了艾里渦旋光束在光學(xué)清掃[24]和微粒捕獲[8-9]等領(lǐng)域的應(yīng)用。
一維無(wú)衍射艾里光束的傳播模型滿足傍軸波動(dòng)方程[2]
式中,φ表示電場(chǎng)包絡(luò),z表示歸一化的傳播距離,s表示無(wú)量綱的橫向坐標(biāo),即X或Y。
由式(1)可得到一維無(wú)衍射艾里光束的場(chǎng)分布,但是因其具有無(wú)限能量而無(wú)法在實(shí)驗(yàn)中產(chǎn)生。因此需要引入一個(gè)指數(shù)孔徑函數(shù),即exp(as),對(duì)艾里光束進(jìn)行“截趾”[2],其中a表示衰減因子,取較小的正數(shù)對(duì)艾里光束的尾瓣強(qiáng)度進(jìn)行“截趾”。將指數(shù)孔徑函數(shù)引入式(1),可以得到有限能量的艾里光束場(chǎng)分布為
式中,Ai(·)表示艾里函數(shù)。對(duì)式(2)進(jìn)行傅里葉變換,同時(shí)由于a是一個(gè)較小的正數(shù),因此可以忽略結(jié)果中a的高階項(xiàng),近似得到波矢k空間的傅里葉頻譜
式中,Φ(k)=k3/3 表示立方相位。從式(3)可以看出,有限能量的艾里光束可以由施加立方相位Φ(k)的高斯光束調(diào)制得到。因此實(shí)驗(yàn)中可以在高斯光束中加載立方相位,然后通過傅里葉變換得到艾里光束[2]。
接下來(lái)分別對(duì)一維、二維艾里光束以及艾里渦旋光束進(jìn)行組合和拆解。首先,在源平面對(duì)每個(gè)組成光束建立獨(dú)立的坐標(biāo)系,然后通過多坐標(biāo)變換技術(shù)[31]實(shí)現(xiàn)光束的獨(dú)立調(diào)控,如圖1所示。
復(fù)合光場(chǎng)在X-Y平面(源平面)的示意圖如圖所示,其組成光束如圖1(a)中藍(lán)色點(diǎn)線所包圍的k1,k2,k3。通過將復(fù)合光場(chǎng)拆解,使每一個(gè)組成光束能夠進(jìn)行獨(dú)立的調(diào)控,實(shí)現(xiàn)組成光束的旋轉(zhuǎn)以及拉伸。首先,將三波(Airy1 光束,Airy2 光束和渦旋光束)復(fù)合光場(chǎng)中每一個(gè)組成光束分別以O(shè)Ai1,OAi2,Oov為光束原點(diǎn)重新建立極坐標(biāo)系(rn,θn)[圖1(b)],通過在極坐標(biāo)系中分別添加旋轉(zhuǎn)因子φn來(lái)實(shí)現(xiàn)坐標(biāo)系的旋轉(zhuǎn),其中,n=1,2,3。接下來(lái)利用坐標(biāo)變換公式①xn=rncos(θn+φn)和yn=rnsin(θn+φn)將旋轉(zhuǎn)后的極坐標(biāo)系變換為直角坐標(biāo)系[圖1(c)]。然后根據(jù)模式變換技術(shù),將旋轉(zhuǎn)后的直角坐標(biāo)系在xn方向進(jìn)行拉伸,即(mnxn,yn),其中,m為拉伸因子[圖1(d)]。最后將直角坐標(biāo)系變換為橢圓坐標(biāo)系(ξn,ηn),變換方式為②:mnxn=ξncos(ηn)和yn=ξnsin(ηn)。將上述操作結(jié)合到光束的相位分布函數(shù)中,然后通過傅里葉變換即可在傅里葉面得到理想的艾里渦旋光束。在組成光束調(diào)制的過程中,根據(jù)有限能量的一維艾里光束的強(qiáng)度分布特性[2],本文只對(duì)艾里光束進(jìn)行旋轉(zhuǎn)操作,即圖1(a)→(b)→(c)。而傳統(tǒng)的渦旋光束具有暗中空的環(huán)形強(qiáng)度分布,在調(diào)控的過程中無(wú)法準(zhǔn)確觀察到渦旋光束的變化,因此根據(jù)文獻(xiàn)[32]將圓形的光學(xué)渦旋轉(zhuǎn)變?yōu)榉较蚩煽氐臋E圓光學(xué)渦旋,同時(shí)以橢圓光學(xué)渦旋的長(zhǎng)軸指向?yàn)闇u旋方向,變換過程為圖1(a)→(b)→(c)→(d)。
圖1 基于多坐標(biāo)變換技術(shù)的復(fù)合光場(chǎng)調(diào)控示意圖Fig.1 Schematic of the modulation of composite optical field based on the multi-coordinate transformation techniques
為了驗(yàn)證該設(shè)計(jì)的可行性,設(shè)計(jì)了如圖2所示的實(shí)驗(yàn)裝置。實(shí)驗(yàn)中選擇波長(zhǎng)為532 nm 的固體Nd:YAG激光器作為光源。將針孔濾波器(PF)放置在透鏡(L1,f1=100 mm)的前焦平面處進(jìn)而產(chǎn)生近似的平頂光束,該光束經(jīng)過分束立方體(BS)后作為入射光場(chǎng)照射到空間光調(diào)制器(SLM,HOLOEYE,PLUTO-VIS-016,像素尺寸8 μm×8 μm,分辨率1 920×1 080 pixels)中,經(jīng)過空間光調(diào)制器調(diào)制后,利用透鏡(L2,f2=200 mm)進(jìn)行傅里葉變換。將電荷耦合器件(CCD,Basler,像素尺寸4.5 μm×4.5 μm)放置在透鏡L2 的后焦平面上。在實(shí)驗(yàn)過程中,將經(jīng)過一系列變換的相位模式[圖2(a)]輸入到空間光調(diào)制器中,可以在相機(jī)中獲得相應(yīng)的實(shí)驗(yàn)結(jié)果[圖2(b)]。此外,通過將相機(jī)安裝到導(dǎo)軌上,可以實(shí)現(xiàn)相機(jī)沿光軸方向移動(dòng),進(jìn)而獲得不同距離處的光強(qiáng)分布。
圖2 實(shí)驗(yàn)裝置Fig.2 Experimental setup
基于多坐標(biāo)變換技術(shù),對(duì)不同模式疊加的復(fù)合光場(chǎng)中每一個(gè)組成光束進(jìn)行拆解,可以實(shí)現(xiàn)組成光束的獨(dú)立調(diào)控。針對(duì)縱向疊加光場(chǎng),即相互垂直的二維艾里光束進(jìn)行獨(dú)立調(diào)控時(shí),首先將其拆解為兩個(gè)一維艾里光束,此時(shí)二維艾里光束的相位分布表示為
式中,x1=r1cos(θ1+φ1)和y2=r2sin(θ2+φ2)。為統(tǒng)一坐標(biāo)系旋轉(zhuǎn)方向,規(guī)定當(dāng)φ1和φ2為正時(shí),坐標(biāo)系繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)。為保證產(chǎn)生的艾里光束具有良好的強(qiáng)度剖面,設(shè)置衰減因子a=0.05,下同。然后將該相位加載到空間光調(diào)制器中,即可在X′-Y′平面(傅里葉平面)獲得調(diào)控后的艾里光束。通過改變?chǔ)?或φ2可以使二維艾里光束的兩條邊瓣分別繞原點(diǎn)(主瓣)進(jìn)行旋轉(zhuǎn)。此時(shí)兩邊瓣的夾角不再滿足π/2,但是其主光瓣位置保持不變,如圖3所示。通過數(shù)值模擬結(jié)果與實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比可以發(fā)現(xiàn),兩者產(chǎn)生的結(jié)果較為吻合。從夾角由π/2 逐漸變大時(shí)[圖3(a)~(e)],變化的邊瓣k1在邊瓣k2方向上的分量逐漸增大,造成邊瓣k1的縮短。當(dāng)兩條邊瓣方向完全相反時(shí)[圖3(c)],x1和y2作為兩個(gè)無(wú)量綱的坐標(biāo)滿足x1=?y2,此時(shí),式(4)滿足Φ2DAiry=0,艾里光束強(qiáng)度剖面消失,表現(xiàn)為高斯光點(diǎn)。當(dāng)兩條邊瓣方向相同時(shí),則x1=y2,即二維艾里光束演化為一維艾里光束[圖3(f)~(j)]。
圖3 二維艾里光束中兩個(gè)邊瓣獨(dú)立調(diào)控時(shí)的光場(chǎng)分布Fig.3 Intensity profiles of the two lobes in 2D Airy beam modulated independently
當(dāng)φ1和φ2同時(shí)改變時(shí),艾里光束的強(qiáng)度剖面變化如圖4所示。當(dāng)二維艾里光束兩個(gè)邊瓣之間的夾角為鈍角并逐漸增大時(shí),沿X′=?Y′方向上的分量隨夾角增大而增大,造成邊瓣縮短,直至兩邊瓣方向完全相反,此時(shí)強(qiáng)度剖面表現(xiàn)為高斯光點(diǎn)[圖4(e)]。當(dāng)二維艾里光束兩個(gè)邊瓣之間的夾角為銳角并逐漸減小時(shí),兩邊瓣逐漸靠近,并最終演變成沿X′=Y′方向的一維艾里光束[圖4(j)]。
接下來(lái)在二維艾里光束的基礎(chǔ)上,添加一個(gè)光學(xué)渦旋來(lái)研究橫向疊加模式的復(fù)合光場(chǎng)。結(jié)合渦旋光束的獨(dú)特性質(zhì),將其添加到艾里光束中,可以產(chǎn)生一種特殊的復(fù)合光場(chǎng),即艾里渦旋光束[21,33],然后對(duì)三個(gè)組合光束進(jìn)行獨(dú)立調(diào)控。將光學(xué)渦旋的螺旋相位嵌入立方相位中,可以得到艾里渦旋光束的相位分布
式中,(ξ3,η3)表示光學(xué)渦旋所在的橢圓坐標(biāo)系,結(jié)合①,②得到與初始極坐標(biāo)系的關(guān)系為
式中,arg[]代表復(fù)數(shù)的幅角,取值范圍為(?π,π]。將式(6)代入式(5)中,可以得到艾里渦旋光束的相位分布。
根據(jù)調(diào)制后艾里渦旋光束的相位分布,在實(shí)驗(yàn)中得到組合光束的調(diào)控結(jié)果,如圖5所示。其中,Airy1 光束和Airy2 光束的旋轉(zhuǎn)角φ1=φ2=?π/4,光學(xué)渦旋拓?fù)浜蒷=5,拉伸因子m=2,橢圓率e=0.866[32]。加入渦旋光束后,由于光學(xué)渦旋尺寸大于艾里光束主瓣,造成艾里光束的邊瓣發(fā)生分裂,如圖5(b)中白色虛線部分。同時(shí),隨著φ3的改變,光學(xué)渦旋的長(zhǎng)軸發(fā)生旋轉(zhuǎn),而邊瓣的分裂間隙會(huì)隨著橢圓光學(xué)渦旋長(zhǎng)軸的指向發(fā)生改變。需要注意的是,橢圓光學(xué)渦旋在旋轉(zhuǎn)過程中,旋轉(zhuǎn)因子φ3的取值在(0,π]或(π,2π]范圍內(nèi)時(shí),渦旋方向是重復(fù)的,因此φ3的取值范圍定義為(0,π]。
圖5 艾里渦旋光束中橢圓光學(xué)渦旋方向的調(diào)控Fig.5 Orientation modulated of the elliptic optical vortex in Airy-vortex beam
利用多坐標(biāo)變換技術(shù),對(duì)橫向疊加光場(chǎng)進(jìn)行拆解,實(shí)現(xiàn)了艾里光束和光學(xué)渦旋的獨(dú)立調(diào)控。此外,光學(xué)渦旋的拓?fù)浜墒且粋€(gè)重要的研究參量,它決定了光學(xué)渦旋的半徑以及攜帶的軌道角動(dòng)量大小。但是,由于艾里主瓣的影響,利用傳統(tǒng)方式測(cè)量其拓?fù)浜纱笮〖胺?hào)較為復(fù)雜[34-36]。因此,本文提出了一種原位測(cè)量艾里渦旋光束中光學(xué)渦旋拓?fù)浜傻姆椒ǎ瑏?lái)實(shí)現(xiàn)拓?fù)浜纱笮〖胺?hào)的準(zhǔn)確測(cè)量。由式(4)可知,旋轉(zhuǎn)兩個(gè)一維艾里光束使其方向相反時(shí),源平面所加載的立方相位Φ2DAiry=0,此時(shí)不存在艾里光束,光強(qiáng)剖面變現(xiàn)為高斯分布。通過添加位移因子d令不同坐標(biāo)系原點(diǎn)即原主瓣位置進(jìn)行移動(dòng),滿足Φ2DAiry′(x1,y2)=Φ2DAiry(x1+d,y2+d)。此時(shí)在傅里葉平面的光場(chǎng)強(qiáng)度表現(xiàn)為均勻分布的“光針”[圖6(a)]。當(dāng)嵌入光學(xué)渦旋時(shí),執(zhí)行上述操作,“光針”中間位置因光學(xué)渦旋存在而產(chǎn)生干涉條紋,條紋的數(shù)量與方向分別決定了拓?fù)浜傻拇笮∨c符號(hào)[圖6(c)]。添加位移因子后,式(5)滿足ΦA(chǔ)iov′(x1,y2,ξ3)=ΦA(chǔ)iov(x1+d,y2+d,ξ3)。圖6(c)表示φ1=π/2,φ2=0,d=0.25 時(shí),不同拓?fù)浜傻母缮鎴D樣,其中白色箭頭指向干涉條紋,條紋數(shù)量N與拓?fù)浜蒷之間滿足l=N-1,干涉條紋逆時(shí)針旋轉(zhuǎn)代表拓?fù)浜煞?hào)為正,反之為負(fù)。該方法可以在不需要額外光學(xué)元件的情況下原位測(cè)定嵌入渦旋的拓?fù)浜桑⑶也皇墉h(huán)境振動(dòng)和寄生干擾的影響。
接下來(lái),驗(yàn)證了當(dāng)φ1=π/2,φ2=0 時(shí)位移因子d與“光針”高度的關(guān)系。從圖6(a)中可以看出,隨著d的增大,“光針”也逐漸增高。進(jìn)一步探究位移因子d對(duì)“光針”高度H的調(diào)控規(guī)律,得到了兩者的關(guān)系曲線[圖6(b)]。由藍(lán)色點(diǎn)線可以看出,數(shù)據(jù)點(diǎn)呈線性分布,對(duì)其進(jìn)行線性擬合,得到如圖中灰色直線所示的擬合曲線,相關(guān)系數(shù)高達(dá)0.998 9,證明數(shù)據(jù)點(diǎn)線性非常好,即位移因子d對(duì)“光針”高度H的調(diào)控為線性關(guān)系。此外,結(jié)合圖4(a),令φ1=φ0,φ2=φ0?π/2,可以得到位于第一、三象限且與X′軸夾角為φ0的“光針”;令φ2=φ0,φ1=φ0+π/2,可得到位于第二、四象限且與Y′軸夾角為φ0的“光針”。因此,該方案可以在傅里葉面得到任意高度及角度的“光針”,可以有效提高光學(xué)渦旋拓?fù)浜傻臋z測(cè)范圍,對(duì)于艾里渦旋光束中光學(xué)渦旋拓?fù)浜傻臋z測(cè)具有重要的意義。
圖6 艾里渦旋光束中光學(xué)渦旋拓?fù)浜傻臏y(cè)量Fig.6 Measurement of the topological charge of OV embedded in Airy-vortex beam
艾里光束在自由空間傳輸過程中具有自加速效應(yīng),表現(xiàn)在式(2)中s?(z/2)2項(xiàng),其主瓣沿拋物線軌跡運(yùn)動(dòng)。為了驗(yàn)證該復(fù)合光場(chǎng)經(jīng)過拆解調(diào)控之后仍然保留艾里光束的無(wú)衍射、自加速傳播特性,分別選取圖4(b),圖4(g)中的復(fù)合光場(chǎng)在不同傳播距離處的強(qiáng)度剖面,如圖7(a)和(b)所示,傳播距離Δz分別為0 cm(傅里葉平面)、2 cm、6 cm、10 cm,其中小圖代表相應(yīng)的數(shù)值模擬結(jié)果。該復(fù)合光場(chǎng)沿拋物線軌跡傳輸,并且傳輸方向與兩邊瓣的旋轉(zhuǎn)角滿足[27]:Y=[(cosφ1-sinφ2)/(sinφ1+cosφ2)]X。因此,通過改變兩邊瓣之間的夾角,可以使艾里光束沿任意拋物線軌跡和傳播方向運(yùn)動(dòng)。同時(shí),根據(jù)邊瓣夾角的變化,艾里光束的強(qiáng)度分布在傳輸過程中不再保持兩個(gè)完整的邊瓣,即主瓣位置發(fā)生分裂,形成兩個(gè)焦散面C1、C2。當(dāng)邊瓣夾角為鈍角時(shí),C2能量逐漸轉(zhuǎn)移到C1,一定距離后C2消失,C1變得尖銳,當(dāng)邊瓣夾角為銳角時(shí),情況與之相反。值得注意的是,當(dāng)邊瓣夾角為π/2 時(shí),其傳輸過程與傳統(tǒng)艾里光束相同,主瓣不會(huì)發(fā)生分裂,并且沿著相應(yīng)的方向傳輸。圖7(c)表示調(diào)控后的艾里渦旋光束[圖5(a)]在傳播過程中的強(qiáng)度剖面,由于艾里主瓣和光學(xué)渦旋的移動(dòng)速率不同[37],隨著距離的增加,艾里光束的主瓣與光學(xué)渦旋分離,其中綠色虛線表示艾里主瓣的移動(dòng)軌跡,藍(lán)色實(shí)線表示光學(xué)渦旋的變化軌跡。實(shí)驗(yàn)結(jié)果表明,基于多坐標(biāo)變換技術(shù),可以自由調(diào)控艾里渦旋光束的兩條邊瓣方向,并且一定程度上保留艾里光束的無(wú)衍射、自加速能力,并以此來(lái)調(diào)控其傳輸過程中的拋物線軌跡及傳輸方向。
圖7 不同光場(chǎng)在傳播距離Δz=0,2,6,10 cm 的強(qiáng)度剖面Fig.7 Intensity profiles of the corresponding figures at propagation distance at Δz=0,2,6,10 cm
基于多坐標(biāo)變換技術(shù),為艾里渦旋光束的不同組成光束建立了額外的坐標(biāo)系,實(shí)現(xiàn)了復(fù)合光場(chǎng)的拆解。然后依次對(duì)一維艾里光束、二維艾里光束以及艾里渦旋光束進(jìn)行了極坐標(biāo)系、直角坐標(biāo)系和橢圓坐標(biāo)系之間的變換,實(shí)現(xiàn)了艾里光束的兩個(gè)邊瓣和嵌入的光學(xué)渦旋的獨(dú)立調(diào)控,并分別推導(dǎo)了變換后的光場(chǎng)相位分布函數(shù)。在實(shí)驗(yàn)中產(chǎn)生了兩邊瓣夾角不限于π/2 的準(zhǔn)艾里光束,可以使調(diào)控后的光束沿任意拋物線軌跡及傳播方向運(yùn)動(dòng),并分析了其不同情況下的傳播特性,實(shí)驗(yàn)結(jié)果與理論分析吻合。此外,根據(jù)兩邊瓣方向相反時(shí)的相位分布函數(shù),通過添加位移因子,提出了一種光學(xué)渦旋拓?fù)浜傻脑粶y(cè)量方法,該方法可以在不需要額外光學(xué)元件的情況下原位測(cè)定嵌入渦旋的拓?fù)浜?,并且不受環(huán)境振動(dòng)和寄生干擾的影響。通過對(duì)艾里渦旋光束的組合與拆解,實(shí)現(xiàn)了該復(fù)合光場(chǎng)在多空間維度的自由調(diào)控。該方案促進(jìn)了艾里渦旋光束在微粒捕獲和光學(xué)清掃等領(lǐng)域的應(yīng)用。同時(shí)該方案具有普適性,可以為其它復(fù)合光場(chǎng)的調(diào)控提供新的解決思路。