周子維,魏瑩瑩,吳晴陽(yáng),范麗君,饒泓婷,陳援援,吳靈貞,戴彬彬,蔡烈偉,鄭世仲,王 芳,孫 云
·農(nóng)產(chǎn)品加工工程·
氣流因子差異化做青工藝對(duì)烏龍茶香氣品質(zhì)的影響
周子維1,2,魏瑩瑩1,3,吳晴陽(yáng)2,范麗君1,饒泓婷1,陳援援1,吳靈貞1,戴彬彬1,蔡烈偉1,鄭世仲1,王 芳1,孫 云2※
(1. 寧德師范學(xué)院生命科學(xué)學(xué)院/寧德師范學(xué)院茶葉審評(píng)中心,寧德 352100;2. 福建農(nóng)林大學(xué)園藝學(xué)院/茶學(xué)福建省高校重點(diǎn)實(shí)驗(yàn)室,福州 350002;3. 福建農(nóng)林大學(xué)食品科學(xué)學(xué)院,福州 350002)
為探究氣流因子在烏龍茶做青工藝中對(duì)其香氣品質(zhì)的影響,以鮮葉(CK)、常氧搖青葉(Ta)和乏氧搖青葉(Tb)及相應(yīng)的毛茶a(Ma)和毛茶b(Mb)為試材,利用半定量反轉(zhuǎn)錄聚合酶鏈?zhǔn)椒磻?yīng)(Reverse Transcription and Polymerase Chain Reaction,RT-PCR)、頂空固相微萃取法(Head-Space Solid-Phase MicroExtraction,HS-SPME)與氣相色譜-飛行時(shí)間質(zhì)譜聯(lián)用(Gas Chromatography-Time-Of-Flight Mass Spectrometry,GC-TOF MS)等技術(shù),通過多元統(tǒng)計(jì)分析等方式,對(duì)不同氣流因子介導(dǎo)做青工藝的烏龍茶揮發(fā)性組分進(jìn)行分析。結(jié)果表明:Tb中低氧脅迫響應(yīng)因子和基因的表達(dá)水平相較Ta和CK有所上調(diào),基于毛茶中共鑒定出的205種揮發(fā)性組分,采用最小偏二乘法(Partial Least Squares,PLS)分析表明,以重要性投影指標(biāo)值(Variable Important Projection,VIP)大于1.0為篩選條件,獲得標(biāo)志性差異揮發(fā)性成分有24個(gè),其中吲哚的VIP值最大(4.75),-法呢烯(3.06)、羅勒烯異構(gòu)體混合物(2.77)、反式-橙花叔醇(2.75)等隨后。乏氧搖青葉有5種特征差異揮發(fā)性組分,而常氧搖青葉中僅2種。毛茶感官審評(píng)結(jié)果發(fā)現(xiàn),常氧搖青處理葉付制的烏龍茶香氣清香持久,花香較顯(香氣感官得分90.67)。Ma中反式-橙花叔醇、2,3-二氫-3,5二羥基-6-甲基-4(H)-吡喃-4-酮、異植物醇、亞硫酸-2-乙基己基丁酯、6-氮雜雙環(huán)[3.2.1]辛烷的含量均顯著高于Mb(<0.05),推測(cè)該5個(gè)物質(zhì)可能是常氧搖青條件下形成較優(yōu)品質(zhì)烏龍茶的標(biāo)志性代謝物,這有助于更好理解氣流因子對(duì)搖青過程中香氣物質(zhì)代謝的影響,研究結(jié)果為探究環(huán)境因子介導(dǎo)下?lián)u青工藝對(duì)烏龍茶香氣品質(zhì)的形成機(jī)制提供理論基礎(chǔ)。
香氣;品質(zhì)控制;烏龍茶;氣流;做青;揮發(fā)性組分;最小偏二乘法
作為中國(guó)傳統(tǒng)六大茶類之一,烏龍茶以其天然馥郁的花果香聞名。有別于綠茶和紅茶,半發(fā)酵的烏龍茶香氣品質(zhì)主要通過做青環(huán)節(jié)形成[1]。做青是對(duì)萎凋適度的青葉反復(fù)進(jìn)行搖青和攤放的過程,做青方式、搖青強(qiáng)度、靜置時(shí)長(zhǎng)、攤?cè)~厚度等工藝參數(shù)在不同程度上影響烏龍茶香氣品質(zhì)的形成,做青過程中的以“溫、濕、風(fēng)”為代表的環(huán)境因子也是形成烏龍茶品質(zhì)的重要影響因素[2-4]。溫度是影響烏龍茶香氣品質(zhì)的重要因素。做青環(huán)境溫度過低,滋味單薄,香氣清細(xì)且?guī)鄽?,而溫度過高,“走水”過快,不利于芳香物質(zhì)的形成[5]。徐安安等[6]發(fā)現(xiàn)高溫會(huì)引起強(qiáng)烈的呼吸作用及酶促氧化,消耗較多氨基酸和可溶性糖,不利于茶葉香氣、滋味的形成;而中低溫有利于降低鮮葉呼吸速率,促進(jìn)香氣物質(zhì)形成和保留。鄧慧莉等發(fā)現(xiàn)在低溫條件(15 ℃)下,橙花叔醇、吲哚、芳樟醇等[7]多種芳香物質(zhì)含量顯著提高,而高溫(35 ℃)條件下只有法呢烯的相對(duì)含量大幅積累;王芳等[8]發(fā)現(xiàn)在24 ℃下做青的大紅袍茶品質(zhì)表現(xiàn)最佳。不同濕度使得烏龍茶香氣表現(xiàn)呈現(xiàn)明顯差異。陳林等[9]對(duì)在相對(duì)濕度71%±4%條件下做青的清香型烏龍茶、閩南烏龍茶和閩北烏龍茶的特征香氣組分進(jìn)行主成分分析,發(fā)現(xiàn)主要與吲哚、反式橙花叔醇、苯乙醛和法呢烯有關(guān),這些香氣成分可作為判別香氣品質(zhì)的化學(xué)指標(biāo)。劉寶順等[10]研究發(fā)現(xiàn)環(huán)境相對(duì)濕度越低越有利于葉子水分的散失、酶活性增強(qiáng),茶多酚越易被氧化,次級(jí)氧化產(chǎn)物和茶褐素的含量也較低;反之,濕度越高,次級(jí)氧化產(chǎn)物和茶褐素總量因做青時(shí)間延長(zhǎng)而積累增多,不利于武夷巖茶品質(zhì)的形成。陳倩蓮[11]等發(fā)現(xiàn)做青環(huán)境空氣相對(duì)濕度為70%~80%時(shí)更有利于大紅袍做青品質(zhì)的形成,經(jīng)感官審評(píng)發(fā)現(xiàn)毛茶以相對(duì)濕度70%的品質(zhì)最佳。
而氣流是溫、濕度的載體,在加工過程中往往容易被忽略,且氣流因子在做青過程中對(duì)烏龍茶香氣品質(zhì)有著不可或缺的作用。前人研究表明,在茶葉加工過程中適當(dāng)通風(fēng)能減少葉片的含水量,促進(jìn)青葉和空氣中的水分交換,有利于青葉水分的釋放和優(yōu)異品質(zhì)的形成[12-13];金心怡等[4]研究發(fā)現(xiàn),做青過程應(yīng)該注意調(diào)節(jié)和控制氣流因子,氣流因子包含空氣流速、氣流組織形式等因素;王秀萍等[14]研究表明春茶和暑茶均以恒溫恒風(fēng)下處理的香氣、滋味最優(yōu);郝志龍等研究表明,振動(dòng)做青葉的水分損失比傳統(tǒng)做青多,細(xì)胞損傷率也比空調(diào)做青高[15]。周子維等[16]研究表明,氣流因子從脂氧合酶-氫過氧化物(Lipoxgenase-Hydroperoxide Lyase,LOX-HPL)途徑介導(dǎo)了烏龍茶香氣品質(zhì)的形成途徑。
然而,目前關(guān)于做青過程中氣流因子對(duì)烏龍茶香氣的影響的研究尚不多見。作者所在課題組對(duì)(Hypoxia-induced protein)基因家族進(jìn)行了篩選和分析,通過對(duì)常氧和乏氧搖青葉中的半定量RT-PCR(Reverse Transcription and Polymerase Chain Reaction)分析,確定不同處理下形成的微環(huán)境低氧脅迫,并以常氧和乏氧搖青葉付制的烏龍茶毛茶為試材,采用頂空固相微萃取法(Head-Space Solid-Phase MicroExtraction,HS-SPME)結(jié)合氣相色譜—飛行時(shí)間質(zhì)譜聯(lián)用(Gas Chromatography- Time-Of-Flight Mass Spectrometry,GC-TOF MS),對(duì)烏龍茶揮發(fā)性成分進(jìn)行鑒定分析[17],結(jié)合毛茶感官審評(píng)和多元統(tǒng)計(jì)分析等手段,構(gòu)建氣流因子介導(dǎo)做青的烏龍茶揮發(fā)性組分代謝譜,明確烏龍茶特征揮發(fā)性組分對(duì)氣流的響應(yīng)模式,為今后烏龍茶加工過程中香氣品質(zhì)的調(diào)控提供理論依據(jù)。
以種植于福建農(nóng)林大學(xué)(金山校區(qū))茶學(xué)教學(xué)實(shí)踐基地(26°04? N,119°14? E)的國(guó)家級(jí)茶樹良種‘黃旦’(cv. Huangdan)為試驗(yàn)材料,采摘時(shí)間為2020年秋季,鮮葉的采摘標(biāo)準(zhǔn)為健康、無(wú)病蟲害的“一芽三葉”,對(duì)采后鮮葉進(jìn)行日光萎凋(26 ℃,150 000 lx),萎凋時(shí)長(zhǎng)為30 min,將適度的萎凋葉(W)均等地分為2組后,分別投入搖青機(jī)的子筒a和子筒b中(子筒a與子筒b間以木板隔離),子筒a中微環(huán)境為常氧狀態(tài),子筒b以黑色塑料膜進(jìn)行全面覆蓋,營(yíng)造乏氧微環(huán)境。參照課題組先前研究的做青方式[16,18],做青對(duì)萎凋葉進(jìn)行3次搖青處理,每次搖青的時(shí)長(zhǎng)為5 min,搖青機(jī)轉(zhuǎn)速為40 r/min,每次搖青期間進(jìn)行30 min的晾青處理(筒內(nèi)進(jìn)行),做青過程總歷時(shí)約為120 min,以鮮葉呈湯匙狀、綠葉紅邊明顯、花果香濃郁為標(biāo)準(zhǔn)做青葉,將子筒a和子筒b的做青葉分別記為Ta和Tb,隨后依照烏龍茶加工標(biāo)準(zhǔn),對(duì)Ta和Tb進(jìn)行殺青→揉捻→干燥等的相同處理,獲得常氧和乏氧處理?xiàng)l件下的毛茶a(Ma)和毛茶b(Mb)。所有的采后處理均在福建農(nóng)林大學(xué)茶學(xué)教學(xué)科研實(shí)踐基地茶廠二樓車間進(jìn)行,取樣當(dāng)天車間室內(nèi)溫度24 ℃、相對(duì)濕度45%,東南風(fēng)3~4級(jí)。對(duì)每次處理的取樣進(jìn)行3次重復(fù),以錫箔紙包好,采用液氮進(jìn)行固樣,其中茶樹鮮葉(CK)在離體后30 s內(nèi)完成田間取樣和固樣,Ta和Tb在處理完成后1 min內(nèi)完成取樣和固樣,固定后的樣品放置于超低溫(?70 ℃)冰箱中保存?zhèn)溆茫琈a和Mb則置于4 ℃冰箱保存?zhèn)溆茫▓D1)。
注:CK表示鮮葉;W表示萎凋葉;Ta表示烏龍茶常氧做青葉;Tb表示烏龍茶乏氧做青葉;Ma表示常氧做青付制的烏龍茶;Mb表示乏氧做青葉付制的烏龍茶。下同。
主要試劑:DP441多糖多酚植物總RNA提取試劑盒(離心柱型)(北京天根生化科技有限公司),去除基因組污染(gDNA Eraser)反轉(zhuǎn)錄試劑盒購(gòu)于(寶日醫(yī)生物技術(shù)(北京)有限公司),DreamTaq Green酶,GelGreen熒光核酸凝膠染色試劑(美國(guó)Biosharp公司),D2000 DNA Ladder。
主要儀器設(shè)備:6CYQT-60型搖青機(jī)、Allegra 64R高速冷凍離心機(jī)(美國(guó)貝克曼庫(kù)爾特公司)、LY500-O2手持泵吸式氧氣氣體檢測(cè)儀(深圳立業(yè)實(shí)業(yè)有限公司)、QDF-3型熱球式電風(fēng)速計(jì)(天津氣象海洋儀器廠)、氣相色譜-質(zhì)譜聯(lián)用儀包括:MPS多功能自動(dòng)進(jìn)樣架(德國(guó)哲斯泰公司),7890B氣相色譜(美國(guó)安捷倫科技公司),Pegasus HT飛行時(shí)間質(zhì)譜(美國(guó)力可公司)、凝膠電泳儀(北京六一儀器廠)、電泳凝膠成像系統(tǒng)(美國(guó)伯樂公司)、T100 PCR儀(美國(guó)伯樂公司)、超微量分光光度計(jì)(美國(guó)賽默飛世爾公司)。
稱取CK、Ta和Tb各0.5 g試材,用總RNA提取試劑盒(過濾柱法),嚴(yán)格參照試劑盒說明書抽提取在制品茶樣的總RNA并檢測(cè)完整性、濃度及純度,并依照說明書將提取的總RNA逆轉(zhuǎn)錄為cDNA,將得到的cDNA轉(zhuǎn)移至于?20 ℃條冰箱中備用。
使用熱循環(huán)儀進(jìn)行半定量RT-PCR檢測(cè)相關(guān)基因的表達(dá)水平,基因作為內(nèi)參基因[19],采用DNAMAN 8.0軟件設(shè)計(jì)茶樹相關(guān)基因的半定量RT-PCR引物(表1)。PCR擴(kuò)增反應(yīng)體系為25L:12.5L Dream Taq Green DNA聚合酶,9.5L ddH2O,1L 模板cDNA(400 ng/L),1L上下游每種引物(10 nmol/mL)。RT-PCR半定量擴(kuò)增條件為:94 ℃預(yù)變性3 min;94 ℃變性30 s,56 ℃退火25 s,72 ℃延伸90 s,35個(gè)循環(huán);72 ℃延伸10 min。擴(kuò)增子用2.0%瓊脂糖凝膠電泳分離后,以凝膠成像系統(tǒng)拍照。
表1 相關(guān)候選基因的半定量RT-PCR特異性引物
以烏龍茶感官審評(píng)方法(GB/T 23776-2018)對(duì)烏龍茶茶樣進(jìn)行審評(píng)。稱取Ma和Mb各5.0 g毛茶茶樣,置于110 mL蓋碗中,注滿沸水分別沖泡2、3和5 min后濾出茶湯。審評(píng)過程由3位國(guó)家高級(jí)評(píng)茶員進(jìn)行“五項(xiàng)因子”感官審評(píng),側(cè)重對(duì)香氣進(jìn)行審評(píng),評(píng)語(yǔ)引自GB/T 14487-2017。
稱取2.0 g茶葉粉末于20 mL頂空瓶中,SPME法進(jìn)行揮發(fā)性物質(zhì)的提取,通過GC-TOF MS對(duì)提取到的揮發(fā)性物質(zhì)進(jìn)行檢測(cè)。
SPME條件:萃取針:PDMS/DVB(23 Ga,Plain,65m,美國(guó) Supelco公司);孵育溫度:80 ℃;孵育時(shí)間:31 min;萃取時(shí)間:60 min;解析時(shí)間:3.5 min。
色譜條件:色譜柱:Rxi?-5silMS(30 m×0.25 mm× 0.25m);進(jìn)樣口溫度:250 ℃;傳輸線溫度:275 ℃;載氣:氦氣;氦氣流速:1 mL/min;程序升溫:50 ℃保持5 min,以3 ℃/min的速率升至210 ℃,保持3 min,以15 ℃/min的速率升至230 ℃;不分流進(jìn)樣品。
飛行時(shí)間質(zhì)譜條件:溶劑延遲時(shí)間:300 s;掃描范圍:30~500 amu;采集速率:10 Spec/s;檢測(cè)器電壓:1 530 V;EI電離能量:70 eV;離子源溫度:250 ℃。
利用ChromaTOF version 4.51.6(美國(guó)LECO公司)軟件對(duì)GC-TOF MS采集的數(shù)據(jù)進(jìn)行峰對(duì)齊、解卷積等處理,通過搜索NIST數(shù)據(jù)庫(kù)進(jìn)行揮發(fā)性物質(zhì)鑒定,并利用Simca-P14.0軟件進(jìn)行多元統(tǒng)計(jì)分析。采用Graphpad Prism 6.0和PASW statistics 18.0對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行分析及制圖,采用Tukey Honestly Significant Difference(HSD)test進(jìn)行差異顯著性分析,采用皮爾遜(Pearson)相關(guān)系數(shù)作為衡量變量間的線性關(guān)系,顯著性采用雙側(cè)檢。
利用氧氣氣體檢測(cè)儀對(duì)做青車間、子筒a和子筒b空間內(nèi)進(jìn)行氧氣含量的檢測(cè),數(shù)據(jù)顯示,子筒a的氧氣含量介于20.3%~20.8%之間,除去2個(gè)異常值,子筒a的氧氣含量(20.4%)與做青車間的氧氣含量(20.7%)間不存在顯著差異,而與子筒b內(nèi)的氧氣含量(16.7%)存在極顯著差異,這說明子筒a和子筒b在做青期間的分別滿足常氧和乏氧的搖青條件。對(duì)子筒a和子筒b內(nèi)部的氣流速度進(jìn)行檢測(cè),數(shù)據(jù)顯示,做青期間子筒a的氣流速度介于0.24~0.28 m/s之間,子筒b的氣流速度介于0.05~0.08 m/s之間,二者間存在極顯著差異(<0.01)。
注:**表示2個(gè)處理之間差異極顯著(P<0.01)。
為進(jìn)一步證明青葉樣品對(duì)乏氧環(huán)境存在應(yīng)激響應(yīng),開展對(duì)青葉中低氧脅迫誘導(dǎo)因子基因的表達(dá)分析。對(duì)試樣中抽提的總RNA質(zhì)量檢測(cè)結(jié)果顯示,鮮葉(CK)、烏龍茶常氧做青葉(Ta)以及乏氧做青葉(Tb)中提取的總RNA質(zhì)量濃度均大于500 ng/L,A260/A280比值均介于2.00至2.10之間,同時(shí),瓊脂糖凝膠電泳結(jié)果表明,所有樣品的18 S和28 S條帶清晰、完整,且能較好地分離(圖3)。該結(jié)果證明樣品中做青葉的總RNA并未發(fā)生嚴(yán)重降解,且保持著較高的純度、濃度和完整性,質(zhì)量符合要求,可開展后續(xù)試驗(yàn)。
圖3 不同處理葉的總RNA電泳圖及CsHIG基因表達(dá)的RT-PCR分析
低氧誘導(dǎo)因子(Hypoxia-Induced Factor, HIF)是植物響應(yīng)低氧環(huán)境脅迫的應(yīng)激蛋白,以CK、Ta和Tb的cDNA為模板,通過對(duì)HIF 相關(guān)基因和的半定量RT-PCR分析,結(jié)果發(fā)現(xiàn),常氧和乏氧的2種做青方式均促進(jìn)了基因的表達(dá)水平的提升,其中Tb處理對(duì)4基因的表達(dá)水平有明顯的上調(diào)作用。RT-PCR半定量試驗(yàn)結(jié)果可證明,子筒b做青處理確能引起氧氣缺乏微環(huán)境,進(jìn)而為后續(xù)常氧做青和乏氧做青烏龍茶的揮發(fā)性組分的比較奠定了基礎(chǔ)。
為明確烏龍茶毛茶的感官香氣品質(zhì),按照國(guó)標(biāo)法[20]對(duì)常氧做青付制的烏龍茶(Ma)和乏氧做青葉付制的烏龍茶(Mb)進(jìn)行“五項(xiàng)因子”感官審評(píng)(表2),側(cè)重于評(píng)價(jià)內(nèi)質(zhì)香氣和滋味,結(jié)果表明:Ma的香氣優(yōu)雅且清長(zhǎng),花香和黃旦的“品種香”顯,而Mb香氣雖有花香和黃旦的“品種香”,但較沉悶,欠愉悅,Ma的感官香氣得分極顯著高于Mb(0.01);在滋味的審評(píng)結(jié)果則表明,Ma滋味鮮醇爽滑,微有火味;Mb滋味醇和、較濃厚,有酵味,略帶苦尾,Ma的感官滋味得分顯著高于Mb(0.05)。綜上,Ma在內(nèi)質(zhì)香氣和滋味的表現(xiàn)上要總體優(yōu)于Mb。
表2 常氧搖青葉和乏氧搖青葉的感官審評(píng)結(jié)果
注:*表示2個(gè)處理之間差異顯著(<0.05);**表示2個(gè)處理之間差異極顯著(<0.01),下同。
Note: * indicated significant difference between the two treatments (<0.05); ** indicated that the difference between the two treatments was extremely significant (<0.01). The same below.
從試驗(yàn)材料中共鑒定出205種揮發(fā)性組分,通過歸類與分析,得到烷烴類最多共有50種,酯類(45種)次之。鮮葉經(jīng)不同搖青處理,除了醛類和烷烴類,其他6類呈現(xiàn)相同變化趨勢(shì)。其中酯類的相對(duì)含量波動(dòng)最大,經(jīng)乏氧搖青處理,酯類含量下降速度為常氧搖青葉的4.74倍。相較于CK,醛類和烷烴類在Ma中分別降低了0.77%、0.35%,而在Mb中卻分別增長(zhǎng)了0.36%、1.31%(圖4a)。Upset圖(多重對(duì)比圖)是采用固定位置的交叉環(huán)形式用封閉曲線表示集合及其關(guān)系的圖形,利用韋恩圖進(jìn)行不同組間差異代謝物多重比較分析,尋找共揮發(fā)性組分。CK、Mb、Ma香氣組分?jǐn)?shù)量分別為36、86、167。結(jié)果如圖4b所示,在CK、Ma和Mb這3組比較組間尋找到33種共有揮發(fā)性組分,且大多數(shù)以醇類為主(8種)、烯烴類次之(7種);Ma和Mb這兩組存在52種共有的揮發(fā)性組分。CK中有3種差異代謝物,如(-)-Α-蓽澄茄油烯、2,6-二甲基-1,3,6-庚三烯、糠醛,Mb中僅有(Z)-丙酸-3-己烯酯這1種特有差異代謝物,而Ma有高達(dá)82種差異代謝物(圖4b)。
基于鑒定獲得的揮發(fā)性物組分,通過Chroma TOF軟件處理后,利用最小偏二乘法(Partial Least Squares,PLS)模型,分析獲得主成分的特征值和方差貢獻(xiàn)率,結(jié)果如表3所示,第一主成分(F1)的貢獻(xiàn)率為34.7%,第二主成分(F2)的貢獻(xiàn)率為35.1%,二者的貢獻(xiàn)率累69.8%,PLS散點(diǎn)圖較清晰地展示了兩者在PC1和PC2上的分布區(qū)間差異(圖5a),同時(shí)HCA聚類分析也證明Ma和Mb中所對(duì)應(yīng)的主成分能夠達(dá)到良好的聚類效果(圖5b),這都表明F1和F2足以區(qū)分Ma和Mb所對(duì)應(yīng)的主要揮發(fā)性成分。
表3 不同搖青處理葉揮發(fā)性成分的最小偏二乘法的特征值及方差貢獻(xiàn)率
在PLS模式下生成變量投影重要性分析值(Variable Important for the Projection,VIP),以VIP>1為篩選條件[21-22],以量化每個(gè)揮發(fā)性組分在不同搖青處理葉的貢獻(xiàn)程度。在該模式下,共篩選獲得24種揮發(fā)性組分(表4),結(jié)合PLS得分圖,可知在常氧搖青處理對(duì)應(yīng)區(qū)域的特征揮發(fā)性組分有:亞硫酸-2-乙基己基丁酯、反式-橙花叔醇、(Z)-Z-四氫-6-(2-戊烯基)-2H-吡喃-2-酮、6-氮雜雙環(huán)[3.2.1]辛烷等7個(gè)揮發(fā)性物質(zhì);乏氧搖青處理對(duì)應(yīng)區(qū)域的特征揮發(fā)性組分有:三氯乙酰薰甲酸二乙酯等17個(gè)揮發(fā)性組分(圖5c、圖5d)。
注:QC表示混樣質(zhì)控。104為吲哚、10為α-法呢烯、15為羅勒烯異構(gòu)體混合物、20為反式-橙花叔醇、53為2,3-二氫-3,5二羥基-6-甲基-4(H)-吡喃-4-酮、112為橙花叔醇、6為反-4,8-二甲基壬-1,3,7-三烯、98為2-甲基-十六烷醛、14為3,7,11-三甲基-1,3,6,10-十二碳四烯、83為鄰苯二甲酸二乙酯、54為6-甲基-5-庚烯-2-酮、102為己酸-3-己烯酯、39為Z-四氫-6-(2-戊烯基)-2H-吡喃-2-酮、123為苯乙醇、124為鄰苯二甲酸,2-氯丙基異丁酯、141為三氯乙酰薰衣草醇、13為鄰苯二甲酸二異丁酯、106為異植物醇、87為正二十烷、19為脫氫芳樟醇、67為苯乙腈、130為亞硫酸-2-乙基己基丁酯、59為14-甲基-8-十六烷烯醛、57為6-氮雜雙環(huán)[3.2.1]辛烷。其他編號(hào)含義見表4。
為進(jìn)一步明確不同搖青葉中的特征揮發(fā)性組分,以相對(duì)含量為縱坐標(biāo),對(duì)烏龍茶在不同搖青處理下篩選獲得的24種特征揮發(fā)性物質(zhì)(表5)的揮發(fā)性含量進(jìn)行差異性分析。結(jié)果發(fā)現(xiàn),Ma中2,3-二氫-3,5二羥基-6-甲基-4(H)-吡喃-4-酮、亞硫酸-2-乙基己基丁酯的含量分別是Mb的2.3倍、1.2倍;Mb中羅勒烯異構(gòu)體混合物、反-4,8-二甲基壬-1,3,7-三烯、鄰苯二甲酸二乙酯、三氯乙酰薰衣草醇、正二十烷的相對(duì)含量分別是Ma的1.7倍、1.2倍、1.3倍、1.1倍、1.1倍。同時(shí),這些物質(zhì)的Ma與Mb組間相對(duì)含量差異均達(dá)到極顯著(<0.01)。Ma中反式-橙花叔醇、Z-四氫-6-(2-戊烯基)-2H-吡喃-2-酮、異植物醇、6-氮雜雙環(huán)[3.2.1]辛烷的含量分別是Mb的1.1倍、2.3倍、1.7倍、1.4倍。這4個(gè)物質(zhì)的Ma與Mb組間相對(duì)含量存在顯著差異(<0.05)。而吲哚、-法呢烯、橙花叔醇等13個(gè)物質(zhì)的Ma與Mb組間相對(duì)含量差異并不顯著(>0.05)(表5)。通過對(duì)常氧搖青毛茶(Ma)和乏氧搖青毛茶(Mb)特征揮發(fā)性組分?jǐn)?shù)量與香氣、滋味感官審評(píng)得分的相關(guān)性分析發(fā)現(xiàn),特征揮發(fā)性組分?jǐn)?shù)量與香氣感官評(píng)價(jià)得分為極顯著負(fù)相關(guān)(<0.05),相關(guān)系數(shù)為?0.947,與滋味感官評(píng)價(jià)得分為顯著負(fù)相關(guān)(<0.01),相關(guān)系數(shù)為?0.849。
綜上,Ma中反式-橙花叔醇、2,3-二氫-3,5二羥基-6-甲基-4(H)-吡喃-4-酮、異物植醇、亞硫酸-2-乙基己基丁酯、6-氮雜雙環(huán)[3.2.1]辛烷的含量均顯著高于Mb(<0.05),推測(cè)這5個(gè)物質(zhì)可能是常氧搖青條件下形成較優(yōu)品質(zhì)烏龍茶的標(biāo)志性代謝物。
表4 不同搖青處理葉特征揮發(fā)性組分信息
表5 常氧搖青毛茶(Ma)和乏氧搖青毛茶(Mb)特征揮發(fā)性組分的相對(duì)含量
做青車間通暢的氣流是形成烏龍茶優(yōu)異品質(zhì)的重要前提之一[12]。子筒a與子筒b間的氧氣含量差異顯著(<0.01),是造成Ta和Tb中茶樹HIG相關(guān)基因的差異表達(dá)的主要因素,而搖青處理是形成烏龍茶香氣品質(zhì)的重要因子[23],進(jìn)而筒內(nèi)氣流因子的間接影響了Ma和Mb的香氣組分構(gòu)成。盡管Mb中所檢測(cè)獲得特征揮發(fā)性組分(17個(gè))的揮發(fā)性物質(zhì)數(shù)量多于Ma(7個(gè)),但通過感官品質(zhì)的對(duì)比發(fā)現(xiàn),常氧狀態(tài)下完成做青的Ma香氣清長(zhǎng)、花香和“品種香”顯,優(yōu)于乏氧狀態(tài)下的Mb。金心怡等對(duì)恒溫恒風(fēng)和恒溫?zé)o風(fēng)2種做青環(huán)境進(jìn)行試驗(yàn)比較發(fā)現(xiàn),恒溫恒風(fēng)調(diào)控方式能營(yíng)造良好的做青環(huán)境,有利于毛茶優(yōu)異品質(zhì)的形成[12],這與本研究的觀點(diǎn)一致。與此同時(shí),該學(xué)者在研究中證實(shí)了,在氣流通暢的做青車間內(nèi),其空氣相對(duì)濕度較小,CO2濃度較低,在制青葉的呼吸速率維持在正常范圍內(nèi),有利于風(fēng)味物質(zhì)的形成與轉(zhuǎn)化,為優(yōu)異品質(zhì)奠定基礎(chǔ)[24]。由此推測(cè),青葉經(jīng)過乏氧搖青處理,密閉不通風(fēng),無(wú)法將代謝過程中的二氧化碳和水蒸氣排出,導(dǎo)致葉片含水量較高,而CO2濃度增加會(huì)抑制茶葉的呼吸作用,造成呼吸速率不規(guī)律,做青過程內(nèi)含物質(zhì)轉(zhuǎn)化不足,不利于茶葉形成優(yōu)異品質(zhì),同時(shí),氣流因子的缺乏或?qū)е聻觚埐柙谥迫~中形成和積累更多的揮發(fā)性代謝產(chǎn)物,以響應(yīng)乏氧而引起的外源非生物脅迫,但值得注意的是,特征揮發(fā)物的數(shù)目與烏龍茶香氣和滋味品質(zhì)間并無(wú)正向關(guān)聯(lián)(<0)。香氣是烏龍茶的靈魂,而揮發(fā)物是香氣形成的基礎(chǔ)[25],因此,做青微環(huán)境流暢空氣所產(chǎn)生的烏龍茶揮發(fā)性組分濃度及其配比,或許更有利于烏龍茶優(yōu)異香氣品質(zhì)的形成。
做青工藝形成的揮發(fā)性組分是形成烏龍茶香氣品質(zhì)的重要因子[26]。本試驗(yàn)通過對(duì)氣流因子差異化做青毛茶中揮發(fā)性組分進(jìn)行PLS分析,得到VIP最大的值(4.75)的香氣物質(zhì)為吲哚,吲哚在烏龍茶“花香”中被認(rèn)為是至關(guān)重要的香氣組分[27],但差異分析發(fā)現(xiàn),Ma與Mb中吲哚的含量并不存在顯著差異,吲哚主要在做青過程中搖青機(jī)械力的損傷脅迫下形成,這與Zeng等[28]的研究基本一致。作為重要的萜類化合物,羅勒烯(VIP=2.77)、法尼烯(VIP=3.06)、橙花叔醇(VIP=2.48)及反式-橙花叔醇(VIP=2.75)均是烏龍茶天然花果香的重要組分[29-30],羅勒烯在Mb的含量要極顯著高于Ma(<0.05),反式-橙花叔醇則相反,而法尼烯和橙花叔醇的含量在Ma和Mb之間并無(wú)顯著差異(>0.05),這暗示了乏氧做青處理僅有利于羅勒烯及其異構(gòu)體的形成,而不利于反-橙花叔醇的形成。作為茶葉中的另一大類香氣代謝源,脂肪族類香氣組分主要由長(zhǎng)鏈不飽和脂肪酸經(jīng)脂氧合酶(Lipoxygenase,LOX)途徑氧化降解而來(lái),Zhou等[16]研究表明乏氧微環(huán)境(如筒內(nèi)搖青)有利于C6醛類酶促還原反應(yīng)的進(jìn)行,形成并累積C6醇及其酯類;反之,常氧環(huán)境(水篩攤放)則有利于C6醛類非酶促氧化反應(yīng)的進(jìn)行,積累更多的C6酸及其酯類,在24種特征差異組分中,僅有己酸-3-己烯酯(VIP=1.84)一種,且在Ma和Mb之間差異并不顯著,這或許是因?yàn)楸狙芯坎捎玫氖墙?jīng)過高溫烘干的毛茶,導(dǎo)致大量低沸點(diǎn)的揮發(fā)性脂肪酸類組分發(fā)揮和轉(zhuǎn)化。
本文利用氣相色譜-飛行時(shí)間質(zhì)譜聯(lián)用(Gas Chromatography-Time-Of-Flight Mass Spectrometry,GC-TOF MS)技術(shù)結(jié)合多統(tǒng)計(jì)方法對(duì)常氧搖青毛茶和乏氧搖青毛茶揮發(fā)性成分進(jìn)行檢測(cè)分析,鑒定了氣流因子差異化做青工藝的烏龍茶特征揮發(fā)性組分,得到如下結(jié)論:
1)在供試樣品總共鑒定出205種揮發(fā)性組分,結(jié)合最小偏二乘法篩選分析獲得24種特征揮發(fā)性組分,這些組分的重要性投影指標(biāo)值均大于1.0。
2)常氧搖青條件制成的烏龍茶香氣品質(zhì)表現(xiàn)為清長(zhǎng)、優(yōu)雅、花香較顯,其中以反式-橙花叔醇、2,3-二氫-3,5二羥基-6-甲基-4(H)-吡喃-4-酮、異植物醇、亞硫酸-2-乙基己基丁酯、6-氮雜雙環(huán)[3.2.1]辛烷為特征揮發(fā)性組分。
3)特征揮發(fā)性組分?jǐn)?shù)量與烏龍茶香氣感官得分間為極顯著負(fù)相關(guān)(<0.01),相關(guān)系數(shù)為?0.947。
[1] Zeng L, Wang X, Liao Y, et al. Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea ()[J]. Postharvest Biology and Technology, 2019, 157: 110974.
[2] Zhou Y, Zeng L, Hou X, et al. Low temperature synergistically promotes wounding-induced indole accumulation by inducer of CBF expression-mediated alterations of jasmonic acid signaling in[J]. Journal of Experimental Botany, 2020, 71(6): 2172-2185.
[3] 魏新林,王元鳳,王登良. 做青溫濕度對(duì)嶺頭單樅烏龍茶香氣成分的影響[J]. 無(wú)錫輕工大學(xué)學(xué)報(bào),2002(3):224-229.
Wei Xinlin, Wang Yuanfeng, Wang Dengliang. Effects of different green-making temperature & humidity on aromatic constituents in Lingtoudancong Oolong Tea[J]. Journal of Wuxi University of Light Industry, 2002(3): 224-229. (in Chinese with English abstract)
[4] 金心怡,郭雅玲,王秀萍,等. 做青間氣流因子對(duì)做青環(huán)境的影響[J]. 福建農(nóng)業(yè)大學(xué)學(xué)報(bào),2001(3):362-367.
Jin Xinyi, Guo Yaling, Wang Xiuping, et al. Effects of airflow factors of fine manipulation room on air environment[J]. Journal of Fujian Agricultural University, 2001(3): 362-367. (in Chinese with English abstract)
[5] 郭雅玲,賴凌凌. 閩南烏龍茶加工工藝研究進(jìn)展[J]. 熱帶作物學(xué)報(bào),2012,33(6):1142-1147.
Guo Yalin, Lai lingling. Researches advancement on the processes of Minnan Oolong Tea[J]. Chinese Journal of Tropical Crops, 2012, 33(6): 1142-1147. (in Chinese with English abstract)
[6] 徐安安,黃亞輝. 近年烏龍茶做青工藝的發(fā)展研究[J]. 廣東茶業(yè),2016(4):23-27.
[7] 鄧慧莉,李鑫磊,毛貽帆,等. 不同做青溫度對(duì)烏龍茶滋味與香氣品質(zhì)的影響[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào),2021,12(14):5766-5771.
Deng Huili, Li Xinlei, Mao Yifan, et al. Effect of different turning-over temperatures on the taste and aroma quality of Oolong tea[J]. Journal of Food Safety & Quality. 2021, 12(14): 5766-5771. (in Chinese with English abstract)
[8] 王芳, 陳倩蓮,陳百文,等. 做青過程中溫度對(duì)大紅袍茶主要滋味成分的影響[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào),2022,13(2):554-559.
Wang Fang, Chen Qianlian, Chen Baiwen, et al. Effects of temperature on the main taste components of Dahongpao tea during the green-making process[J]. Journal of Food Safety & Quality, 2022, 13(2): 554-559. (in Chinese with English abstract)
[9] 陳林,陳鍵,陳泉賓,等. 做青工藝對(duì)烏龍茶香氣組成化學(xué)模式的影響[J]. 茶葉科學(xué),2014,34(4):387-395.
Chen Lin, Chen Jian, Chen Quanbin, et al. Effects of green-making technique on aroma pattern of Oolong Tea[J]. Journal of Tea Science, 2014, 34(4): 387-395. (in Chinese with English abstract)
[10] 劉寶順,占仕權(quán),劉欣,等. 武夷巖茶制茶環(huán)境與品質(zhì)[J]. 農(nóng)產(chǎn)品加工,2016(21):54-56.
Liu Baoshun, Zhan Shiquan, Liu Xin, et al. The environment and quality of Wuyi Rock Tea production[J]. Farm Products Processing, 2016(21): 54-56. (in Chinese with English abstract)
[11] 陳倩蓮,王芳,陳百文,等. 環(huán)境濕度對(duì)大紅袍做青品質(zhì)的影響[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào),2022,13(2):593-598.
Chen Qianlian, Wang Fang, Chen Baiwen, et al. Effects of environmental humidity on the quality of Dahongpao during Zuoqing process[J]. Journal of Food Safety & Quality, 2022, 13(2): 593-598. (in Chinese with English abstract)
[12] 金心怡,陳濟(jì)斌,王秀萍,等. 做青環(huán)境調(diào)控方式對(duì)烏龍茶品質(zhì)影響的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(6):215-218.
Jin Xinyi, Chen Jibin, Wang Xiuping, et al. Effect of controlling modes of Zuoqing conditions on quality of Oolong tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(6): 215-218. (in Chinese with English abstract)
[13] 郝志龍,陳濟(jì)斌,金心怡,等. 烏龍茶振動(dòng)做青設(shè)備研制與做青環(huán)境調(diào)控性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(10):269-277.
Hao Zhilong, Chen Jibin, Jin Xinyi, et al. Development and performance test of fine manipulation environment control for Oolong tea vibrating fine manipulation equipment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 269-277. (in Chinese with English abstract)
[14] 王秀萍,金心怡,陳常頌,等. 不同氣流條件下做青過程青葉的呼吸作用[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2008(1):80-83.
Wang Xiuping, Jin Xinyi, Chen Changsong, et al. Studies on respiration of tea leaves during fine manipulation on different airflow condition[J]. Journal of Hunan Agricultural University (Natural Sciences), 2008(1): 80-83. (in Chinese with English abstract)
[15] 郝志龍,林宏政,金心怡,等. 烏龍茶振動(dòng)做青氣流和攤?cè)~厚度對(duì)青葉做青物理特性的影響[J]. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,46(2):147-153.
Hao Zhilong, Lin Hongzheng, Jin Xinyi, et al. Effects of airflow and spreading thickness of tealeaf on physical characteristics of Oolong tea during vibrating fine manipulation[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2017, 46(2): 147-153. (in Chinese with English abstract)
[16] Zhou Z, Wu Q, Ni Z, et al. Metabolic flow of C6 volatile compounds from LOX-HPL pathway based on airflow during the post-harvest process of oolong tea[J]. Frontiers in Plant Science, 2021, 12: 738445.
[17] Si C, Liu H, Zhao X, et al. Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture[J]. Food Research International, 2020, 128: 108778.
[18] Zhou Z, Deng H, Wu Q, et al. Validation of reference genes for gene expression studies in post-harvest leaves of tea plant ()[J]. PeerJ, 2019, 7: e6385.
[19] Zhu J, Wang X, Guo L, et al. Characterization and alternative splicing profiles of lipoxygenase gene family in tea plant ()[J]. Plant & Cell Physiology, 2018(9): 9.
[20] GB/T 23776-2018, 茶葉感官審評(píng)方法[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2018.
[21] 滑金杰,王華杰,王近近,等. 采用PLS-DA分析毛火方式對(duì)工夫紅茶品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):260-270.
Hua Jinjie, Wang Huajie, Wang Jinjin, et al. Influences of first-drying methods on the quality of Congou black tea using partial least squares-discrimination analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 260-270. (in Chinese with English abstract)
[22] Zhou Z, Wu Q, Yang Y, et al. The dynamic change in fatty acids during the postharvest process of oolong tea production[J]. Molecules, 2022, 27(13): 4928.
[23] Zeng L, Zhou X, Su X, et al. Chinese oolong tea: An aromatic beverage produced under multiple stresses[J]. Trends in Food Science & Technology, 2020, 106: 242-253.
[24] 金心怡,王秀萍,吉克溫,等. 氣流對(duì)做青環(huán)境及烏龍茶品質(zhì)形成的影響[J]. 茶葉科學(xué),2003(1):41-45.
Jin Xinyi, Wang Xiuping, Ji Kewen, et al. Effect of airflow on zuoqing environment and quality of oolong Tea[J]. Journal of Tea Science, 2003, 23(1): 41-45. (in Chinese with English abstract)
[25] 郭向陽(yáng),霍羽佳,王本友,等. 采用氣相色譜-離子遷移譜分析黃大茶加工過程揮發(fā)性成分[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(6):274-281.
Guo Xiangyang, Huo Yujia, Wang Benyou, et al. Analysis of volatile compounds in large-leaf yellow tea during manufacturing processes using gas chromatography-ion mobility spectrometry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 274-281. (in Chinese with English abstract)
[26] 周子維,游芳寧,劉彬彬,等. 搖青機(jī)械力對(duì)烏龍茶脂肪族類香氣形成的影響[J]. 食品科學(xué),2019,40(13):52-59.
Zhou Ziwei, You Fangning, Liu Binbin, et al. Effect of mechanical force during turning-over on the formation of aliphatic aroma in oolong tea[J]. Food Science, 2019, 40(13): 52-59. (in Chinese with English abstract)
[27] Zeng L, Jin S, Xu Y, et al. Exogenous stimulation-induced biosynthesis of volatile compounds: Aroma formation of oolong tea at postharvest stage[J]. Critical Reviews in Food Science and Nutrition, 2022, 106: 242-253.
[28] Zeng L, Zhou Y, Gui J, et al. Formation of volatile tea constituent indole during the oolong tea manufacturing process[J]. Journal of Agricultural and Food Chemistry, 2016, 64(24): 5011-5019.
[29] Chen S, Xie P, Li Y, et al. New insights into stress-induced-ocimene biosynthesis in tea () leaves during oolong tea processing[J]. Journal of Agricultural and Food Chemistry, 2021, 69(39): 11656-11664.
[30] He C, Li Y, Zhou J, et al. Study on the suitability of tea cultivars for processing oolong tea from the perspective of aroma based on olfactory sensory, electronic nose, and GC-MS data correlation analysis[J]. Foods, 2022, 11(18): 2880.
Effects of differential green-making by airflow factors on the aroma quality of oolong tea
Zhou Ziwei1,2, Wei Yingying1, Wu Qingyang2, Fan Lijun1, Rao Hongting1, Chen Yuanyuan1, Wu Lingzhen1, Dai Binbin1, Cai Liewei1, Zheng Shizhong1, Wang Fang1, Sun Yun2※
(1./,,352100,; 2.,,350002,; 3.,,350002,)
Oolong tea is one of the six major Chinese traditional tea categories, due to its naturally fruity and floral aroma. Unlike green and black tea, the quality of oolong tea is originated from the processing (named green-making), which also contributes to the semi-fermentation degree. The green-making includes turnover and indoor withering. The former refers to shaking the solar-withered tea leaves several times, while the latter is to pause for hours after turnover. The two steps are repeated alternately during the manufacturing process of oolong tea. Therefore, all process parameters can pose some influences on the aroma of oolong tea, such as the mode of green-making, the intensity of turnover, indoor withering, and the thickness of spread tea leaves. In addition, the environmental factors of green-making also play an important role in the formation of oolong tea quality, including environmental temperature, humidity, and atmosphere. The airflow is the carrier of temperature and humidity, particularly the indispensable determiner of oolong tea quality. However, it is still lacking in the effects of airflow on the oolong tea green-making during tea processing. This study aims to explore the effect of the airflow factor on the aroma quality of oolong tea during the process of green-making. The test materials were selected as fresh tea leaves (CK), normoxic tea leaves (Ta), hypoxic tea leaves (Tb), and their associated raw tea a (Ma) and raw tea b (Mb). The volatile components of oolong tea mediated by different airflow factors were analyzed by multivariate statistical analysis after the semi-quantitative Reverse Transcription and Polymerase Chain Reaction (RT-PCR), headspace solid-phase microextraction (HS-SPME), and Gas Chromatography Time-of-Flight Mass Spectrometry (GC-TOF MS). The result showed that both green-making rollers (named subroller a and subroller b) fully met the conditions of normoxia and hypoxia. The relative expression levels of hypoxic stress response factorsgene andgene in Tb were up-regulated founded on the brightness of electrophoresis bands compared with the Ta and CK. 205 volatile components were identified in the raw tea. 33 kinds of shared differential metabolites were found among the CK, Ta and Tb, most of which were alcohol (8 kinds) and alkene (7 kinds). Partial Least Squares (PLS) analysis showed that there were 24 characteristic aroma components, whose Variable Important Projection (VIP) values were more than 1.0. Among them, the VIP value of indole was the largest (4.75), followed by-farnesene (3.06), ocimene mixture of isomers (2.77), and trans-nerolidol (2.75). The analysis of variance showed that there were five characteristic aroma components in the Mb, whereas, only two in the Ma. The sensory evaluation of raw tea indicated that the aroma of Ma was clean, lasting and refreshing, indicating a distinct flowery scent, achieved the final score 90.67. More importantly, the final score was achieved in 90. By contrast, the aroma of the Mb was dull, less pleasant, lack of long and clean, particularly with the floral and characteristics variety fragrance. The contents of five volatiles in the Ma were extremely significantly higher than those in the Mb (<0.05), including the trans-nerolidol, 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one, isophytol, 2-ethylhexyl butyl sulfite, 6-azabicyclo [3.2.1] octane. It infers that these five substances can be the landmark metabolites to form better quality oolong tea under the normoxic turn-over condition. This finding can provide a strong reference to better understand the effect of airflow factors on the metabolism of aroma substances during the green-making process. A theoretical foundation was also laid to explore the formation mechanism of aroma quality during the green-making process of oolong tea mediated by environmental factors.
flavors; quality control; oolong tea; airflow; green-making; volatile components; partial least squares
10.11975/j.issn.1002-6819.2022.21.028
TS207.3
A
1002-6819(2022)-21-0240-09
周子維,魏瑩瑩,吳晴陽(yáng),等. 氣流因子差異化做青工藝對(duì)烏龍茶香氣品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(21):240-248.doi:10.11975/j.issn.1002-6819.2022.21.028 http://www.tcsae.org
Zhou Ziwei, Wei Yingying, Wu Qingyang, et al. Effects of differential green-making by airflow factors on the aroma quality of oolong tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(21): 240-248. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.21.028 http://www.tcsae.org
2022-07-27
2022-09-19
福建省自然科學(xué)基金項(xiàng)目(2021J05271);寧德師范學(xué)院人才項(xiàng)目(2022Y05);財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)(茶葉)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-19)
周子維,博士,講師,研究方向茶葉加工與加工工程。Email:zwchow92@126.com
孫云,博士,教授,博士生導(dǎo)師,研究方向茶葉加工與品質(zhì)。Email:sunyun1125@126.com