楊 廣,雷 杰,孔春賢,何新林,李鵬飛,王春霞,李小龍,李 毅,李發(fā)東
膜下滴灌水源礦化度對棉花生長的影響及AquaCrop模擬
楊 廣1,2,3,雷 杰1,2,3,孔春賢1,2,3,何新林1,2,3,李鵬飛1,2,3,王春霞1,2,3,李小龍1,2,3,李 毅4,李發(fā)東5,6
(1. 石河子大學(xué)水利建筑工程學(xué)院,石河子 832003;2. 寒旱區(qū)生態(tài)水利工程兵團(tuán)重點(diǎn)實驗室,石河子 832003;3. 現(xiàn)代節(jié)水灌溉兵團(tuán)重點(diǎn)實驗室,石河子 832003;4. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712199;5. 中國科學(xué)院大學(xué),北京 100049;6. 中國科學(xué)院地理科學(xué)與資源研究所,北京 100101)
利用微咸水灌溉是緩解干旱區(qū)灌溉淡水資源短缺的有效途徑。為探討膜下滴灌水源礦化度對棉花植株體內(nèi)鹽分累積、生長及產(chǎn)量的影響,該研究開展了2 a(2020-2021年)測坑試驗,共設(shè)置 6個灌溉水礦化度,分別為1、2、3、4、5和6 g/L,分析了棉花生育期內(nèi)不同土層鹽分累積規(guī)律,構(gòu)建了不同礦化度水源膜下滴灌棉花的AquaCrop作物生長模型。結(jié)果表明:1)不同礦化度水源膜下滴灌棉花土壤鹽分在40~60 cm土層積累量達(dá)到峰值,80~100 cm土層鹽分積累較少。不同礦化度水源膜下滴灌棉花2 a末40~60 cm土層鹽分分別累積44.29%、42.68%、43.40%、34.92%、35.69%、39.32%。2)灌溉水源礦化度為3~4 g/L時棉花生長指標(biāo)和產(chǎn)量優(yōu)于其他處理,且不會造成鹽分累積過高,灌溉水源礦化度為4 g/L與1 g/L相比棉花各生長指標(biāo)和產(chǎn)量受到影響較小,綜合考慮棉花適宜灌溉水源為3~4 g/L之間。3)通過構(gòu)建AquaCrop作物生長模型模擬冠層覆蓋度、地上干物質(zhì)量模擬值與實測值的決定系數(shù)大于等于0.812,標(biāo)準(zhǔn)均方根誤差不大于24.1,一致性指數(shù)不小于0.984,模擬效果較好。棉花產(chǎn)量模擬值與實測值的相對誤差RE小于9.28%,可見AquaCrop作物生長模型能較好地模擬不同礦化度水源膜下滴灌棉花生長發(fā)育過程,可用于產(chǎn)量預(yù)測和農(nóng)業(yè)水資源優(yōu)化管理。研究結(jié)果可為干旱區(qū)咸水資源膜下滴灌技術(shù)可持續(xù)利用提供依據(jù)。
鹽分;灌溉;棉花;咸水;礦化度;膜下滴灌;作物生長模型
膜下滴灌具有節(jié)水、節(jié)肥、增溫、保濕和抑鹽等技術(shù)優(yōu)點(diǎn),在中國西北干旱地區(qū)廣泛使用[1]。將微咸水和咸水水源與膜下滴灌技術(shù)結(jié)合使用可提高水資源利用效率,有效緩解區(qū)域淡水資源緊缺問題。適宜的微咸水膜下滴灌可以增加作物根區(qū)水分,改善土壤水熱分布,促進(jìn)作物生長發(fā)育,提高作物產(chǎn)量。滴灌可以把鹽分淋洗到根區(qū)以下深層土壤,為根區(qū)提供適宜的濕潤體環(huán)境;但是,隨著灌溉水源礦化度的增加,鹽分被帶入土壤,導(dǎo)致土壤鹽分過高脅迫其根系,影響作物生理生長過程。
新疆是中國膜下滴灌技術(shù)的發(fā)源地,相比傳統(tǒng)灌溉方式,膜下滴灌過程中的土壤深層滲漏減少,將鹽分淋洗到土壤深層,鹽分積累一直是膜下滴灌技術(shù)推廣中的熱點(diǎn)問題。殷波等[2]探索了膜下滴灌棉田土壤鹽分運(yùn)移與積累規(guī)律,發(fā)現(xiàn)土壤40~60 cm處鹽分積累量最多,膜間0~20 cm鹽分強(qiáng)烈聚集?;⒛憽ね埋R爾白等[3]研究發(fā)現(xiàn)滴頭流量和灌水量是影響鹽分累積的因素,隨著灌溉年限延長土壤鹽分呈現(xiàn)累積趨勢,且向地表遷移。成厚亮等[4]分析了不同土壤基質(zhì)勢調(diào)控方案下棉花生長和水鹽分布狀況,發(fā)現(xiàn)土壤基質(zhì)勢越高,膜內(nèi)主根區(qū)積鹽越少。楊廣等[5]通過不同礦化度水源膜下滴灌棉花試驗研究發(fā)現(xiàn),電導(dǎo)率呈現(xiàn)累積趨勢,在60~70 cm增加趨勢最明顯。分析灌溉水源礦化度對土壤鹽分累積影響對于區(qū)域微咸水高效利用具有重要意義。
作物模型借助數(shù)值模擬方法描述土壤-作物-大氣系統(tǒng)中的內(nèi)在聯(lián)系,能夠?qū)ψ魑锷L發(fā)育過程中生物量和產(chǎn)量進(jìn)行動態(tài)、定量地模擬。AquaCrop模型是由國際糧農(nóng)組織開發(fā)的作物-水生產(chǎn)力水分驅(qū)動模型,該模型相比其他作物模型輸入?yún)?shù)較少,輸入數(shù)據(jù)容易獲取,結(jié)構(gòu)簡單,用戶學(xué)習(xí)成本較低。目前該模型已在世界范圍內(nèi)被廣泛用于作物生育期冠層覆蓋度、生物量和產(chǎn)量的預(yù)測[6-8],成功地模擬了冬小麥-夏玉米輪作系統(tǒng)、玉米、向日葵等多種作物的生長發(fā)育和水分利用情況[9-13]。Pourgholam-Amiji等[14]在伊朗北部馬贊達(dá)蘭省沿海地區(qū)利用咸水(電導(dǎo)率20 dS/m)灌溉水稻,采用AquaCrop模型對灌溉后土壤剖面鹽分模擬得出決定系數(shù)(2)、均方根誤差(Root Mean Square Error,RMSE)、標(biāo)準(zhǔn)均方根誤差(Standard Root Mean Square Error,NRMSE)、一致性指數(shù)()分別為0.05dS/m、2.11%、0.93和0.84實測值與模擬值具有較好的相關(guān)性。朱成立等[15]研究發(fā)現(xiàn)AquaCrop 模型能夠較好模擬咸淡輪灌下土壤水鹽及冬小麥地上生物量和產(chǎn)量。為了研究AquaCrop模型在新疆瑪納斯河灌區(qū)(膜下滴灌技術(shù)發(fā)源地,中國重要的棉花基地)不同水源礦化度條件下對棉花生長模擬的適用性,本文連續(xù)2 a開展不同礦化度水源膜下滴灌棉花測坑試驗,探究不同處理下膜下滴灌棉田土壤鹽分累積特征,結(jié)合氣象、土壤和作物信息構(gòu)建AquaCrop作物生長模型,模擬不同礦化度水源膜下滴灌下棉花生長過程,以期為干旱區(qū)咸水資源膜下滴灌技術(shù)可持續(xù)利用提供基礎(chǔ)依據(jù)。
本研究在現(xiàn)代節(jié)水灌溉兵團(tuán)重點(diǎn)實驗室(85°59′47″E,44°19′26″ N)進(jìn)行,該地屬溫帶大陸性氣候。測坑內(nèi)為沙壤土,研究區(qū)2020-2021年2 a平均氣溫為7.9~8.7 ℃,最高氣溫為43.8 ℃,最低氣溫為?39.2 ℃。多年平均降雨量為211 mm、蒸散量為1 660 mm,地下水潛水埋深7~9 m。
試驗在測坑種植棉花(農(nóng)豐NO.133),測坑規(guī)格2 m×2 m×2 m,坑底設(shè)30 cm沙礫石反濾層,四周用防滲墻隔開。棉花種植方式為“一膜兩管四行”,種植株距10 cm,滴灌帶鋪設(shè)于2個窄行之間。采用聚乙烯樹脂內(nèi)鑲式薄壁迷宮滴灌帶(新疆天業(yè)節(jié)水灌溉股份有限公司生產(chǎn)),滴頭流量為2 L/h,灌溉水源設(shè)6個不同礦化度,分別為淡水(1 g/L)、微咸水(2、3 g/L)、咸水(4、5、6 g/L),每個處理設(shè)置3個重復(fù),試驗布置方案,見圖1。
1.滴灌帶 2.棉花 3.采樣位置 4.塑料薄膜 5.根系
灌溉水源根據(jù)研究區(qū)地下水組成人工配置而成,NaHCO3∶Na2SO4∶NaCl∶CaCl2∶MgCl2=1∶7∶8∶1∶1。施肥水平為300-105-45 kg/hm2(N-P2O5-K2O),灌溉定額為4 800 m3/hm2,出苗水為淡水,灌溉制度如表1。
表1 不同礦化度水源膜下滴灌棉花灌溉制度
1.3.1 土壤電導(dǎo)率
在每次灌水前1 天及生育期開始和結(jié)束時,對0~100 cm土層土壤進(jìn)行取樣。用鋁盒裝好土樣并放入烘箱烘干,取出烘干的土樣磨碎,把磨碎土樣過5 mm篩,土水比按1∶5混合振蕩靜置過濾形成溶液。采用上海雷磁DDS-11A電導(dǎo)率儀測定土壤電導(dǎo)率(Electric Conductivity,EC)[16]。
1.3.2 棉花生長指標(biāo)測量
在棉花苗期、蕾期、花鈴期和吐絮期各取樣1次,取樣時選取1株長勢均勻棉花。株高:用卷尺測定從土壤表面到棉花頂部距離,cm;莖粗:測量采用游標(biāo)卡尺測定棉花子葉節(jié)至第一片真子葉之間最細(xì)的莖,cm。葉面積用卷尺(精度1 mm)測量葉片最長、最寬距離,葉面積指數(shù)(Leaf Area Index,LAI)采用式(1)[17]計算
式中為棉花種植密度,株/hm2;為測定株數(shù);為每株棉花葉片數(shù),片/株;L為第株棉花第個葉片的最大葉片長度,m;B為最大葉片寬度,m;為葉片數(shù);為棉花株數(shù)。
冠層覆蓋(Canopy Cover, CC)計算公式[7]為
在棉花每個生育期內(nèi),每個測坑采樣1株長勢均勻的棉花,從地表處砍斷植株,取地上部于105 ℃殺青30 min,然后75 ℃干燥至質(zhì)量恒定,采用電子天平(精度0.01 g)進(jìn)行稱量;在棉花吐絮期末,采收測坑內(nèi)所有棉花,記錄每個測坑株數(shù)、總鈴數(shù)、單鈴質(zhì)量,并計算產(chǎn)量[18]為
=0.01n··(3)
式中為籽棉產(chǎn)量,kg/hm2;n為單株棉鈴數(shù),個/株;為單鈴質(zhì)量,g。
1.3.4 土壤積鹽率計算
土壤積鹽率為0~100 cm土壤剖面某一時期與其前一時期相比土壤含鹽量的增加率,其計算公式為
式中為土壤積鹽率,%;W為第時期土壤含鹽量,kg/hm2;W-1為第-1時期土壤含鹽量,kg/hm2。
1.3.5 灌溉水利用效率
灌溉水利用效率(Irrigation Water Use Efficiency,IWUE,kg/m3)為產(chǎn)量和灌溉水量之間比值,計算公式為
IWUE=/(5)
式中為灌溉定額,m3/hm2。
1.3.6 數(shù)據(jù)統(tǒng)計處理
采用Sigmaplot 12.5和Origin處理實驗數(shù)據(jù)并作圖,用SPSS軟件進(jìn)行方差分析和最小二乘法(Least Significant Difference Method,LSD)進(jìn)行多重比較(=0.05)。
結(jié)合研究區(qū)氣象資料和測坑試驗數(shù)據(jù)設(shè)置AquaCrop模型中氣象數(shù)據(jù)、土壤性質(zhì)、灌溉制度、作物參數(shù)和初始條件,結(jié)合鹽分脅迫模塊來模擬不同礦化度水源膜下滴灌棉花生長過程及產(chǎn)量。由于測坑地下2 m處30 cm反濾層有自由排水口,試驗區(qū)地下水長期在2 m以下,故不考慮地下水補(bǔ)給;本研究不考慮深層滲漏量和地表徑流。
1.4.1 AquaCrop模型基本方程
Doorenbos和Kassam提出了大田作物生產(chǎn)力的基本方程[19]:
式中Y和Y為作物最大和實際產(chǎn)量,kg/hm2;和分別為土壤最大和實際蒸發(fā)量,mm;K為作物產(chǎn)量和土壤蒸發(fā)量間的相關(guān)系數(shù)。
1.4.2 氣象數(shù)據(jù)來源
根據(jù)試驗點(diǎn)的經(jīng)緯度、海拔高度、風(fēng)速、光照強(qiáng)度、日照時數(shù)等氣象數(shù)據(jù),應(yīng)用FAO研發(fā)的軟件求出參考作物蒸發(fā)量(ET0),建立模型氣象數(shù)據(jù)庫文件“*.CLI”[20]。利用模型推薦的默認(rèn)值作為參考值,建立CO2質(zhì)量濃度數(shù)據(jù)庫。2020年和2021年棉花生育期內(nèi)參考作物蒸發(fā)蒸騰量和降雨量見圖2。
圖2 2020和2021年棉花生育期內(nèi)降雨量和參考作物蒸發(fā)蒸騰量
1.4.3 作物參數(shù)
根據(jù)AquaCrop模型給定的標(biāo)準(zhǔn)值和FAO提供的棉花參數(shù)取值范圍,結(jié)合測坑試驗數(shù)據(jù)進(jìn)行模型調(diào)試,采用試錯法進(jìn)行棉花參數(shù)校準(zhǔn)。將試驗區(qū)棉花實際種植方式、最大有效根深和最大冠層覆蓋度等參數(shù)值輸入AquaCrop模型生成作物參數(shù)文件,建立作物參數(shù)數(shù)據(jù)庫文件“*.CRO”[21],如表2所示。
表2 AquaCrop作物生長模型棉花主要參數(shù)
1.4.4 土壤參數(shù)
在AquaCrop模型中輸入土壤深度、土壤質(zhì)地、飽和含水率等土壤參數(shù)數(shù)據(jù),建立土壤數(shù)據(jù)庫文件“*.SOL”,通過環(huán)刀法測定不同處理土壤飽和含水率和田間持水量,其他參數(shù)參考柴順喜等[22]土壤參數(shù)如表3所示。
表3 土壤參數(shù)數(shù)據(jù)
1.4.5 模型校準(zhǔn)與驗證
利用2020年不同礦化度水源膜下滴灌棉花試驗數(shù)據(jù),采用試錯法并參考已有的AquaCrop 模型參數(shù)分析結(jié)果對部分非保守參數(shù)進(jìn)行校準(zhǔn),獲得參數(shù)化的AquaCrop模型。利用參數(shù)化后模型對不同礦化度水源膜下滴灌棉花冠層覆蓋度、地上生物量和產(chǎn)量進(jìn)行模擬。采用RMSE、NRMSE、、2,相對誤差(Relative Error,RE)等統(tǒng)計指標(biāo)來評價模型的精度[23]。
2.1.1 不同礦化度水源膜下滴灌土壤鹽分累積
不同礦化度水源膜下滴灌棉花土壤鹽分在40~60 cm土層累積明顯,2 a趨勢一致,故只展示2021年結(jié)果,如圖3。隨著礦化度的增加,土壤鹽分累積愈發(fā)明顯,其中6 g/L處理下土壤鹽分積累最為明顯,2020年和2021年棉花生長期結(jié)束時0~100 cm電導(dǎo)率平均值分別3.03和3.15 dS/m,積鹽率分別為42.03%和40.94%。
圖3 不同礦化度水源膜下滴灌棉花土壤電導(dǎo)率分布
2.1.2 不同礦化度水源膜下滴灌對棉花生長指標(biāo)和產(chǎn)量的影響
1)不同礦化度水源灌溉對棉花株高、莖粗和葉面積指數(shù)影響
2 a不同處理下各處理趨勢一致,故只展示2020年結(jié)果,如圖4所示。
圖4 2021年不同礦化度水源灌溉對棉花生長影響
由圖4可知,作物的株高、莖粗、葉面積指數(shù)主要受到5、6 g/L處理的抑制作用,2、3、4 g/L與1 g/L相比具有促進(jìn)作用。其中2020年3 g/L處理下棉花株高生長量最大,與1 g/L相比2020年和2021年株高分別增高3.24和2.3 cm,5和6 g/L處理下棉花株高生長抑制作用明顯。在不同礦化度水源條件下莖粗生長量隨著生育期發(fā)展先增加后趨于平緩,3 g/L處理棉花莖粗生長較快,5和6 g/L處理莖粗生長抑制明顯,2021年莖粗生長量相比3 g/L分別降低了20.3%和26.1%。生長期內(nèi)葉面積指數(shù)呈現(xiàn)單峰型曲線趨勢,5、6 g/L處理抑制作用最明顯。
2)不同礦化度水源膜下滴灌棉花產(chǎn)量和灌溉水利用效率影響
由表4可知,棉花產(chǎn)量和灌溉水利用效率隨灌溉水源礦化度的增加而減小,其中在2、3和4 g/L處理下棉花產(chǎn)量較高,3 g/L處理下與1 g/L相比棉花2 a平均增產(chǎn)249.49 kg/hm2。由表4可知單株鈴數(shù)與單鈴質(zhì)量決定了棉花的產(chǎn)量,單鈴質(zhì)量介于4~6 g之間,處理1~4 g/L間棉株單株鈴數(shù)之間沒有顯著差異(>0.05),而4~6 g/L間差異顯著(<0.05)。1、2和3 g/L處理下產(chǎn)量IWUE無顯著差異(>0.05),3 g/L處理下棉花產(chǎn)量和IWUE最高,2020年和2021年棉花產(chǎn)量分別為5 379.24和5 287.32 kg/hm2,灌溉水利用效率分別為1.12和1.10 kg/m3。灌溉水源礦化度對棉花灌溉水利用效率影響顯著(<0.05),灌溉水利用效率表現(xiàn)為3 g/L處理最高。
表4 不同礦化度水源膜下滴灌對棉花產(chǎn)量及灌溉水利用效率的影響
注:小寫字母代表不同礦化度處理在0.05水平差異顯著。
Note: Lowercase letters represent significant differences at the level of 0.05 with different mineralization treatments.
2.2.1 棉花冠層覆蓋度模擬效果分析
由圖5可以看出,模擬實測值趨勢一致,生長前期葉片由于有機(jī)質(zhì)和肥料豐富逐漸生長,冠層覆蓋率上升較為迅速,花鈴期葉片全部展開,達(dá)最大冠層覆蓋度,進(jìn)入吐絮期葉片枯萎,冠層覆蓋率逐漸下降。由表5可知,各處理下2均大于等于0.812,RMSE為2.1%~6.8%,NRMSE為3.1%~10.9%,均大于等于0.986,可見AquaCrop 作物生長模型可以較好地模擬不同礦化度水源膜下滴灌棉花冠層覆蓋度動態(tài)變化過程。
圖5 不同礦化度水源滴灌棉花冠層覆蓋率模擬值與實測值
表5 模型模擬冠層覆蓋度結(jié)果精度分析
2.2.2 棉花地上生物量模擬效果分析
不同處理下棉花地上干物質(zhì)量隨生育期呈現(xiàn)先增加后趨于穩(wěn)定狀態(tài),見圖6。模型模擬的地上生物量與實測地上生物量進(jìn)行比較發(fā)現(xiàn)表6。1 g/L處理下模擬值與實測值2為0.921和0.990,RMSE為50.9和15.59 t/hm2,NRMSE為8.92%和15.5%,為0.966和0.977,2~4 g/L處理下模擬值與實測值2為0.979~0.997,RMSE為7.72~57.1 t/hm2,NRMSE為5.21%~24.1%,為0.977~0.998,5~6 g/L處理下模擬值與實測值2為0.971~0.996,RMSE為7.54~27.6 t/hm2,NRMSE為4.91~21.3%,為0.968~0.998,棉花地上生物量模擬效果最好。
圖6 不同礦化度水源灌溉下棉花地上生物量實測值與模擬值
表6 地上生物量模擬精度分析
注:r是相關(guān)系數(shù)。 Note: ris correlation coefficient.
2.2.3 棉化產(chǎn)量模擬
2020和2021年各處理的產(chǎn)量模擬值接近于實測值(2=0.883,=0.964和2=0.868,=0.963)。如圖7,2020和2021中的實測值和模擬值間的線性回歸系數(shù)分別為0.856、0.885,均接近于1,棉花產(chǎn)量模擬值與實測值的相對誤差RE小于9.28%,可見,AquaCrop作物生長模型可以用來模擬不同礦化度水源膜下滴灌棉花產(chǎn)量。
本研究表明,隨著灌溉水源礦化度升高,鹽分在土體中累積程度增強(qiáng)。在垂直方向上,鹽分聚集在40~60 cm土層。這是因為膜下滴灌無法將鹽分從土壤中排出,同時灌水量有限,只能將土壤中鹽分淋洗到土壤濕潤層邊緣,明廣輝等[24]研究發(fā)現(xiàn)由于滴灌流量有限, 滴灌以后膜下0~40 cm鹽分被淋洗到50~60 cm濕潤鋒處,與本研究結(jié)果一致。新疆氣候干旱少雨,土壤蒸發(fā)強(qiáng)度大,一部分鹽分在土壤表層聚集,造成土壤鹽漬化[5],因此,選擇合適礦化度的灌溉水源至關(guān)重要。根據(jù)作物的生理生長指標(biāo)、產(chǎn)量和鹽分累積綜合考慮,本研究選擇3~4g/L礦化度水源作為微咸水灌溉棉花適宜的礦化度范圍。各處理土壤鹽分在灌水后呈上下波動趨勢,灌溉后初期土壤鹽分都有一定程度的降低,而后隨著時間推移土壤鹽分逐漸上升,小于4 g/L的灌溉水源土壤鹽分累積趨勢緩慢,短期內(nèi)不會因為鹽分累積而影響作物生長。李科江等[25]在河北得出礦化度小于3.38 g/L可以作為棉花合適的灌溉水。宋有璽等[26]建議民勤綠洲區(qū)灌溉水礦化度小于3.51 g/L棉花產(chǎn)量不會受到顯著影響,與本文得出的3~4 g/L可作為棉花灌溉水源適宜礦化度范圍研究結(jié)果基本一致。隨著灌溉水源礦化度升高,棉花生長受到鹽分脅迫,導(dǎo)致株高、莖粗生長受到抑制,生育期提前,葉片提前脫落,葉面積指數(shù)先增加然后趨于平緩最后降低,研究結(jié)論與王久生等[27-28]研究結(jié)果一致。灌溉水利用效率是衡量膜下滴灌技術(shù)優(yōu)劣的一個指標(biāo),它主要受光合蒸騰,土壤蒸發(fā),干物質(zhì)積累影響,當(dāng)土壤含鹽量低于棉花耐鹽閾值時,作物生長不會顯著影響產(chǎn)量,這與黃光偉等[29]研究結(jié)論一致。不同礦化度水源膜下滴灌對棉花單鈴質(zhì)量影響不大,這與阮明艷[30]研究結(jié)果一致。當(dāng)土壤含鹽量過高時,會降低土壤溶液水勢,并對棉花根系產(chǎn)生滲透脅迫,造成棉花生長不良甚至死亡[31-33]。
AquaCrop模型可以用來模擬干旱與半干旱環(huán)境中鹽分脅迫對作物產(chǎn)量的影響,本研究利用2 a不同礦化度水源膜下滴灌棉花試驗數(shù)據(jù)進(jìn)行AquaCrop模型的率定及驗證,冠層增長系數(shù)和冠層衰減系數(shù)分別為10.3%/d和8.0%/d,冠層覆蓋率模擬值與實測值各處理2均不小于0.812,RMSE為2.1%~6.8%,NRMSE 為3.1%~10.9%,均不小于0.986。王興鵬等[34]研究同樣發(fā)現(xiàn)冠層增長系數(shù)和冠層衰減系數(shù)分別為10.3%/d和8%/d,冠層覆蓋度模擬效果較好。譚帥[13]發(fā)現(xiàn)冠層增長系數(shù)和冠層衰減系數(shù)分別為9.442%/d和7.406%/d時冠層覆蓋度模擬值和實測值的R、RMSE 和值分別為0.89、10.6%和0.97,模擬誤差較小。Zhang等[35]發(fā)現(xiàn)冠層增長系數(shù)和冠層衰減系數(shù)分別為13.1%/d和0.319%/d時,不同礦化度水源膜下滴灌棉花冠層覆蓋度的模擬值與實測值R、RMSE和分別為0.82、12.36%和0.94,模擬值與實測值之間有較強(qiáng)相關(guān)性。AquaCrop模型可以較好地模擬地上生物量和產(chǎn)量。本研究2021年1 g/L處理下地上生物量模擬效果最好,2達(dá)0.99,RMSE為15.59%,NRMSE達(dá)15.5%,為0.77。李晶等[36]應(yīng)用AquaCrop模型對東北春小麥地上生物量預(yù)測,R在0.96~0.99之間。Soomro等[37]在巴基斯坦卡拉奇的馬利爾地區(qū)3個咸水處理下實測地上生物量和模擬地上生物量的2為0.98。本研究2020和2021年產(chǎn)量模擬值接近于實測值(2≥0.868,≥0.963),標(biāo)準(zhǔn)水分生產(chǎn)力(Water Productivity,WP*)為19 g/m2,參考收獲指數(shù)(Harvest Index,HI)為41%,WP*和HIo的值與王興鵬[34](WP*=19 g/m2,HIO=41%),譚帥[13](WP*=20 g/m2,HIO=40%),Qiao等[38](WP*=15 g/m2,HI0=30%),Voloudakis等[39](WP*=15.2 g/m2,HI0=27%,CCm=94%)研究結(jié)果一致。
對膜下滴灌水礦化度對棉花生長的影響及模擬開展研究,結(jié)論如下:
1)土壤電導(dǎo)率與灌溉水源礦化度成正相關(guān),其影響因素最大為6 g/L,其次為5、4、3、2、1 g/L。土壤鹽分在垂直方向40~60 cm處累積最多,6 g/L處理達(dá)到3.15 dS/m(2021年),各土層電導(dǎo)率隨著灌水時間呈現(xiàn)上下波動趨勢。
2)不同礦化度水源膜下滴灌對棉花株高、莖粗和葉面積指數(shù)呈現(xiàn)先增加后減小趨勢。3 g/L和4 g/L處理棉花生長指標(biāo)沒有受到明顯影響。綜合2 a數(shù)據(jù),2~4g/L均有所增加,但3 g/L處理棉花產(chǎn)量和灌溉水利用效率最高分別為5 379.24 kg/hm2和1.12 kg/m3,4 g/L處理下與1 g/L相比棉花并未明顯減產(chǎn)。3~4 g/L可作為棉花灌溉水源適宜的礦化度范圍。
本研究結(jié)合2 a膜下滴灌棉花試驗數(shù)據(jù)對棉花生長過程模擬發(fā)現(xiàn),冠層覆蓋率和地上生物量模擬值與實測值各處理2均不小于0.812,RMSE為2.1~15.59 t/hm2,NRMSE 為3.1%~24.1%,均不小于0.77。模擬精度較高;棉花產(chǎn)量模擬值與實測值的相對誤差RE小于9.28%,模擬精度較高,AquaCrop模型能較好地模擬不同礦化度水源膜下滴灌棉花地上生物量、冠層覆蓋度和產(chǎn)量的動態(tài)變化過程。
[1] 徐飛鵬,李云開,任樹梅. 新疆棉花膜下滴灌技術(shù)的應(yīng)用與發(fā)展的思考[J]. 農(nóng)業(yè)工程學(xué)報,2003,15(1):25-27.
Xu Feipeng, Li Yunkai, Ren Shumei. Investigation and discussion of drip irrigation under mulch in Xinjiang Uygur Autonomous Region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 15(1): 25-27. (in Chinese with English abstract)
[2] 殷波,柳延濤. 膜下長期滴灌土壤鹽分的空間分布特征與累積效應(yīng)[J]. 干旱地區(qū)農(nóng)業(yè)研究,2009,27(6):228-231.
Yin Bo, Liu Yantao. Spatial distribution and accumulation pattern of soil salinity with long term drip irrigation under plastic mulching[J]. Agricultural Research in the Arid Areas, 2009, 27(6): 228-231. (in Chinese with English abstract)
[3] 虎膽·吐馬爾白,弋鵬飛,王一民,等. 干旱區(qū)膜下滴灌棉田土壤鹽分運(yùn)移及累積特征研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2011,29(5):144-150.
Hudan·Tumaerbai, Ge Pengfei, Wang Yimin, et al. Research on transport and accumulation characteristics of soil salinity of cotton field under film mulched drip irrigation in arid areas[J]. Agricultural Research in the Arid Areas, 2011, 29(5): 144-150. (in Chinese with English abstract)
[4] 成厚亮,張富倉,李萌,等. 不同生育期土壤基質(zhì)勢調(diào)控對棉花生長和土壤水鹽分布的影響[J]. 應(yīng)用生態(tài)學(xué)報,2021,32(1):211-221.
Cheng Houliang, Zhang Fucang, Li Meng, et al. Effects of soil matrix potential regulation at various growth states on cotton growth and soil water and salt distribution[J]. Journal of Applied Ecology, 2021, 32(1): 211-221. (in Chinese with English abstract)
[5] 楊廣,李萬精,任富天,等. 不同礦化度咸水膜下滴灌棉花土壤鹽分累積規(guī)律及其數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(19):73-83.
Yang Guang, Li Wanjing, Ren Futian, et al. Soil salinity accumulation and model simulation of cotton under mulch drip irrigation with different salinity level water[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2021, 37(19): 73-83. (in Chinese with English abstract)
[6] Raes D, Dirk P, Hsiao T C, et al. AquaCrop--the FAO crop model to simulate yield response to water: II. main algorithms and software description[J]. Agronomy Journal, 2009, 101(3): 447.
[7] Steduto P, Hsiao T C, Raes D, et al. AquaCrop--the FAO crop model to simulate yield response to water: I. concepts and underlying principles [J]. Agronomy Journal, 2009, 101(3): 446.
[8] Hsiao T C, Heng L, Steduto P, et al. AquaCrop-the FAO crop model to simulate yield response to water: III. parameterization and testing for maize[J]. Agronomy Journal, 2009, 101(3): 448.
[9] 董文俊. 基于覆膜積溫補(bǔ)償效應(yīng)的AquaCrop模型改進(jìn)與應(yīng)用研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2020.
Dong Wenjun . Improvement and Application of AquaCrop Model Based on the Compensation Effect under Plastic Mulching[D]. Yangling: Northwest A&F University, 2020. (in Chinese with English abstract)
[10] 徐昆,朱秀芳,劉瑩,等. 采用AquaCrop作物生長模型研究中國玉米干旱脆弱性[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(1):154-161.
Xu Kun, Zhu Xiufang, Liu Ying, et al. Vulnerability of drought disaster of maize in China based on AquaCrop model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 154-161. (in Chinese with English abstract)
[11] 楊寧,孫占祥,張立楨,等. 基于改進(jìn)AquaCrop模型的覆膜栽培玉米水分利用過程模擬與驗證[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(增刊1):122-132.
Yang Ning, Sun Zhanxiang, Zhang Lizhen, et al. Simulation of water use process by film mulched cultivated maize based on improved Aqua Crop model and its verification[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Suppl. 1): 122-132. (in Chinese with English abstract)
[12] 程載恒. 基于AquaCrop模型的河套灌區(qū)向日葵灌溉制度研究[D]. 銀川:寧夏大學(xué),2017.
Cheng Zaiheng. Based on AquaCrop Model Research on Sunflower Irrigation Schedule in Hetao Irrigation Area [D]. Yinchuan: Ningxia University, 2017. (in Chinese with English abstract)
[13] 譚帥. 微咸水膜下滴灌土壤鹽調(diào)控與棉花生長特征研究[D]. 西安:西安理工大學(xué),2018.
Tan Shuai. Study on Soil Water and Sait Regulation and Cotton Growth Charcteristics Under Film-Mulched Drip Irrigation With Brackish Water[D]. Xi’an: Xi’an University of Technology, 2018. (in Chinese with English abstract)
[14] Pourgholam-Amiji M, Liaghat A, Ghameshlou A N, et al. The evaluation of DRAINMOD-S and AquaCrop models for simulating the salt concentration in soil profiles in areas with a saline and shallow water table[J]. Journal of Hydrology, 2021, 598: 126259.
[15] 朱成立,徐雨琳,黃明逸,等. 基于AquaCrop模型的冬小麥咸淡輪灌制度模擬與評價[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2022,53(4):330-342.
Zhu Chengli, Xu Yulin, Huang Mingyi, et al. Simulation and evaluation of cycle irrigation with brackish and fresh water for winter wheat based on aquacrop model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 330-342. (in Chinese with English abstract)
[16] 王澤林,楊廣,王春霞,等. 咸水灌溉對土壤理化性質(zhì)和棉花產(chǎn)量的影響[J]. 石河子大學(xué)學(xué)報(自然科學(xué)版),2019,37(6):700-707.
Wang Zelin, Yang Guang, Wang Chunxia, et al. Effects of saline water irrigation on cotton yield and soil physicochemical properties[J]. Journal of Shihezi University (Natural Science edition), 2019, 37(6): 700-707. (in Chinese with English abstract)
[17] 宋利兵,姚寧,馮浩,等. 不同生育階段受旱對旱區(qū)夏玉米生長發(fā)育和產(chǎn)量的影響[J]. 玉米科學(xué),2016,24(1):63-73.
Song Libing, Yao Ning, Feng Hao, et al. Effects of water stresses at different growth stages on development and yields of summer maize in arid region[J]. Cornscience, 2016, 24(1): 63-73. (in Chinese with English abstract)
[18] 王峰,孫景生,劉祖貴,等. 不同灌溉制度對棉田鹽分分布與脫鹽效果的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2013,44(12):120-127.
Wang Feng, Sun Jingsheng, Liu Zugui, et al. Effect of different irrigation scheduling on salt distribution and leaching in cotton field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 120-127. (in Chinese with English abstract)
[19] Doorenbos H, Kassam A H. Yield response to water.[J] Irrig. Drainage Paper, 1979, 33: 257.
[20] 李晶,付馳,張鐵楠,等. 基于AquaCrop模型的東北春麥區(qū)小麥冠層生長模擬研究[J]. 水土保持研究,2013,20(6):106-110.
Li Jing, Fu Chi, Zhang Tienan, et al. Study on the simulation of the canopy growth of spring wheat in the northeast based on the AquaCrop model[J]. Journal of Soil Water Conservation, 2013, 20(6): 106-110. (in Chinese with English abstract)
[21] 陳超飛,柳雙環(huán),郭大辛,等. 基于AquaCrop模型的夏玉米生長模擬及灌溉制度優(yōu)化[J]. 干旱地區(qū)農(nóng)業(yè)研究,2019,37(3):72-82.
Chen Chaofei, Liu Shuanghuan, Guo Daxin, et al. Growth simulation and optimization of irrigation scheme forsummer maize using AquaCrop model [J]. Agricultural Research in the Arid Areas, 2019, 37(3): 72-82. (in Chinese with English abstract)
[22] 柴順喜,陳銳,李杰,等. AquaCrop模型在北疆滴灌春小麥生產(chǎn)中的校準(zhǔn)及驗證[J]. 江蘇農(nóng)業(yè)科學(xué),2017,45(8):215-219.
Chai Shunxi, Chen Rui, Li Jie, et al. Calibration and verification of AquaCrop model in drip irrigation spring wheat production in northern Xinjiang[J]. Jiangsu Agricultural Sciences, 2017, 45(8): 215-219. (in Chinese with English abstract)
[23] 邵東國,樂志華,徐保利,等. 基于AquaCrop模型的有機(jī)稻灌溉制度優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(19):114-122.
Shao Dongguo, Le Zhihua, Xu Baoli, et al. Optimization of irrigation scheduling for organic rice based on AquaCrop [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 114-122. (in Chinese with English abstract)
[24] 明廣輝,田富強(qiáng),胡宏昌. 地下水埋深對膜下滴灌棉田水鹽動態(tài)影響及土壤鹽分累積特征[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(5):90-97.
Ming Guanghui, Tian Fuqiang, Hu Hongchang. Effect of water table depth on soil water and salt dynamics and soil salt accumulation characteristics under mulched drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 90-97.
[25] 李科江,馬俊永,曹彩云,等. 不同礦化度咸水造墑灌溉對棉花生長發(fā)育和產(chǎn)量的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2011,19(2):312-317.
Li Kejiang, Ma Junyong, Cao Caiyun, et al. Effect of irrigation water salt content on cotton growth and yield[J]. Chinese Journal of Ecological Agriculture, 2011, 19(2): 312-317. (in Chinese with English abstract)
[26] 宋有璽,安進(jìn)強(qiáng),何岸镕,等. 微咸水膜下滴灌對棉花生長發(fā)育及其產(chǎn)量的影響研究[J]. 水土保持研究,2016,23(1):128-132.
Song Youxi, An Jinqiang, He Anrong, et al. Effect of mulched drip irrigation with saline water on cotton growth and yield[J]. Research of Soil and Water Conservation, 2016, 23(1): 128-132. (in Chinese with English abstract)
[27] 王久生,王龍,姚寶林,等. 微咸水膜下滴灌條件下水鹽對棉花生長的影響研究[J]. 節(jié)水灌溉,2012,15(12):9-15.
Wang Jiusheng, Wang Long, Yao Baolin, et al. Study on soil water and salt effects on cotton growth with light-saline water drip irrigation under mulching[J]. Water Saving Irrigation, 2012, 15(12): 9-15. (in Chinese with English abstract)
[28] 張豫,朱珠,蔡德所. 干旱區(qū)咸水膜下滴灌對棉花生長與產(chǎn)量的影響[J]. 中國農(nóng)村水利水電,2015,10(9):106-110.
Zhang Yu, Zhu Zhu, Cai Desuo. The effect of the growth and yield of cotton in arid land under-mulch drip irrigation with salt water[J]. China Rural Water and Hydropower, 2015, 10(9): 106-110. (in Chinese with English abstract)
[29] 黃光偉,翟云龍,萬素梅,等. 磁化水灌水量對滴灌棉花生長發(fā)育及灌溉水利用效率的影響[J]. 節(jié)水灌溉,2019,6(11):41-46,51.
Huang Guangwei, Zhai Yunlong, Wan Sumei, et al. Effects of different magnetized irrigation amount on the growth and development of cotton under film drip irrigation and the lrrigation water use efficiency[J]. Water Saving Irrigation, 2019, 6(11): 41-46, 51. (in Chinese with English abstract)
[30] 阮明艷. 咸水膜下滴灌對棉花產(chǎn)質(zhì)量效應(yīng)及土壤水鹽環(huán)境的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2007.
Ruan Mingyan. Effects on Yield and Soil Water-Saline Enviriomental of the Cotton in Saline Water Irrigation Under-Filmdrip[D]. Yangling: Northwest A&F University, 2007. (in Chinese with English abstract)
[31] 王雨,劉振婷,高廣磊,等. 干旱脅迫下枯草芽孢桿菌()對檸條()和沙冬青()種子萌發(fā)及幼苗生長的影響[J]. 中國沙漠,2022,42(5):73-81.
Wang Yu, Liu Zhenting, Gao Guanglei, et al. Effects of Bacillus subtilis on seed germination,seedling growth of Caragana korshinskii and Ammopiptanthus mongolicus under drought stress[J]. Journal of Desert Research, 2022, 42(5): 73-81. (in Chinese with English abstract)
[32] 龔江,謝海霞. 鹽分脅迫下滴灌時間對棉花生長和產(chǎn)量的影響[J]. 中國棉花,2021,48(6):11-14,34.
Gong Jiang, Xie Haixia. Effect of irrigation time on cotton growth and yield under salt stress[J]. Chinese Cotton, 2021, 48(6): 11-14, 34. (in Chinese with English abstract)
[33] 馮棣,張俊鵬,孫景生,等. 咸水畦灌棉花耐鹽性鑒定指標(biāo)與耐鹽特征值研究[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(8):52-57.
Feng Li, Zhang Junpeng, Sun Jingsheng, et al. Cotton salt tolerance appraisal indices and eigenvalue under border irrigation with saline water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(8): 52-57. (in Chinese with English abstract)
[34] 王興鵬,蔣富昌,王洪博,等. 基于AquaCrop模型的南疆無膜滴灌棉花灌溉制度優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2021,52(4):293-301, 35.
Wang Xingpeng, Jiang Fuchang, Wang Hongbo, et al. Irrigation scheduling optimization of drip-irriaated without plastic film cotton in south xinjiang based on AquaCrop model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 293-301, 35. (in Chinese with English abstract)
[35] Zhang J P, Li J K, Gao Y, et al. Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model[J]. Agricultural Water Management, 2021, 261(2022): 107355.
[36] 李晶,付馳,張鐵楠,等. 基于AquaCrop模型的東北春麥區(qū)小麥冠層生長模擬研究[J]. 水土保持研究,2013,20(6):106-110.
Li Jing, Fu Chi, Zhang Tienan, et al. Study on the simulation of the canopy growth of spring wheat in the northeast based on the AquaCrop model[J]. Journal of Soil Water Conservation, 2013, 20(6): 106-110. (in Chinese with English abstract)
[37] Soomro K B, Alaghmand S, Shahid M R, et al. Evaluation of AquaCrop model in simulating bitter gourd water productivity under saline irrigation[J]. Irrigation and Drainage, 2020, 69(1): 63-73.
[38] Qiao X, Farahani H J, Khalilian A, et al. Cotton water productivity and growth parameters in the humid southeast: Experimentation and modeling[J]. Transactions of the ASABE, 2016, 59(3): 949-962.
[39] Voloudakis D, Dimitrios A, Karamanos G, et al. Prediction of climate change impacts on cotton yields in Greece under eight climatic models using the AquaCrop crop simulation model and discriminant function analysis[J]. Agricultural Water Management, 2015, 147(13): 116-128.
Effects of water salinity on cotton growth in mulched drip irrigation and its simulation by Aquacrop model
Yang Guang1,2,3, Lei Jie1,2,3, Kong Chunxian1,2,3, He Xinlin1,2,3, Li Pengfei1,2,3,Wang Chunxia1,2,3, Li Xiaolong1,2,3, Li Yi4, Li Fadong5,6
(1.&,,832003,; 2.-&,832003,; 3.-&,832003,; 4.,,712199,; 5.,100049,; 6.,,100101,)
Brackish water irrigation effectively alleviates the shortage of freshwater resources in arid areas. This study aims to explore the salt accumulation of cotton mulched drip irrigation with different salinity, together with their impact on crop growth. Taking the cotton (Nongfeng NO.133) planted in the test pit as a research object, a field test was conducted in the Key Laboratory of Modern Water-Saving Irrigation Corps (85°59?47?E, and 44°19?26?N). The size of the test pit was 2 m×2 m×2 m, where the bottom was set with a 30 cm sand and gravel filtration layer, and a cutoff wall was separated from the surrounding area. The cotton planting pattern was “one film, two pipes, and four rows” with a planting distance of 10 cm. The drip irrigation belt was laid between two narrow rows using the polyethene resin inlaid thin-walled maze (Xinjiang Tianye Water-Saving Irrigation Co. LTD). The drip head flow rate was 2 L/h. Two-year test pits of mulched drip irrigation were carried out with different gradient salinity. The irrigation water source was manually configured, according to the groundwater composition in the study area. The chemical mass ratio was NaHCO3:Na2SO4:NaCl:CaCl2:MgCl2=1:7:8:1:1. The selected fertilization level was 300-105-45 kg/hm2(N-P2O5-K2O), the irrigation quota was 4800 m3/hm2, and the emerging water was fresh water. A total of six treatments were set with the salinity of 1, 2, 3, 4, 5, and 6 g/L. Some parameters were measured, including the soil electrical conductivity, cotton plant height, stem diameter, leaf area, aboveground biomass, and yield. An analysis was made on the salt accumulation characteristics of different soil layers during the cotton growth period. The AquaCrop model was constructed for the drip irrigation of the cotton under the water source film with different salinity using the data of local meteorology, soil, crop, management, and irrigation system. The results show that: 1) Soil electrical conductivity was positively correlated with the irrigation water salinity. The salt accumulation reached the peak in the 40-60 cm soil layer, whereas, there was less salt accumulation in the 80-100 cm soil layer. At the end of two years, the electrical conductivity was 3.03 and 3.15 dS/m, respectively, and the salt accumulation rate were 43.03% and 40.94%. 2) The maximum growth indexes and the cotton yield reached the mineralization degree of 3 g/L. There was no influence on the growth indexes and yield of 4 g/L, compared with the 1 g/L. An optimal irrigation water source was achieved between 3 and 4 g/L for the cotton. 3) A systematic evaluation was made on the simulated and measured values of canopy coverage and aboveground dry matter mass. Specifically, the2was greater than 0.812, while the root mean square error, standard root mean square error, and the consistent index value were less than 57.1, 24.1, and 0.998, respectively. The relative error was no more than 9.28% between the simulated value and the measured value of cotton yield, indicating excellent simulation. The AquaCrop model can be expected to better simulate the dynamic changes of canopy coverage, biomass, and yield during the growth and development of cotton mulched drip irrigation with different salinity, particularly for yield prediction and optimal management. The finding can provide a fundamental basis for the sustainable utilization of mulched drip irrigation with the saltwater resources in arid areas.
salinity; irrigation; cotton; salt water; mineralization; drip irrigation under mulch; crop growth model
10.11975/j.issn.1002-6819.2022.21.011
S275.6
A
1002-6819(2022)-21-0083-10
楊廣,雷杰,孔春賢,等. 膜下滴灌水源礦化度對棉花生長的影響及AquaCrop模擬[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(21):83-92.doi:10.11975/j.issn.1002-6819.2022.21.011 http://www.tcsae.org
Yang Guang, Lei Jie, Kong Chunxian, et al. Effects of water salinity on cotton growth in mulched drip irrigation and its simulation by Aquacrop model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(21): 83-92. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.21.011 http://www.tcsae.org
2022-05-17
2022-10-08
國家自然科學(xué)基金項目(52269006);兵團(tuán)重點(diǎn)領(lǐng)域科技攻關(guān)計劃項目(2021AB021);兵團(tuán)科技合作計劃項目(2022BC001);第三次新疆綜合科學(xué)考察課題(2021xjkk0804);國家自然科學(xué)基金-新疆聯(lián)合基金重點(diǎn)項目(U1803244);石河子大學(xué)青年創(chuàng)新人才培育計劃項目(CXRC201801);石河子大學(xué)高層次人才計劃項目(RCZK2018C22);石河子大學(xué)高層次人才科研啟動項目(RCZK202026)
楊廣,博士,教授,博士生導(dǎo)師,研究方向為水資源高效利用技術(shù)。Email:mikeyork@163.com