亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        對(duì)靶噴藥系統(tǒng)壓力波動(dòng)特性的試驗(yàn)研究

        2022-02-07 00:55:38張春鳳翟長(zhǎng)遠(yuǎn)趙學(xué)觀趙春江
        關(guān)鍵詞:噴桿靶標(biāo)噴藥

        張春鳳,翟長(zhǎng)遠(yuǎn),趙學(xué)觀,鄒 偉,張 萌,趙春江,3

        對(duì)靶噴藥系統(tǒng)壓力波動(dòng)特性的試驗(yàn)研究

        張春鳳1,2,翟長(zhǎng)遠(yuǎn)2,3,趙學(xué)觀2,鄒 偉2,張 萌2,3,趙春江1,2,3※

        (1. 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,楊凌 712100;2. 北京市農(nóng)林科學(xué)院智能裝備技術(shù)研究中心,北京 100097;3. 江蘇大學(xué)農(nóng)業(yè)工程學(xué)院,鎮(zhèn)江 212013)

        針對(duì)精準(zhǔn)對(duì)靶噴藥系統(tǒng)作業(yè)中由于不同數(shù)量噴頭反復(fù)啟閉造成管路壓力波動(dòng)嚴(yán)重的問題,該研究開展了對(duì)靶噴藥系統(tǒng)回流比例對(duì)管路壓力波動(dòng)影響的研究。設(shè)計(jì)了對(duì)靶噴藥壓力波動(dòng)試驗(yàn)平臺(tái),基于AMESim建立對(duì)靶噴藥壓力波動(dòng)系統(tǒng)仿真模型。設(shè)置系統(tǒng)初始?jí)毫?.2~0.4 MPa,回流比例為0~0.9,分別關(guān)閉1/5~4/5數(shù)量的噴頭進(jìn)行了仿真試驗(yàn)。結(jié)果表明,關(guān)閉噴頭的占比越大,管路壓力波動(dòng)越大,當(dāng)系統(tǒng)初始?jí)毫?.2 MPa,回流比為0,關(guān)閉4/5數(shù)量的噴頭,管路壓力從0.2 MPa上升至5.15 MPa,波動(dòng)率達(dá)2 400%;系統(tǒng)初始工作壓力越大,關(guān)閉噴頭數(shù)量對(duì)壓力波動(dòng)影響越大。設(shè)置回流管路可有效減小管路壓力波動(dòng),且回流比越大效果越明顯,當(dāng)系統(tǒng)初始?jí)毫?.2 MPa、回流比例為0.6時(shí),部分噴頭關(guān)閉的壓力波動(dòng)率最大為64.53%。兼顧泵的利用率,回流比例建議小于0.6。系統(tǒng)初始?jí)毫?.3 MPa時(shí),回流比例建議小于0.7;系統(tǒng)初始?jí)毫?.4 MPa時(shí),回流比例建議小于0.8。根據(jù)對(duì)靶噴藥壓力波動(dòng)容忍度要求,系統(tǒng)初始?jí)毫?.2 MPa時(shí),噴施靶標(biāo)在作業(yè)行中的占比量最佳回流比例關(guān)系為:靶標(biāo)占比1/5的最佳回流比例區(qū)間為0.5~0.6;靶標(biāo)占比2/5的最佳回流比例區(qū)間為0.5~0.6;靶標(biāo)占比3/5的最佳回流比例區(qū)間為0.2~0.3;靶標(biāo)占比4/5的最佳回流比例區(qū)間為0~0.1。系統(tǒng)初始?jí)毫?.3 MPa時(shí),噴施靶標(biāo)在作業(yè)行中的占比與最佳回流比例區(qū)間關(guān)系為:靶標(biāo)占比1/5的最佳回流比例區(qū)間為0.6~0.7;靶標(biāo)占比2/5的最佳回流比例區(qū)間為0.5~0.6;靶標(biāo)占比3/5的最佳回流比例區(qū)間為0.2~0.4;靶標(biāo)占比4/5的最佳回流比例區(qū)間為0~0.1。初始?jí)毫?.4 MPa時(shí),靶標(biāo)占比1/5的最佳回流比例區(qū)間為0.7~0.8;靶標(biāo)占比2/5的最佳回流比例區(qū)間為0.6~0.7;靶標(biāo)占比3/5的最佳回流比例區(qū)間為0.4~0.5;靶標(biāo)占比4/5的最佳回流比例區(qū)間為0~0.3。研究結(jié)果可為農(nóng)業(yè)植保作業(yè)對(duì)靶變量施藥技術(shù)應(yīng)用及工況參數(shù)的選擇提供依據(jù),為精準(zhǔn)對(duì)靶施藥裝置的進(jìn)一步優(yōu)化提供支撐。

        仿真;植保;對(duì)靶噴藥;壓力波動(dòng);AMESim;回流比

        0 引 言

        目前,國內(nèi)病蟲草害防治仍以化學(xué)農(nóng)藥噴施為主,傳統(tǒng)連續(xù)噴施作業(yè)模式導(dǎo)致過量施藥,農(nóng)藥利用率低,引起食品安全與環(huán)境污染等社會(huì)問題[1-4]。精準(zhǔn)施藥技術(shù)可通過傳感器探測(cè)靶標(biāo)信息,驅(qū)動(dòng)變量執(zhí)行機(jī)構(gòu)實(shí)現(xiàn)按需噴藥作業(yè)[5],可有效解決上述問題。精準(zhǔn)施藥技術(shù)核心主要包括對(duì)靶施藥技術(shù)和變量施藥技術(shù)[6-8]。對(duì)靶施藥技術(shù)是基于靶標(biāo)有無、分布特性等進(jìn)行的按需噴藥控制技術(shù)。變量施藥技術(shù)是基于機(jī)組前進(jìn)速度、病害嚴(yán)重程度等進(jìn)行的噴藥量控制技術(shù)。在對(duì)靶施藥和變量施藥控制作業(yè)過程中,噴頭的頻繁啟閉會(huì)使管路藥液壓力發(fā)生大范圍波動(dòng),影響藥液霧滴粒徑、藥液沉積分布以及噴藥系統(tǒng)使用壽命[9-11]。

        為了探究精準(zhǔn)施藥技術(shù)管道壓力波動(dòng)特性,國內(nèi)外的學(xué)者進(jìn)行了諸多研究[12-17]。Han等對(duì)一套商購PWM(Pulse Width Modulation)變量噴施系統(tǒng)的壓力、流量波動(dòng)進(jìn)行了測(cè)試分析,發(fā)現(xiàn)系統(tǒng)中壓力波動(dòng)引起噴頭一個(gè)周期內(nèi)流量上下浮動(dòng)0.5%~2.2%,而不同位置各噴頭間的噴霧流量一個(gè)周期內(nèi)變異高達(dá)-15%~12%[18];黃勝等基于 PID控制和施藥量模糊控制方法設(shè)計(jì)了變量施藥機(jī)的恒壓變量控制系統(tǒng),以保持噴藥系統(tǒng)壓力恒定,但系統(tǒng)響應(yīng)時(shí)間0.85 s,遠(yuǎn)大于對(duì)靶噴藥幾十毫秒響應(yīng)要求,無法用于對(duì)靶噴藥壓力波動(dòng)消除[19];韓潤(rùn)哲等搭建了施藥性能測(cè)試試驗(yàn)臺(tái),進(jìn)行不同回流比例下管路壓力波動(dòng)測(cè)試。發(fā)現(xiàn)管路壓力波動(dòng)值與回流比例有直接關(guān)系,且同時(shí)開啟的噴頭數(shù)目會(huì)對(duì)管路壓力造成一定的影響,但影響特性尚未分析[20];Zhou等基于CFD(Computational Fluid Dynamics)仿真技術(shù)研究了變量噴施系統(tǒng)電磁閥響應(yīng)時(shí)間對(duì)液壓沖擊的影響,推算出了電磁閥關(guān)閉過程中水擊壓力計(jì)算模型[21]。

        目前,針對(duì)施藥系統(tǒng)壓力波動(dòng)特性的研究大多集中于系統(tǒng)固有閥件的結(jié)構(gòu)參數(shù)與功能參數(shù)產(chǎn)生的影響,如隔膜泵[22]、比例溢流閥[23]和電磁閥[24]等;以及基于PWM控制信號(hào)頻率和占空比等參數(shù)對(duì)管路壓力波動(dòng)以及霧化特性影響[25-28],精準(zhǔn)噴藥系統(tǒng)對(duì)靶過程中壓力波動(dòng)影響特性仍需進(jìn)一步探索。

        本文設(shè)計(jì)對(duì)靶噴藥壓力波動(dòng)試驗(yàn)系統(tǒng),以對(duì)靶噴藥過程中部分噴頭啟閉過程為研究對(duì)象,通過試驗(yàn)驗(yàn)證與仿真分析,探索對(duì)靶噴藥過程中部分噴頭關(guān)閉引起的系統(tǒng)壓力波動(dòng)特性,并提出通過增設(shè)回流管路消除壓力波動(dòng)方法,得出不同回流比例對(duì)管路壓力波動(dòng)的影響特性,以期為農(nóng)業(yè)植保對(duì)靶變量施藥技術(shù)應(yīng)用以及其工況參數(shù)的選擇提供依據(jù),減少農(nóng)藥浪費(fèi),提高農(nóng)藥利用率,為精準(zhǔn)對(duì)靶施藥裝置的進(jìn)一步優(yōu)化提供支撐。

        1 對(duì)靶噴藥壓力波動(dòng)試驗(yàn)臺(tái)

        1.1 試驗(yàn)臺(tái)總體結(jié)構(gòu)

        本文設(shè)計(jì)的對(duì)靶噴藥壓力波動(dòng)試驗(yàn)臺(tái)如圖1所示,主要由噴桿、噴頭、集霧槽、組合控制閥、藥箱、隔膜泵、變頻電機(jī)、機(jī)架、控制柜、壓力表等組成。試驗(yàn)臺(tái)設(shè)置5路平行等距噴桿(長(zhǎng)度1 m),每個(gè)噴桿等距安裝5個(gè)噴頭;集霧槽可收集噴霧霧滴并回流至藥箱,便于試驗(yàn)藥液循環(huán)使用。

        1.噴桿 2.噴頭 3.集霧槽 4.組合控制閥 5.藥箱 6.隔膜泵 7.變頻電機(jī) 8.機(jī)架 9.控制箱 10.壓力表

        1.2 試驗(yàn)臺(tái)管路系統(tǒng)

        如圖2所示,試驗(yàn)臺(tái)管路部分主要連接藥箱、隔膜泵、過濾器、安全閥、回流比例閥、開關(guān)閥、噴桿等。變頻電機(jī)為系統(tǒng)提供動(dòng)力,驅(qū)動(dòng)隔膜泵吸取藥箱藥液,流入組合控制閥,藥液經(jīng)過過濾器和穩(wěn)壓裝置形成穩(wěn)定恒流源,通過回流比例閥一部分流向5路噴桿完成噴霧,一部分回流至藥箱。當(dāng)系統(tǒng)壓力超過安全閥閾值,安全閥打開藥液可全部卸荷至藥箱。

        1.3 試驗(yàn)臺(tái)監(jiān)控系統(tǒng)

        如圖3所示,監(jiān)控系統(tǒng)主要由控制單元、執(zhí)行單元、信號(hào)采集單元組成。系統(tǒng)通過控制變頻電機(jī)頻率進(jìn)而控制隔膜泵的轉(zhuǎn)速改變隔膜泵藥液輸出量。5路噴桿獨(dú)立開閉控制,實(shí)現(xiàn)對(duì)靶施藥系統(tǒng)一定數(shù)量噴頭的啟閉?;亓鞅壤y通過設(shè)置計(jì)時(shí)器控制開啟時(shí)長(zhǎng)改變回流閥的開度進(jìn)而改變回流量。系統(tǒng)通過流量傳感器監(jiān)測(cè)主管路流量與回流量,通過壓力傳感器實(shí)時(shí)監(jiān)測(cè)各噴桿壓力變化,通過數(shù)據(jù)采集和存儲(chǔ)模塊獲得壓力和流量數(shù)據(jù)。

        圖2 管路系統(tǒng)設(shè)計(jì)圖

        圖3 控制系統(tǒng)結(jié)構(gòu)圖

        實(shí)物圖如圖4所示,各閥件及傳感器具體型號(hào)信息如表1所示。試驗(yàn)臺(tái)集霧裝置可維持藥箱藥液恒定,減少試驗(yàn)藥箱藥液存量變化差異對(duì)試驗(yàn)結(jié)果的影響。

        1.4 試驗(yàn)臺(tái)性能測(cè)試試驗(yàn)

        根據(jù)GB/T20183.2—2006植物保護(hù)機(jī)械噴霧設(shè)備,第2部分:液力噴霧機(jī)試驗(yàn)方法[29]進(jìn)行試驗(yàn)臺(tái)工作壓力、流量調(diào)節(jié)范圍測(cè)試。

        通過調(diào)節(jié)變頻器頻率改變變頻電機(jī)的轉(zhuǎn)速進(jìn)而調(diào)節(jié)隔膜泵的輸入轉(zhuǎn)速改變隔膜泵的輸出流量,提高系統(tǒng)的噴霧壓力,在不斷提高控制頻率過程中觀察系統(tǒng)管路穩(wěn)定性以及系統(tǒng)震動(dòng)情況,最終測(cè)試結(jié)果顯示,該試驗(yàn)臺(tái)穩(wěn)定工作壓力范圍0.1~0.7 MPa,隔膜泵輸出流量調(diào)節(jié)范圍12~60 L/min。

        1.噴桿及噴頭 2.集液槽 3.計(jì)算機(jī) 4.藥箱 5.流量傳感器 6.數(shù)據(jù)采集卡 7.變頻電機(jī) 8.隔膜泵 9.組合閥 10.控制柜 11.壓力傳感器

        表1 試驗(yàn)臺(tái)所用閥件型號(hào)

        2 壓力波動(dòng)試驗(yàn)系統(tǒng)建模與仿真

        2.1 噴藥系統(tǒng)壓力波動(dòng)理論分析

        噴頭藥液通過噴嘴時(shí),由于慣性作用,發(fā)生收縮現(xiàn)象,在靠近孔口的后方出現(xiàn)收縮最大的過流斷面,而后進(jìn)行霧化擴(kuò)散,如圖5所示。

        圖5 噴頭液流擴(kuò)散示意圖

        根據(jù)質(zhì)量守恒及縮流斷面和節(jié)流口之間的伯努利方程推導(dǎo),可得出噴頭流量公式[30]

        由式(2)可知,噴頭流量與噴桿壓力的平方根成正比,因此,當(dāng)系統(tǒng)總流量不變的情況下,隨著對(duì)靶噴藥作業(yè)噴頭啟閉數(shù)量變化,噴頭噴霧流量改變,導(dǎo)致系統(tǒng)壓力波動(dòng)嚴(yán)重。

        2.2 壓力波動(dòng)試驗(yàn)系統(tǒng)仿真模型

        基于2.1節(jié)理論分析,單噴頭流量突變會(huì)導(dǎo)致系統(tǒng)壓力激增,造成閥件損壞,甚至管路爆開。本文應(yīng)用AMESim軟件建立壓力波動(dòng)試驗(yàn)系統(tǒng)仿真模型探索對(duì)靶噴藥過程中噴霧壓力波動(dòng)特性,如圖6所示。該模型中,活塞式的隔膜泵簡(jiǎn)化為周期波動(dòng)的恒流源,噴頭等效為噴孔流通面積的節(jié)流孔[31],回流比例閥等效為常數(shù)信號(hào)控制的可調(diào)節(jié)流閥,開關(guān)閥等效為階躍信號(hào)控制的可調(diào)節(jié)流閥,仿真介質(zhì)選擇水。仿真系統(tǒng)基本參數(shù)設(shè)置與試驗(yàn)平臺(tái)保持一致,具體如表2所示。

        圖6 精準(zhǔn)噴藥測(cè)試系統(tǒng)仿真模型

        表2 仿真模型參數(shù)設(shè)置

        2.3 仿真試驗(yàn)

        2.3.1 仿真參數(shù)設(shè)置

        大田噴藥機(jī)工作壓力范圍一般為0.2~0.4 MPa[32]。仿真試驗(yàn)首先設(shè)置系統(tǒng)初始工作壓力0.2 MPa,并根據(jù)本試驗(yàn)所選噴頭型號(hào)在0.2 MPa工作壓力下流量為0.49 L/min可得系統(tǒng)25個(gè)噴頭總流量為12.25 L/min,故仿真系統(tǒng)初始恒流源(隔膜泵)輸出流量設(shè)置為12.25 L/min。仿真總時(shí)長(zhǎng)20 s,關(guān)閉若干噴桿動(dòng)作在第10 s,故仿真過程中一直開啟的噴桿開關(guān)閥階躍信號(hào)step time設(shè)置為20 s,中間過程關(guān)閉噴桿開關(guān)閥階躍信號(hào)step time設(shè)置為10 s。采樣間隔設(shè)置為0.006 s。仿真系統(tǒng)回流比例設(shè)置通過調(diào)節(jié)回流比例閥的常數(shù)信號(hào)constant value改變比例閥的開度大小實(shí)現(xiàn)[32],為保證不同回流比下噴桿初始噴霧壓力與流量一致,改變回流比的同時(shí)按比例改變恒流源輸出流量,回流比例與對(duì)應(yīng)的恒流源流量值如表3所示。

        表3 不同回流比例下恒流源流量

        2.3.2 仿真試驗(yàn)方案

        為了研究對(duì)靶噴藥過程中不同數(shù)量噴頭關(guān)閉后系統(tǒng)壓力波動(dòng)特性和回流量比例對(duì)系統(tǒng)壓力波動(dòng)的影響特性,設(shè)計(jì)2組仿真試驗(yàn)。第1組試驗(yàn)為關(guān)閉不同數(shù)量噴頭對(duì)管路壓力波動(dòng)影響試驗(yàn)。設(shè)置恒流源輸出流量12.25 L/min,回流比例閥關(guān)閉,仿真開始時(shí)25個(gè)噴頭全部打開,分別在第10 s關(guān)閉1/5、2/5、3/5、4/5比例的噴頭,采集未關(guān)閉噴桿實(shí)時(shí)壓力數(shù)據(jù)完成4組試驗(yàn),每組試驗(yàn)重復(fù)3次。第二組試驗(yàn)為回流比例對(duì)管路壓力波動(dòng)影響試驗(yàn),按表3設(shè)置回流比例閥回流比例以及恒流源輸出流量值,開始與第一組相同的試驗(yàn)流程,并采集相關(guān)數(shù)據(jù)。

        初始?jí)毫χ?.3 和0.4 MPa的參數(shù)設(shè)置與試驗(yàn)過程與0.2 MPa的一致。

        2.4 仿真模型驗(yàn)證與分析

        本文系統(tǒng)壓力波動(dòng)評(píng)價(jià)指標(biāo)采用平均壓力與平均壓力波動(dòng)率[33]:

        式中P為噴桿每次采樣壓力,MPa;P為平均壓力,MPa;為平均壓力波動(dòng)率;P為噴桿噴頭全開時(shí)平均壓力,MPa;P2為關(guān)閉若干噴頭后噴桿平均壓力,MPa;為壓力采樣數(shù)。

        根據(jù)2.3節(jié)仿真試驗(yàn)方案進(jìn)行壓力波動(dòng)試驗(yàn),驗(yàn)證仿真模型可靠性?;?.4節(jié)試驗(yàn)臺(tái)性能測(cè)試試驗(yàn)得出的該試驗(yàn)臺(tái)壓力和流量調(diào)節(jié)范圍,壓力波動(dòng)試驗(yàn)可進(jìn)行回流比例0、0.2和0.4,關(guān)閉噴頭數(shù)量占比1/5、2/5和3/5試驗(yàn)。

        試驗(yàn)系統(tǒng)隔膜泵輸出流量通過變頻器調(diào)節(jié)設(shè)置,回流比例通過回流比例閥設(shè)置。試驗(yàn)過程中,首先根據(jù)表3通過調(diào)節(jié)變頻器頻率值設(shè)置不同回流比例對(duì)應(yīng)隔膜泵的輸出流量,再設(shè)置回流比例,開啟噴霧系統(tǒng),試驗(yàn)初始狀態(tài)25個(gè)噴頭全部開啟,在第10 s,分別關(guān)閉1/5、2/5和3/5的噴頭數(shù)量(0回流比例條件下,關(guān)閉3/5噴頭數(shù)量時(shí)壓力增至1 MPa以上,已超過試驗(yàn)臺(tái)壓力調(diào)節(jié)范圍,故沒有做關(guān)閉3/5噴頭數(shù)量時(shí)的驗(yàn)證試驗(yàn)),采集未關(guān)閉噴桿實(shí)時(shí)壓力數(shù)據(jù),每組試驗(yàn)重復(fù)3次,采樣間隔0.006 s。

        試驗(yàn)結(jié)果如表4所示,并與相同試驗(yàn)過程的仿真平均壓力值對(duì)比可知相對(duì)誤差≤8.3%,該仿真模型可靠,可用作后續(xù)探究回流比例對(duì)系統(tǒng)壓力波動(dòng)影響特性的仿真分析。

        表4 不同回流比例及不同關(guān)閉噴頭數(shù)量占比下噴桿壓力試驗(yàn)值與仿真值對(duì)比

        3 回流比例對(duì)管路壓力波動(dòng)的影響

        由2.4節(jié)試驗(yàn)結(jié)果表明,增大回流比例對(duì)對(duì)靶噴霧系統(tǒng)由于噴頭啟閉數(shù)量變化導(dǎo)致的壓力波動(dòng)具有一定消除作用,但同時(shí)考慮到系統(tǒng)回流比例越大,要達(dá)到相同噴霧工作壓力和流量,就要無限增大泵的流量,這使得試驗(yàn)平臺(tái)完成大回流比試驗(yàn)困難,且關(guān)閉噴頭越多,噴桿壓力激增越大,會(huì)損壞系統(tǒng)閥件與管路,故采用仿真模型進(jìn)行回流比例對(duì)管路壓力波動(dòng)影響特性分析。根據(jù)2.1節(jié)噴藥壓力波動(dòng)理論分析,系統(tǒng)壓力波動(dòng)和流量波動(dòng)是成比例關(guān)系的,因此可根據(jù)壓力波動(dòng)情況得到流量波動(dòng)情況,回流壓力、回流流量變化與噴霧壓力關(guān)系不是很大,因此未作分析。

        3.1 系統(tǒng)壓力波動(dòng)仿真試驗(yàn)結(jié)果

        根據(jù)2.3節(jié)仿真試驗(yàn)方法,進(jìn)行不同數(shù)量噴頭關(guān)閉對(duì)管路壓力波動(dòng)試驗(yàn),系統(tǒng)回流比為0時(shí),分別關(guān)閉1/5、2/5、3/5、4/5數(shù)量噴頭時(shí),采集未關(guān)閉噴桿壓力數(shù)據(jù),得出平均壓力值如圖7所示??梢钥闯?,關(guān)閉噴頭數(shù)量占比越大,系統(tǒng)壓力波動(dòng)越大,且壓力是陡然增加的,當(dāng)關(guān)閉4/5的噴頭時(shí),系統(tǒng)平均壓力上升至5.15 MPa,根據(jù)公式(2)可知,關(guān)閉噴頭數(shù)量越多,單噴頭流量越大,壓力波動(dòng)即會(huì)呈指數(shù)型增長(zhǎng)。但正常噴藥系統(tǒng)會(huì)設(shè)置安全閥,在系統(tǒng)壓力過大時(shí)卸荷起到保護(hù)管路作用,本文為了定量研究系統(tǒng)極端情況下壓力的最大波動(dòng),探索不同回流比例對(duì)系統(tǒng)壓力波動(dòng)的消除效果。

        回流比例對(duì)管路壓力波動(dòng)影響測(cè)試,系統(tǒng)回流比為0.1~0.9時(shí),噴頭關(guān)閉數(shù)量占比為1/5、2/5、3/5、4/5時(shí),結(jié)果如圖8所示,由圖8a~8d可以看出,系統(tǒng)關(guān)閉噴頭數(shù)量越多,壓力波動(dòng)越大,回流比例越大對(duì)系統(tǒng)壓力波動(dòng)的消除作用越明顯。按公式 (4)計(jì)算系統(tǒng)不同回流比例下平均的壓力波動(dòng)率計(jì)算,結(jié)果如表5所示,結(jié)果表明,設(shè)置回流比例可有效減小對(duì)靶噴藥噴頭頻繁關(guān)閉引起的壓力波動(dòng),當(dāng)系統(tǒng)關(guān)閉4/5噴頭時(shí),回流比例為0.9時(shí)的壓力波動(dòng)率相比不設(shè)回流系統(tǒng)消除近300倍。

        圖7 關(guān)閉不同數(shù)量噴頭時(shí)的系統(tǒng)壓力(回流比為0)

        圖8 不同回流比下不同噴頭關(guān)閉數(shù)量的壓力波動(dòng)(初始?jí)毫?.2 MPa)

        表5 初始?jí)毫?.2~0.4 MPa下關(guān)閉不同噴頭數(shù)量的平均壓力波動(dòng)率

        3.2 關(guān)閉噴頭數(shù)量占比對(duì)壓力波動(dòng)的影響

        由圖8a~8d可以看出,系統(tǒng)關(guān)閉噴頭數(shù)量占比越大壓力波動(dòng)越大,當(dāng)系統(tǒng)初始?jí)毫?.2 MPa、回流比為0時(shí),關(guān)閉4/5占比噴頭,壓力波動(dòng)率可達(dá)2 400%。噴藥系統(tǒng)關(guān)閉一部分噴頭,管路壓力一般會(huì)出現(xiàn)瞬時(shí)高壓再減小的波動(dòng),稱之為水擊波,但由于水擊波的相長(zhǎng)毫秒級(jí)別的相比本文試驗(yàn)系統(tǒng)開關(guān)閥的關(guān)閉時(shí)間是非常渺小的,根據(jù)水擊壓力公式可得出壓力波動(dòng)非常小,小波動(dòng)已經(jīng)疊加到隔膜泵的反復(fù)吸排運(yùn)動(dòng)造成的壓力波動(dòng)里,因此瞬間高壓再減小的現(xiàn)象在本文試驗(yàn)過程中并不明顯。

        3.3 回流比例對(duì)壓力波動(dòng)的消除效果分析

        如圖9a~9c所示,回流比對(duì)壓力波動(dòng)消除作用是明顯的,尤其是系統(tǒng)關(guān)閉噴頭數(shù)量占比高時(shí),呈指數(shù)趨勢(shì)。由圖9a可以看出,系統(tǒng)回流比例為0.6時(shí),噴頭關(guān)閉比例對(duì)系統(tǒng)壓力波動(dòng)的影響已不大,最大波動(dòng)率為64.53%。若再增大回流比例,會(huì)使系統(tǒng)大部分輸出流量回流,泵的利用率降低,而壓力波動(dòng)降低不明顯。故在系統(tǒng)初始?jí)毫?.2 MPa時(shí),回流比例選擇建議小于0.6;由圖9b可以看出,系統(tǒng)回流比例為0.7時(shí),最大波動(dòng)率為73.33%,故在系統(tǒng)初始?jí)毫?.3 MPa時(shí),回流比例選擇建議小于0.7;由圖9c曲線可以看出,系統(tǒng)回流比例為0.8時(shí),壓力最大波動(dòng)率為76.50%,故在系統(tǒng)初始?jí)毫?.4 MPa時(shí),回流比例選擇建議小于0.8。

        3.4 最佳回流比分析

        對(duì)靶噴藥是指針對(duì)靶標(biāo)(果樹,病害或雜草等)噴施藥液的一種按需噴藥技術(shù),在噴施過程中會(huì)根據(jù)靶標(biāo)占比(噴施的靶標(biāo)面積占總面積的比例)關(guān)閉相應(yīng)比例的噴頭,即靶標(biāo)占比=1-關(guān)閉噴頭數(shù)量占比。對(duì)靶噴霧系統(tǒng)管路壓力波動(dòng)最大波動(dòng)率為100%。由表5試驗(yàn)數(shù)據(jù)確定對(duì)靶噴藥系統(tǒng)在初始?jí)毫?.2~0.4 MPa時(shí),不同噴施靶標(biāo)占比對(duì)應(yīng)的最佳回流比區(qū)間如表6所示,該結(jié)果可為后續(xù)精準(zhǔn)對(duì)靶施藥系統(tǒng)設(shè)計(jì)與優(yōu)化提供依據(jù)。

        圖9 不同初始?jí)毫ο禄亓鞅壤龑?duì)不同噴頭關(guān)閉數(shù)量時(shí)系統(tǒng)壓力波動(dòng)率的影響

        表6 不同初始?jí)毫ο赂靼袠?biāo)占比的系統(tǒng)最佳回流比區(qū)間

        4 討 論

        對(duì)靶噴藥系統(tǒng)管路壓力波動(dòng)是制約其實(shí)現(xiàn)精準(zhǔn)精量作業(yè)的主要瓶頸。本文研究發(fā)現(xiàn),對(duì)靶噴藥系統(tǒng)噴頭如關(guān)閉數(shù)量越多,壓力波動(dòng)越大;如回流比例越大,管路壓力波動(dòng)越小,該結(jié)果與文獻(xiàn)[20]結(jié)論一致。但本文更進(jìn)一步進(jìn)行了定量分析,得出當(dāng)回流比為0、系統(tǒng)關(guān)閉4/5占比的噴頭,管路的壓力波動(dòng)可達(dá)2 400%,如此巨大的壓力沖擊是正常噴霧系統(tǒng)管件和閥件無法承受的。而當(dāng)系統(tǒng)初始?jí)毫?.2 MPa、回流比為0.6時(shí),管路壓力波動(dòng)降可至64.53%,有效地將系統(tǒng)壓力波動(dòng)減弱至允許的范圍內(nèi)。

        由于部分噴頭關(guān)閉會(huì)導(dǎo)致管路壓力劇增,而常規(guī)噴藥系統(tǒng)管路及其閥件的耐壓性不足,無法開展寬范圍的壓力波動(dòng)試驗(yàn),本文建立了對(duì)靶噴藥系統(tǒng)壓力波動(dòng)仿真模型,并通過試驗(yàn)完成模型驗(yàn)證,開展了高壓力沖擊仿真試驗(yàn),得到了不同回流比例和關(guān)閉不同數(shù)量噴頭下的壓力波動(dòng)數(shù)據(jù)。

        高回流比可有效減弱對(duì)靶噴藥系統(tǒng)壓力波動(dòng),但同時(shí)也降低了泵的利用率。本文針對(duì)常規(guī)大田噴藥壓力0.2~0.4 MPa提出了最佳回流比區(qū)間建議(表6),可針對(duì)不同靶標(biāo)占比量給出最佳回流比區(qū)間,如大田對(duì)靶噴藥應(yīng)用于大田蔬菜病害噴藥和大田除草噴藥,在噴藥前可對(duì)整個(gè)地塊的靶標(biāo)占比量進(jìn)行預(yù)估,設(shè)置合適初始回流比,可消除大部分管路壓力波動(dòng),避免不必要的能量浪費(fèi),回流量及回流壓力的設(shè)置需要綜合考慮泵的性能、回流攪拌和藥箱容量。

        不同比例噴頭突然關(guān)閉和突然開啟,壓力均會(huì)波動(dòng)明顯,而且噴頭關(guān)閉時(shí)長(zhǎng)也會(huì)影響壓力波動(dòng),本研究的最終目標(biāo)是探究如何保持壓力平衡,但影響壓力變化的因素很多,本文只做了一少部分研究,后續(xù)會(huì)進(jìn)行更多因素影響下壓力波動(dòng)特性研究,以提出更加精準(zhǔn)的噴藥穩(wěn)壓控制方法和系統(tǒng)。

        5 結(jié) 論

        1)設(shè)計(jì)了對(duì)靶噴藥壓力波動(dòng)試驗(yàn)平臺(tái),通過試驗(yàn)得出,試驗(yàn)臺(tái)穩(wěn)定工作壓力范圍為0.1~0.7 MPa,隔膜泵輸出流量調(diào)節(jié)范圍為12~60 L/min;在對(duì)靶噴藥過程中,關(guān)閉噴頭占比越大,系統(tǒng)壓力波動(dòng)越大;增大系統(tǒng)回流比例可有效降低壓力波動(dòng)幅值。

        2)基于AMESim建立了對(duì)靶噴藥系統(tǒng)壓力波動(dòng)仿真模型,并通過試驗(yàn)驗(yàn)證了該模型壓力波動(dòng)的仿真值與試驗(yàn)值相對(duì)誤差≤8.3%,可用作后續(xù)精準(zhǔn)對(duì)靶噴藥系統(tǒng)回流比例對(duì)管路壓力波動(dòng)影響特性研究。

        3)仿真分析表明:噴頭關(guān)閉數(shù)量占比越大,壓力波動(dòng)越大,當(dāng)系統(tǒng)初始?jí)毫?.2 MPa時(shí),回流比為0、關(guān)閉4/5占比噴頭,系統(tǒng)壓力可從0.2 MPa、波動(dòng)至5.15 MPa,波動(dòng)率達(dá)2 400%;設(shè)置回流管路可有效減弱對(duì)靶噴藥過程中由于噴頭頻繁啟閉造成的壓力波動(dòng),當(dāng)系統(tǒng)初始?jí)毫?.2 MPa、回流比例為0.6時(shí),由于部分噴頭關(guān)閉引起的管路壓力最大波動(dòng)率為64.53%。兼顧泵的利用率,回流比例建議小于0.6;當(dāng)系統(tǒng)初始?jí)毫?.3 MPa、系統(tǒng)回流比例為0.7時(shí),最大波動(dòng)率為73.33%,回流比例建議小于0.7;系統(tǒng)初始?jí)毫?.4 MPa、系統(tǒng)回流比例為0.8時(shí),最大波動(dòng)率為76.50%,回流比例建議小于0.8;系統(tǒng)初始?jí)毫υ酱?,關(guān)閉噴頭數(shù)量占比對(duì)系統(tǒng)壓力波動(dòng)影響越大。

        4)針對(duì)不同初始?jí)毫?、不同噴施靶?biāo)占比量分析了對(duì)靶噴藥系統(tǒng)最佳回流比區(qū)間:初始?jí)毫?.2 MPa時(shí),靶標(biāo)占比1/5,最佳回流比區(qū)間為0.5~0.6;靶標(biāo)占比2/5,最佳回流比區(qū)間為0.5~0.6;靶標(biāo)占比3/5,最佳回流比區(qū)間為0.2~0.3;靶標(biāo)占比4/5,最佳回流比區(qū)間為0~0.1;初始?jí)毫?.3 MPa時(shí),靶標(biāo)占比1/5,最佳回流比區(qū)間為0.6~0.7;靶標(biāo)占比2/5,最佳回流比區(qū)間為0.5~0.6;靶標(biāo)占比3/5,最佳回流比區(qū)間為0.2~0.4;靶標(biāo)占比4/5,最佳回流比區(qū)間為0~0.1;初始?jí)毫?.4 MPa時(shí),靶標(biāo)占比1/5,最佳回流比區(qū)間為0.7~0.8;靶標(biāo)占比2/5,最佳回流比區(qū)間為0.6~0.7;靶標(biāo)占比3/5,最佳回流比區(qū)間為0.4~0.5;靶標(biāo)占比4/5,最佳回流比區(qū)間為0~0.3。

        [1] 何雄奎. 中國精準(zhǔn)施藥技術(shù)和裝備研究現(xiàn)狀及發(fā)展建議[J]. 智慧農(nóng)業(yè),2020,2(1):133-146.

        He Xiongkui. Research progress and developmental recommendations on precision spraying technology and equipment in China[J]. 2020, 2(1): 133-146. (in Chinese with English abstract)

        [2] 袁會(huì)珠,楊代斌,閆曉靜,等. 農(nóng)藥有效利用率與噴霧技術(shù)優(yōu)化[J]. 植物保護(hù),2011,37(5):14-20.

        Yuan Huizhu, Yang Daibin, Yan Xiaojing, et al. Pesticide efficiency and the way to optimize the spray application[J]. Plant Protection, 2011, 37(5): 14-20. (in Chinese with English abstract)

        [3] 翟長(zhǎng)遠(yuǎn),趙春江,Ning Wang,等. 果園風(fēng)送噴霧精準(zhǔn)控制方法研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(10):1-15.

        Zhai Changyuan, Zhao Chunjiang, Ning Wang, et al. Research progress on precision control methods of air-assisted spraying in orchards[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 1-15. (in Chinese with English abstract)

        [4] 邱白晶,閆潤(rùn),馬靖,等. 變量噴霧技術(shù)研究進(jìn)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(3):59-72.

        Qiu Baijing, Yan Run, Ma Jing, et al. Researchprogress analysis of variable rate sprayer technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 59-72. (in Chinese with English abstract)

        [5] 刁智華,刁春迎,魏玉泉,等. 精準(zhǔn)施藥機(jī)器人關(guān)鍵技術(shù)研究進(jìn)展[J]. 農(nóng)機(jī)化研究,2017,39(11):1-6.

        Diao Zhihua, Diao Chunying, Wei Yuquan, et al. Progress in research on the key technology of precision spraying robot[J]. Journal of Agricultural Mechanization Research, 2017, 39(11): 1-6. (in Chinese with English abstract)

        [6] Loghavi M, Behzadi M B. Development of a target oriented weed control system[J]. Computers and Electronics in Agriculture, 2008, 63(2): 112-118.

        [7] 楊征鶴,楊會(huì)民,喻晨,等. 設(shè)施蔬菜自動(dòng)對(duì)靶噴藥技術(shù)研究現(xiàn)狀與分析[J]. 新疆農(nóng)業(yè)科學(xué),2021,58(8):1547-1557.

        Yang Zhenghe, Yang Huimin, Yu Chen, et al. Research status and analysis of automatic Target spraying technology for facility vegetables[J]. Xinjiang Agricultural Sciences, 2021, 58(8): 1547-1557. (in Chinese with English abstract)

        [8] 關(guān)桂娟. 變量噴藥技術(shù)在農(nóng)業(yè)植保中的應(yīng)用與優(yōu)勢(shì)分析[J]. 農(nóng)機(jī)使用與維修,2022(2):117-119.

        Guan Guijuan. Application and advantage analysis of variable spraying Technology[J]. Agricultural Mechanization Using &Maintenance, 2022(2): 117-119. (in Chinese with English abstract)

        [9] 張瑞瑞,李龍龍,付旺,等. 脈寬調(diào)制變量控制噴頭霧化性能及風(fēng)洞環(huán)境霧滴沉積特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):42-51.

        Zhang Ruirui, Li Longlong, Fu Wang, et al. Spraying atomization performance by pulse width modulated variable and droplet deposition characteristics in wind tunnel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 42-51. (in Chinese with English abstract)

        [10] Bennur P J, Taylor R K. Evaluating the response time of a rate controller used with a sensor-based, variable rate application system[J]. Applied Engineering in Agriculture, 2010, 26(6): 1069-1075.

        [11] Paice M E R, Miller P C H, Day W, et al. Control requirements for spatially selective herbicide sprayers[J]. Computers and Electronics in Agriculture, 1996, 14(2/3): 163-177.

        [12] Tumbo S D, Salyani M, Miller W M, et al. Evaluation of a variable rate controller for aldicarb application around buffer zones in citrus groves[J]. Computers and Electronics in Agriculture, 2007, 56(2): 147-160.

        [13] Anglund E A, Ayers P D. Field evaluation of response times for a variable rate (pressure-based and injection) liquid chemical applicator[J]. Applied Engineering in Agriculture, 2003, 19(3): 273-282.

        [14] 于達(dá)志,陳樹人,魏新華. PWM間歇噴霧變量噴施系統(tǒng)壓力脈動(dòng)及液壓沖擊綜合測(cè)試[J]. 農(nóng)機(jī)化研究,2014,36(1):194-198.

        Yu Dazhi, Chen Shuren, Wei Xinhua. A comprehensive study on pressure pulsation and hydraulic impact in PWM-based intermittent spraying variable rate application system[J]. Journal of Agricultural Mechanization Research, 2014, 36(1): 194-198. (in Chinese with English abstract)

        [15] 蔣煥煜,周鳴川,童俊華,等. 基于卡爾曼濾波的PWM變量噴霧控制研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):60-65.

        Jiang Huanyu, Zhou Mingchuan, Tong Junhua, et al. PWM variable spray control based on Kalman filter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 60-65. (in Chinese with English abstract)

        [16] 魏新華,于達(dá)志,白敬,等. 脈寬調(diào)制間歇噴霧變量噴施系統(tǒng)的靜態(tài)霧量分布特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(5):19-24.

        Wei Xinhua, Yu Dazhi, Bai Jing, et al. Static spray deposition distribution characteristics of PWM-based intermittently spraying system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(5): 19-24. (in Chinese with English abstract)

        [17] John P Lang. Evaluation of pulse width modulation sprays for spray quality[C]. Kansas City, Missouri, 2013 ASAE Paper No. 131620682, 2013.

        [18] Han S F, Hendrickson L L, Ni Bi C, et al. Modification and testing of a commercial sprayer with PWM solenoids for precision spraying[J]. Applied Engineering in Agriculture, 2001, 17(5): 591-594.

        [19] 黃勝,朱瑞祥,王艷芳,等. 變量施藥機(jī)的恒壓變量控制系統(tǒng)設(shè)計(jì)及算法[J]. 農(nóng)機(jī)化研究,2011,33(2):19-22.

        Huang Sheng, Zhu Ruixiang, Wang Yanfang, et al. Design and algorithm of constant pressure and variable flow control system of variable pesticide application machine[J]. Journal of Agricultural Mechanization Research, 2011, 33(2): 19-22. (in Chinese with English abstract)

        [20] 韓潤(rùn)哲,朱瑞祥,翟長(zhǎng)遠(yuǎn),等. 施藥機(jī)壓力波動(dòng)特性研究[J].農(nóng)機(jī)化研究,2014,36(7):26-30.

        Han Runzhe, Zhu Ruixiang, Zhai Changyuan, et al. Reaearch on pressure fluctuation characteristics of spraying Machinery[J]. Journal of Agricultural Mechanization Research, 2014, 36(7): 26-30. (in Chinese with English abstract)

        [21] Zhou X X, Liu H H, Wu S, et al. Influence of solenoid valve response times on water hammer in variable rate spraying system[J]. Chinese Society of Agricultural Engineering, 2016, 32(5): 64-69.

        [22] 宋俊偉. 施藥系統(tǒng)中隔膜泵壓力波動(dòng)的研究[D]. 鎮(zhèn)江:江蘇大學(xué),2018.

        Song Junwei. Study on Pressure Fluctuation of Diaphragm Pump Spraying System[D]. Zhenjiang: Jiangsu University, 2018. (in Chinese with English abstract)

        [23] 劉海紅. PWM 變量噴施系統(tǒng)特性試驗(yàn)臺(tái)的設(shè)計(jì)及液壓沖擊的研究[D]. 鎮(zhèn)江:江蘇大學(xué),2015.

        Liu Haihong. Design of Test Equipment of PWM Controlled Variable Rate Application and Study of Hydraulic impacts[D]. Zhenjiang: Jiangsu University, 2015. (in Chinese with English abstract)

        [24] 蔣斌,李林,李晉陽,等. PWM變量噴施控制系統(tǒng)中電磁閥通徑對(duì)噴霧壓力的影響[J]. 農(nóng)機(jī)化研究,2018,40(5):164-169,174.

        Jiang Bin, Li Lin, Li Jinyang, et al. Influence on spray pressure fluctuation from pipe diameter in PWM-based variable rate application system [J]. Journal of Agricultural Mechanization Research, 2018, 40(5): 164-169, 174. (in Chinese with English abstract)

        [25] 呂曉蘭,傅錫敏,吳萍,等. 噴霧技術(shù)參數(shù)對(duì)霧滴沉積分布影響試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(6):70-75.

        Lü Xiaolan, Fu Ximin, Wu Ping, et al. Influence of spray operating parameters on droplet deposition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 70-75. (in Chinese with English abstract)

        [26] 鄧巍,丁為民,何雄奎. PWM間歇式變量噴霧的霧化特性[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(1):74-78.

        Deng Wei, Ding Weimin, He Xiongkui. Spray characteristics of PWM-based intermittent pulse variable spray[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(1): 74-78. (in Chinese with English abstract)

        [27] 蔣煥煜,張利君,劉光遠(yuǎn),等. 基于 PWM 變量噴霧的單噴頭動(dòng)態(tài)霧量分布均勻性實(shí)驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(4):41-46.

        Jiang Huanyu, Zhang Lijun, Liu Guangyuan, et al. Experiment on dynamic spray deposition uniformity for PWM variable spray of single nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 41-46. (in Chinese with English abstract)

        [28] 李龍龍,何雄奎,宋堅(jiān)利,等. 基于高頻電磁閥的脈寬調(diào)制變量噴頭噴霧特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(1):97-103.

        Li Longlong, He Xiongkui, Song Jianli, et al. Spray characteristics on pulse-width modulation variable application based on high frequency electromagnetic valve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 97-103. (in Chinese with English abstract)

        [29] 中國國家標(biāo)準(zhǔn)化管理委員會(huì),植物保護(hù)機(jī)械噴霧設(shè)備第2部分:液力噴霧機(jī)試驗(yàn)方法GB/T 20183. 2-2006 [S]. 北京:中國標(biāo)準(zhǔn)出版社,2007.

        [30] 聞建龍. 工程流體力學(xué)(第二版)[M]. 北京:機(jī)械工業(yè)出版社,2018.

        [31] 劉文浩,顏镠釧,張蕊,等. 基于AMESim仿真的燃油系統(tǒng)壓力脈動(dòng)分析[J]. 電子產(chǎn)品可靠性與環(huán)境試驗(yàn),2020,38(4):23-27.

        [32] 史萬蘋,王熙,王新忠,等. 基于PWM控制的變量噴藥技術(shù)體系及流量控制試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2007,10(10):125-127.

        Shi Wanping, Wang Xi, Wang Xinzhong, et al. Study on variable rate spraying technology based on pulse width modulation and volume control[J]. Journal of Agricultural Mechanization Research, 2007, 10(10):125-127. (in Chinese with English abstract)

        [33] 劉峰. 高壓共軌燃油噴射系統(tǒng)壓力波動(dòng)特征研究[J]. 小型內(nèi)燃機(jī)與摩車,2014,43(2):63-66,96.

        Experimental study on the pressure fluctuation characteristics of target spray system

        Zhang Chunfeng1,2, Zhai Changyuan2,3, Zhao Xueguan2, Zou Wei2, Zhang Meng2,3, Zhao Chunjiang1,2,3※

        (1.,,712100, China; 2.,,100097, China; 3.,,212013, China)

        Precise target spraying can be widely used to detect the target information for the on-demand operation using sensors and variable actuators. An effective way can prevent the excessive spraying from the environmental pollution of food safety caused by the traditional continuous spraying, particularly for the high pesticide utilization. Nevertheless, there is the a serious fluctuation of pipeline pressure at present, due to the repeated opening and closing of different numbers of nozzles in the process of target spraying. A great threat has been posed to the droplet size, deposition distribution, and service life of the spraying system. In this study, a test platform was designed to investigate the influence of the reflux ratio on the pipeline pressure fluctuation in the target spraying system. A simulation model of target spraying pressure fluctuation was established using AMESim software. A test was also carried out to verify the model. The initial pressure of the system was set as 0.2-0.4 MPa, and the reflux ratio as 0-0.9 in the simulation. The number of closed nozzles was accounted for the a large proportion of 1/5-4/5, indicating the more serious fluctuation of pipeline pressure. The reflux ratio was 0 at the initial pressure of 0.2 MPa. Once the 4/5 proportion nozzles were closed, the pressure of the pipeline system rose from 0.2 to 5.15 MPa, indicating a 2 400% fluctuation rate. The more significant ratio was obtained in the number of closed nozzles to the pressure fluctuation at the large initial working pressure of the system. The return pipeline was effectively reduced the pressure fluctuation of the target spraying system. Specifically, the greater the return ratio was, the more significant the elimination effect was. The maximum pressure fluctuation rate was 64.53% caused by the closure of some nozzles, when the initial pressure of the system was 0.2 MPa and the return ratio reached 0.6. Therefore, the reflux ratio was recommended to be less than 0.6, in terms of the utilization rate of the pump. Once the initial pressure values of the system were 0.3 and 0.4 MPa, the reflux ratios were recommended to be less than 0.7, and 0.8, respectively. Finally, an optimal combination of target proportion and reflux ratio was achieved, according to the requirements for the tolerance of the pressure fluctuation in the target spraying system. When the initial pressure of the system was 0.2 MPa, the combination of the proportion of the target and the optimal reflux ratio were 1/5 and 0.5-0.6, 2/5 and 0.5-0.6, 3/5 and 0.2-0.3, or 4/5 and 0-0.1, respectively. When the initial pressure of the system was 0.3 MPa, the relationship groups between the proportion of the spraying target and the optimal reflux ratio were 1/5 and 0.6-0.7, 2/5 and 0.5-0.6, 3/5 and 0.2-0.4, or 4/5 and 0-0.1, respectively. When the initial pressure of the system was 0.4 MPa, the relationship groups between the proportion of the spraying target and the optimal reflux ratio interval were 1/5 and 0.7-0.8, 2/5 and 0.6-0.7, 3/5 and 0.4-0.5, or 4/5 and 0-0.3, respectively. This finding can provide a strong reference to optimize the precision target operation for the technical variables and working parameters in the plant protection spraying.

        simulation; plant protection; target spray; pressure fluctuation; AMESim; reflux ratio

        10.11975/j.issn.1002-6819.2022.18.004

        S232.2

        A

        1002-6819(2022)-18-0031-09

        張春鳳,翟長(zhǎng)遠(yuǎn),趙學(xué)觀,等. 對(duì)靶噴藥系統(tǒng)壓力波動(dòng)特性的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(18):31-39.doi:10.11975/j.issn.1002-6819.2022.18.004 http://www.tcsae.org

        Zhang Chunfeng, Zhai Changyuan, Zhao Xueguan, et al. Experimental study on the pressure fluctuation characteristics of target spray system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 31-39. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.18.004 http://www.tcsae.org

        2022-04-08

        2022-08-16

        江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目(CX(21)2006);江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2021302);北京市農(nóng)林科學(xué)院智能裝備技術(shù)研究中心開放課題(KF2020W010)

        張春鳳,博士生,研究方向?yàn)榉仕幘珳?zhǔn)施用裝備技術(shù)。Email:zhangchunfeng2022@163.com

        趙春江,博士,研究員,中國工程院院士,研究方向?yàn)檗r(nóng)業(yè)信息化技術(shù)。Email:zhaocj@nercita.org.cn

        猜你喜歡
        噴桿靶標(biāo)噴藥
        平面桁架噴桿位移分析及驗(yàn)證
        鋼索約束下噴桿臂的動(dòng)力學(xué)行為數(shù)值模擬與試驗(yàn)*
        基于PLC 果樹噴藥機(jī)控制系統(tǒng)設(shè)計(jì)
        噴桿式噴霧機(jī)水平折疊噴桿設(shè)計(jì)與試驗(yàn)
        果樹噴藥巧時(shí)期
        “百靈”一號(hào)超音速大機(jī)動(dòng)靶標(biāo)
        納米除草劑和靶標(biāo)生物的相互作用
        某農(nóng)用型無人直升機(jī)噴藥系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
        噴桿式噴霧機(jī)
        夏季噴施農(nóng)藥有四忌
        隔壁人妻欲求不满中文字幕| 美女黄18以下禁止观看| 精品亚洲欧美高清不卡高清| 日本无吗一区二区视频| 国产成人亚洲一区二区| 国产女主播白浆在线观看| 国产精品后入内射日本在线观看| 国产在线h视频| 一区二区三区在线观看人妖| 无码人妻丰满熟妇啪啪网不卡| 久久99精品国产麻豆| 中文人妻AV高清一区二区| 色小姐在线视频中文字幕| 日本欧美大码a在线观看| 激情内射亚州一区二区三区爱妻| 久久免费精品国产72精品剧情| 日韩av天堂综合网久久| 欧美性xxxxx极品老少| 亚洲av无码国产剧情| 久久久久久免费播放一级毛片| 国产精品日韩亚洲一区二区| 国产精品爽爽ⅴa在线观看| 精品国产三级在线观看| 久久99久久99精品观看| 久久一区二区国产精品| 久久精品国产亚洲av无码娇色| 99爱这里只有精品| 久久精品人妻嫩草av蜜桃| 亚洲国产精品不卡av在线| 国产一区二区精品久久| 亚洲AV无码久久精品成人| 亚洲国产一区二区视频| 亚洲熟妇色自偷自拍另类| 无码一区二区波多野结衣播放搜索| 极品av在线播放| 中文字幕中文字幕在线中二区| 亚洲综合色区另类av| 色爱无码A V 综合区| 成人自拍三级在线观看| 国语自产偷拍在线观看| 91麻豆国产香蕉久久精品|