潘艷秋,張春超,張?威,谷?菁,劉萬(wàn)發(fā),何書(shū)通
基于熱流固耦合的微通道冷卻系統(tǒng)模擬
潘艷秋1,張春超1,張?威1,谷?菁1,劉萬(wàn)發(fā)2,何書(shū)通2
(1. 大連理工大學(xué)化工學(xué)院,大連 116024;2. 中國(guó)科學(xué)院大連化學(xué)物理研究所,大連 116023)
浸入式直接液冷固體激光器的設(shè)計(jì)理念自提出以來(lái)即受到廣泛關(guān)注,其增益介質(zhì)與微通道內(nèi)冷卻介質(zhì)直接接觸進(jìn)行換熱的方式能顯著提高傳熱效果.微通道的結(jié)構(gòu)、流體流動(dòng)及增益介質(zhì)熱負(fù)荷直接影響激光器光程差(OPD),從而影響激光出光質(zhì)量.基于實(shí)際浸入式直接液冷固體激光器操作條件優(yōu)化的需要,建立二薄片三通道(坐標(biāo)軸正方向?yàn)殡p流道流動(dòng)方向)小型固體激光器冷卻系統(tǒng)幾何模型,并將熱流固耦合方法和OPD計(jì)算模型相結(jié)合,模擬研究微通道內(nèi)雷諾數(shù)、增益介質(zhì)熱負(fù)荷對(duì)OPD的影響.模擬結(jié)果表明:冷卻系統(tǒng)的轉(zhuǎn)捩雷諾數(shù)為2600;相同熱負(fù)荷下,隨著微通道內(nèi)流動(dòng)雷諾數(shù)增大,OPD波峰與波谷的位置向軸的負(fù)方向(單流道流動(dòng)方向)移動(dòng)、峰谷值增大;相同雷諾數(shù)下,隨著增益介質(zhì)熱負(fù)荷增大,增益介質(zhì)熱變形程度增大,OPD的波峰與波谷位置不變、峰谷值增大;為保證固體激光器出光質(zhì)量,當(dāng)實(shí)際熱負(fù)荷為2000W要求時(shí),由于增益介質(zhì)所受最大應(yīng)力和微通道層流流動(dòng)的限制,雷諾數(shù)應(yīng)控制在2200~2600范圍內(nèi);當(dāng)雷諾數(shù)為2300時(shí),由于增益介質(zhì)所受最大應(yīng)力的限制,熱負(fù)荷應(yīng)控制在2400W內(nèi).建立的熱流固耦合并結(jié)合OPD計(jì)算模型方法,可面向固體激光器的研發(fā)與應(yīng)用,指導(dǎo)實(shí)際直接液冷固體激光器操作條件的優(yōu)化.
微通道;熱流固耦合;固體激光器;雷諾數(shù);熱負(fù)荷
1960年,第一臺(tái)固體激光器的問(wèn)世,揭開(kāi)了固體激光器發(fā)展的嶄新時(shí)代.固體激光器以其小型化、能量轉(zhuǎn)換效率高、頻率穩(wěn)定性好等優(yōu)點(diǎn)在材料加工、激光醫(yī)療、光纖通信等領(lǐng)域都發(fā)揮著重要作用[1].然而熱效應(yīng)問(wèn)題一直阻礙其發(fā)展[2].為此,研究者們圍繞增益介質(zhì)的研發(fā)和結(jié)構(gòu)設(shè)計(jì)、冷卻系統(tǒng)的整體優(yōu)化等方面集中開(kāi)展研究.其中增益介質(zhì)的研發(fā)不僅要求能級(jí)結(jié)構(gòu)、發(fā)射截面、帶寬等性能優(yōu)良,而且熱導(dǎo)率也是重要的考量因素;增益介質(zhì)的結(jié)構(gòu)設(shè)計(jì)從早期傳統(tǒng)的棒狀介質(zhì)[3]發(fā)展到板條[4]、薄片介質(zhì)[5],增益介質(zhì)的熱管理能力得到顯著提高.然而,將板條、薄片這兩種增益介質(zhì)焊接在冷卻器上實(shí)現(xiàn)傳導(dǎo)冷卻的強(qiáng)化,限制了激光器進(jìn)一步的功率定標(biāo)放大、光束質(zhì)量提升以及緊湊小型化[6-7].
目前激光器冷卻系統(tǒng)多使用噴霧冷卻技術(shù)[8-9]、熱管冷卻技術(shù)、直接液冷技術(shù)等[10-11].其中直接液冷激光器是將固體增益介質(zhì)設(shè)計(jì)成薄片陣列并浸入到冷卻液中,通過(guò)強(qiáng)制對(duì)流換熱帶走熱量.這種設(shè)計(jì)不僅可以實(shí)現(xiàn)較好的熱管理,且結(jié)構(gòu)緊湊、放大性能好,一直受到研究者們的廣泛關(guān)注,也取得了矚目的成果,如2008年P(guān)erry等[12]公開(kāi)專利,展示了一種百千瓦級(jí)的激光裝置;同年Mandl等[13]也發(fā)布專利,介紹其激光裝置專利,他們采用新型“ThinZag”結(jié)構(gòu),串聯(lián)多個(gè)增益放大模塊,構(gòu)成緊湊的單口徑輸出振蕩器,實(shí)現(xiàn)了100kW的激光輸出.
在直接液冷固體激光器中,熱效應(yīng)導(dǎo)致波前畸變是激光器出光質(zhì)量下降的重要原因之一.研究該類(lèi)激光器內(nèi)增益介質(zhì)及微通道內(nèi)的傳熱、流動(dòng)等因素對(duì)光程差(optical path difference,OPD)的影響,從而有效調(diào)控激光質(zhì)量,也是近年研究者關(guān)注的問(wèn)題.Fu?等[14]研制出輸出功率為17.1W的直接液冷固體激光器,并通過(guò)實(shí)驗(yàn)[15]和數(shù)值模擬[16]兩種方法分析了固體激光器中增益模塊的熱效應(yīng)和波像差問(wèn)題,認(rèn)為流體的湍流情況直接影響激光的穩(wěn)定性;Fu等[17]還通過(guò)數(shù)值模擬設(shè)計(jì)了輸出功率為30kW的高功率固體激光器,并建立了與之對(duì)應(yīng)的波前像差計(jì)算模型,提出具有相反流向的雙增益模塊可以實(shí)現(xiàn)像差自補(bǔ)償.Ye等[18-20]設(shè)計(jì)制造了可實(shí)現(xiàn)千瓦級(jí)激光輸出的浸入式直接液冷固體激光器,模擬發(fā)現(xiàn)高速流場(chǎng)、均勻泵浦、窄流道都可以減小波前像差.
縱觀國(guó)內(nèi)外的相關(guān)研究成果,目前直接液冷固體激光器的研究主要以實(shí)驗(yàn)為主,相關(guān)數(shù)值模擬研究的開(kāi)展仍需加強(qiáng).本文面向二薄片三通道式小型直接液冷固體激光器研制工作的需要,將前期熱流固耦合模擬結(jié)果[21]與光程差計(jì)算模型相結(jié)合,模擬研究雷諾數(shù)、熱負(fù)荷對(duì)光程差的影響,并對(duì)實(shí)際工況給出操作建議,為進(jìn)一步的波前像差研究以及直接液冷固體激光器的設(shè)計(jì)提供依據(jù).
本文研究的小型固體激光器冷卻系統(tǒng)中,增益模塊由兩片增益介質(zhì)材料及3個(gè)微通道組成(見(jiàn)圖1,其中紅色區(qū)域?yàn)楣腆w域);增益介質(zhì)為Nd:YAG晶體(釔鋁石榴石),其物性參數(shù)見(jiàn)表1,尺寸××為50mm×30mm×1.5mm;微通道高度=0.3mm;冷卻介質(zhì)為水,物性參數(shù)同文獻(xiàn)[22].
模擬假設(shè)如下:①過(guò)程穩(wěn)態(tài);②流體不可壓縮;③不考慮體積力;④忽略熱輻射的影響[23];⑤固體材料完全線彈性、各向同性,可使用Von Mises應(yīng)力進(jìn)行分析.
圖1?直接液冷固體激光器增益模塊三維物理模型
表1?Nd:YAG的物性參數(shù)
Tab.1?Physical property parameters of Nd:YAG crystal
說(shuō)明:由于幾何模型的對(duì)稱性,模擬結(jié)果討論時(shí)以軸方向的中心面為對(duì)稱面(虛線部分),取一半進(jìn)行計(jì)算分析.
增益模塊系統(tǒng)內(nèi)固體熱變形與液體流動(dòng)之間相互影響,屬于典型的熱流固耦合問(wèn)題.由于固體形變對(duì)液體流動(dòng)的影響很小[21],故本文采用單向熱流固耦合的方法建立模型.
流體域控制方程包括質(zhì)量、動(dòng)量、能量方程:
式中:為冷卻介質(zhì)的密度;為時(shí)間;為流速;為壓力;為動(dòng)力黏度;為溫度;eff為流體的有效導(dǎo)熱系數(shù);為流體導(dǎo)熱系數(shù);t為湍流引起的導(dǎo)熱系數(shù);c為比熱容.
湍流模型選擇SST-模型,其輸運(yùn)方程:
式中:t為湍流黏度;σ、σ分別為湍動(dòng)能、耗散率對(duì)應(yīng)的Prandtl數(shù);G是由于平均速度梯度引起的湍動(dòng)能的產(chǎn)生項(xiàng);G是耗散率的產(chǎn)生項(xiàng);Y和Y分別代表湍動(dòng)能、耗散率湍流過(guò)程中的耗?散項(xiàng).
固體域控制方程為熱傳導(dǎo)方程:
由流體引發(fā)固體振動(dòng)、位移的控制方程[24]:
流固耦合作用通過(guò)流固交界處的流體與固體的熱流密度、溫度相等來(lái)實(shí)現(xiàn),f=s,f=s.
結(jié)合前期研究結(jié)果[22],對(duì)模型進(jìn)行網(wǎng)格劃分,表2為固體域無(wú)關(guān)性驗(yàn)證結(jié)果,固體域選取160萬(wàn)網(wǎng)格;表3為流體域無(wú)關(guān)性驗(yàn)證結(jié)果,網(wǎng)格數(shù)選取1002萬(wàn),其中選?。?對(duì)邊界層網(wǎng)格進(jìn)行加密.求解方法選擇SIMPLE算法,壓力-速度耦合方程采用二階迎風(fēng)格式離散,動(dòng)量方程的對(duì)流項(xiàng)和擴(kuò)散項(xiàng)均采用QUICK格式離散.各項(xiàng)控制方程的求解均以小于1×10-6作為收斂標(biāo)準(zhǔn).
表2?固體域網(wǎng)格無(wú)關(guān)性驗(yàn)證
Tab.2?Grid independence verification of solid
表3?流體域網(wǎng)格無(wú)關(guān)性驗(yàn)證
Tab.3?Grid independence verification of fluid
壁面采用光滑無(wú)滑移壁面,微通道的4個(gè)壁面(上下前后)均為絕熱邊界;微通道流體入口選擇速度入口邊界,數(shù)值由雷諾數(shù)和微通道當(dāng)量直徑e決定(見(jiàn)式(14))、溫度=288.15K;出口選擇壓力出口=100kPa;固體內(nèi)部設(shè)置為均勻熱源.將FLUENT18.0軟件中模擬得到的流場(chǎng)、溫度場(chǎng)結(jié)果導(dǎo)入ANSYS18.0軟件中,計(jì)算熱應(yīng)力和熱變形.
對(duì)于直接液冷固體激光器,根據(jù)光的入射方式不同可以分為垂直入射和布魯斯特角入射[25].本文研究的激光器以布魯斯特角方式入射.研究表明[17]增益介質(zhì)軸方向(見(jiàn)圖1)的光程差變化可以忽略,因此以圖2建立光程差模型.
影響光程差的主要因素有三方面:①溫度分布;②增益介質(zhì)熱變形;③熱應(yīng)力.有研究表明[17],由熱應(yīng)力產(chǎn)生的光程差較小可忽略其影響,因此本文只考慮前兩個(gè)因素的影響.
圖2?增益模塊內(nèi)光路示意
溫度分布產(chǎn)生的光程差OPDt:
式中:為折射率;Δ為折射率的變化量;固體熱光系數(shù)d/d=7.3×10-6K-1;液體水的熱光系數(shù)?d/d=-1×10-4K-1[17];為光傳播的幾何路徑;Δ為光程變化量.
增益介質(zhì)熱變形產(chǎn)生的光程差OPDd:
式中:l、s分別為液體、固體的折射率;Δl、Δs分別為光在液體、固體介質(zhì)中傳播時(shí)的幾何路程變?化量.
總光程差OPD:
利用第1.2節(jié)的方法進(jìn)行增益模塊的熱流固耦合模擬,得到相應(yīng)的溫度場(chǎng)、應(yīng)力場(chǎng)與熱變形分布結(jié)果[21],將其代入式(9)~式(11),即可得到不同操作條件下激光器的光程差值.
利用文獻(xiàn)[17]中單薄片的實(shí)驗(yàn)數(shù)據(jù)進(jìn)行模型驗(yàn)證(進(jìn)口速度=2m/s,冷卻介質(zhì)為氘代99.8%的重水,溫度25℃,熱負(fù)荷=2090W),結(jié)果見(jiàn)圖3.可以看到,本文模擬結(jié)果與文獻(xiàn)數(shù)據(jù)吻和較好(最大相對(duì)誤差為3.28%),可以用于后續(xù)研究.
圖3?光程差計(jì)算模擬驗(yàn)證結(jié)果
圖4為雷諾數(shù)對(duì)泊肅葉數(shù)的影響結(jié)果.可以發(fā)現(xiàn),本文研究系統(tǒng)的轉(zhuǎn)捩雷諾數(shù)為2600,即為保證激光器的出光質(zhì)量,雷諾數(shù)應(yīng)小于2600.圖4中的相關(guān)參數(shù)計(jì)算如下:
式中:Po為泊肅葉數(shù);f為摩擦系數(shù);Re為雷諾數(shù);de為當(dāng)量直徑;τ為流體壁面剪應(yīng)力.
不同熱負(fù)荷下的雷諾數(shù)操作范圍(層流狀態(tài))不同.圖5為實(shí)際熱負(fù)荷=2000W時(shí),增益介質(zhì)的最大Von Mises應(yīng)力隨雷諾數(shù)的變化情況.可以發(fā)現(xiàn),最大Von Mises應(yīng)力隨著雷諾數(shù)的升高而降低;當(dāng)雷諾數(shù)為2200時(shí),增益介質(zhì)所受最大Von Mises應(yīng)力為331.84MPa,而Nd:YAG晶體的抗拉強(qiáng)度為341MPa,即此熱負(fù)荷下為避免裝置受損,雷諾數(shù)應(yīng)大于2200.綜合轉(zhuǎn)捩雷諾數(shù)為2600的結(jié)果,確定熱負(fù)荷2000W時(shí),為保證激光器出光質(zhì)量,應(yīng)控制雷諾數(shù)在2200~2600的層流范圍內(nèi).
圖5?不同雷諾數(shù)下的最大Von Mises應(yīng)力
圖6為增益介質(zhì)熱負(fù)荷=2000W時(shí)雷諾數(shù)對(duì)光程差分布及峰谷值的影響.從圖6(a)可以發(fā)現(xiàn),光程差分布中波峰和波谷位置均隨雷諾數(shù)的增大向軸的負(fù)向移動(dòng)(單流道流動(dòng)方向),光程差不均勻性明顯增大.從圖6(b)可以發(fā)現(xiàn),轉(zhuǎn)捩點(diǎn)(=2600)前,峰谷值PV(波峰與波谷的差值)隨雷諾數(shù)的增加而增大,因此雷諾數(shù)增大會(huì)使激光器出光質(zhì)量下降.
圖6?雷諾數(shù)對(duì)光程差分布及峰谷值的影響
不同雷諾數(shù)下對(duì)應(yīng)的熱負(fù)荷操作范圍也不同.根據(jù)第2.2節(jié)的結(jié)果,在雷諾數(shù)2200~2600適宜范圍內(nèi),選取=2300進(jìn)行模擬.圖7為增益介質(zhì)的最大Von Mises應(yīng)力隨熱負(fù)荷的變化情況,發(fā)現(xiàn)當(dāng)增益介質(zhì)熱負(fù)荷為2400W時(shí),最大Von Mises應(yīng)力接近晶體的抗拉強(qiáng)度極限,因此在此條件下,應(yīng)保證激光器的熱負(fù)荷不超過(guò)2400W.
圖8為=2300條件下,流固耦合壁面2(見(jiàn)圖2)上不同熱負(fù)荷下的變形情況.可以發(fā)現(xiàn),總體上流固耦合壁面的熱變形程度隨熱負(fù)荷的增大而增大,但不同位置的變化程度不同,熱變形兩端較大、中間略小;不同熱負(fù)荷下熱變形分布趨勢(shì)一致,說(shuō)明熱負(fù)荷只對(duì)增益介質(zhì)熱變形程度有影響.
圖7?不同熱負(fù)荷下的最大Von Mises應(yīng)力
圖8?熱負(fù)荷對(duì)熱變形的影響
圖9為雷諾數(shù)=2300條件下,熱負(fù)荷對(duì)光程差分布及峰谷值的影響.從圖9(a)可以發(fā)現(xiàn),熱負(fù)荷的增大導(dǎo)致光程差分布不均勻性增加,但幾乎不會(huì)對(duì)光程差波峰與波谷的位置產(chǎn)生影響.從圖9(b)可見(jiàn)峰谷值隨熱負(fù)荷的增大而增大,因此熱負(fù)荷的增加將導(dǎo)致激光器出光質(zhì)量下降.
圖9?熱負(fù)荷對(duì)光程差分布及峰谷值的影響
本文針對(duì)二薄片三通道式直接液冷固體激光器的研究需要,將熱流固耦合方法與光程差計(jì)算模型相結(jié)合,模擬雷諾數(shù)和熱負(fù)荷對(duì)光程差的影響.得到如下結(jié)論.
(1) 確定了實(shí)際工況要求的雷諾數(shù)、熱負(fù)荷操作范圍.為保證激光器出光質(zhì)量,在熱負(fù)荷2000W時(shí),建議控制流體的雷諾數(shù)在2200~2600的范圍內(nèi);在雷諾數(shù)2300時(shí),建議控制熱負(fù)荷不超過(guò)2400W.
(2) 在熱負(fù)荷2000W時(shí),波峰和波谷的位置均隨雷諾數(shù)的增大向軸的負(fù)向(單流道方向)移動(dòng),且光程差峰谷值隨雷諾數(shù)的增大而增大.因此,在保證移除熱量的前提下,為保證出光質(zhì)量,雷諾數(shù)不宜過(guò)大.
(3) 在雷諾數(shù)2300時(shí),增益介質(zhì)熱負(fù)荷的變化對(duì)波峰與波谷的位置幾乎不產(chǎn)生影響,只對(duì)峰谷值有影響,且熱負(fù)荷越大峰谷值越大.因此,在高功率激光輸出時(shí),應(yīng)重點(diǎn)關(guān)注光程差波峰和波谷位置對(duì)激光器出光質(zhì)量的影響.
[1] 唐曉軍,王?鋼,劉?嬌,等. 高亮度固體激光器技術(shù)發(fā)展研究[J]. 中國(guó)工程科學(xué),2020,22(3):49-55.
Tang Xiaojun,Wang Gang,Liu Jiao,et al. Development of high brightness solid-state laser technology[J]. Strategic Study of CAE,2020,22(3):49-55(in Chinese).
[2] 程秋虎,王石語(yǔ),過(guò)?振,等. 超高斯光束抽運(yùn)調(diào)Q固體激光器仿真模型研究[J]. 物理學(xué)報(bào),2017,66(18):38-45.
Cheng Qiuhu,Wang Shiyu,Guo Zhen,et al. Research on simulation model of ultra-gaussian beam pumped Q-switched solid-state laser[J]. Acta Physica Sinica,2017,66(18):38-45(in Chinese).
[3] Welch D F. A brief history of high-power semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics,2000,6(6):1470-1477.
[4] 雷小麗,孫?玲,劉?洋,等. 達(dá)信公司百千瓦陶瓷激光器技術(shù)綜述[J]. 激光與紅外,2011,41(9):948-952.
Lei Xiaoli,Sun Ling,Liu Yang,et al. Laser with 100kW output power developed by the Textron company[J]. Laser & Infrared,2011,41(9):948-952(in Chinese).
[5] Giesen A. Thin-disk solid state lasers[J]. Proceedings of SPIE—The International Society for Optical Engineer-ing,2004,5620:112-127.
[6] 易家玉,涂?波,曹海霞,等. 高功率直接液冷固體薄片激光器的設(shè)計(jì)與實(shí)驗(yàn)[J]. 中國(guó)激光,2018,45(12):24-34.
Yi Jiayu,Tu Bo,Cao Haixia,et al. Design and experiment on high-power direct-liquid-cooled thin-disk solid-state laser[J]. Chinese Journal of Lasers,2018,45(12):24-34(in Chinese).
[7] 葉志斌,陳?勇,涂?波,等. 直接液體冷卻薄片固體激光器研究進(jìn)展[J]. 激光與紅外,2019,49(8):929-934.
Ye Zhibin,Chen Yong,Tu Bo,et al. Advances in direct-liquid-cooled thin-disk solid-state laser[J]. Laser & Infrared,2019,49(8):929-934(in Chinese).
[8] 司春強(qiáng),邵雙全,田長(zhǎng)青,等. 高功率固體激光器噴霧冷卻技術(shù)[J]. 強(qiáng)激光與粒子束,2010,22(12):2789-2794.
Si Chunqiang,Shao Shuangquan,Tian Changqing,et al. Spray cooling technology for high-power solid-state laser[J]. High Power Laser and Particle Beams,2010,22(12):2789-2794(in Chinese).
[9] 司春強(qiáng),邵雙全,田長(zhǎng)青. 高功率固體激光器用一體化制冷噴霧冷卻系統(tǒng)實(shí)驗(yàn)研究[J]. 中國(guó)激光,2011,38(1):44-48.
Si Chunqiang,Shao Shuangquan,Tian Changqing. Experimental study on integrated refrigeration-spray cooling system for high-power solid-state laser[J]. Chinese Journal of Lasers,2011,38(1):44-48(in Chinese).
[10] 王?柯,涂?波,尚建力,等. 千瓦級(jí)浸入式直接液冷N(xiāo)d:YAG多薄片激光諧振腔[J]. 中國(guó)激光,2017,44(8):15-23.
Wang Ke,Tu Bo,Shang Jianli,et al. Kilowatt-level immersed and direct-liquid-cooling Nd:YAG multi-disk laser resonator[J]. Chinese Journal of Lasers,2017,44(8):15-23(in Chinese).
[11] 呂坤鵬,劉震宇,楊?雪,等. 高功率固體激光器微通道冷卻結(jié)構(gòu)的數(shù)值研究[J]. 中國(guó)激光,2020,47(6):100-105.
Lü Kunpeng,Liu Zhenyu,Yang Xue,et al. Numerical research on microchannel cooling structure of high power solid-state lasers[J]. Chinese Journal of Lasers,2020,47(6):100-105(in Chinese).
[12] Perry M D,Banks P S,Zweiback J,et al. Laser Containing a Distributed Gain Medium:US7366211[P]. 2008-04-29.
[13] Mandl A E,Klimek D E,Hayes R. Zig-zag Laser with Improved Liquid Cooling:US7433376[P]. 2008-10-07.
[14] Fu Xing,Liu qiang,Li Peilin,et al. Direct-liquid-cooled Nd:YAG thin disk laser oscillator[J]. Applied Physics Blasers and Optics,2013,111(3):517-521.
[15] Fu Xing,Liu qiang,Li Peilin,et al. Wavefront aberration induced by beam passage through a water-convection-cooled Nd:YAG thin disk[J]. Journal of Optics,2013,15(5):055704-1-055704-8.
[16] Li Peilin,F(xiàn)u Xing,Liu qiang,et al. Analysis of wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser[J]. Journal of the Optical Society of America B—Optical Physics,2013,30(8):2161-2167.
[17] Fu Xing,Liu qiang,Li Peilin,et al. Numerical simulation of 30-kW class liquid-cooled Nd:YAG multi-slab resonator[J]. Optics Express,2015,23(14):18458-18470.
[18] Ye Zhibin,Liu Chong,Tu Bo,et al. Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd:YLF thin disk laser resonator[J]. Optics Express,2016,24(2):1758-1772.
[19] Ye Zhibin,Zhao Zhigang,Pan Sunqiang,et al. Beam profile evolution and beam quality changes inside a diode-end-pumped laser oscillator[J]. IEEE Journal of Quantum Electronics,2014,50(2):62-67.
[20] Ye Zhibin,Cai Zhen,Tu Bo,et al. Direct liquid cooled Nd:YLF thin disk laser with unstable resonator[C]// Jiang S B,Wang L J,Tang C,et al. Proceeding of SPIE,AOPC 2015:Advances in Laser Technology and Applications. USA:International Society for Optics and Photonics,2015:967121.
[21] 張?威,俞?路,劉易航,等. 激光介質(zhì)溫度場(chǎng)及應(yīng)力場(chǎng)的流固耦合數(shù)值模擬[J]. 中國(guó)激光,2017,44(8):7-14.
Zhang Wei,Yu Lu,Liu Yihang,et al. Numerical simulation on fluid-structure interaction of temperature and stress fields in laser medium[J]. Chinese Journal of Lasers,2017,44(8):7-14(in Chinese).
[22] 潘娜娜,潘艷秋,俞?路,等. 微通道冷卻器內(nèi)流動(dòng)和傳熱特性的數(shù)值模擬[J]. 強(qiáng)激光與粒子束,2016,28(2):13-18.
Pan Nana,Pan Yanqiu,Yu Lu,et al. Numercial simulation of flow and heat transfer characteristics in microchannel cooler[J]. High Power Laser and Particle Beams,2016,28(2):13-18(in Chinese).
[23] 譚天恩. 化工原理(上冊(cè))[M]. 4版. 北京:化學(xué)工業(yè)出版社,2013.
Tan Tianen. Units Peration(Volume One)[M]. 4th ed. Beijing:Chemical Industry Press,2013(in Chinese).
[24] 朱紅鈞. ANSYS14.5熱流固耦合實(shí)戰(zhàn)指南[M]. 北京:人民郵電出版社,2004.
Zhu Hongjun. ANSYS14.5 Thermal-Fluid-Solid Coupling Practice Guide[M]. Beijing:People Post Press,2004(in Chinese).
[25] 葉志斌. 直接液體冷卻薄片激光器的研究[D]. 杭州:浙江大學(xué),2016.
Ye Zhibin. Research on Direct-Liquid-Cooled-Thin Disk Laser[D]. Hangzhou:Zhejiang University,2016(in Chinese).
Simulation of a Microchannel Cooling System Based on Thermal-Fluid-Solid Coupling
Pan Yanqiu1,Zhang Chunchao1,Zhang Wei1,Gu Jing1,Liu Wanfa2,He Shutong2
(1. School of Chemical Engineering,Dalian University of Technology,Dalian 116024,China;2. Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China)
The design concept of immersed direct liquid-cooled solid-state lasers has received widespread attention since it was introduced. The gain medium and cooling medium are directly contacted for heat exchange,which can greatly improve the heat transfer effect. The optical path difference(OPD)of the laser is affected by the structure of the microchannel,fluid flow,and heat load of the gain medium,thereby affecting light quality. Based on the need to optimize operating conditions of the actual solid-state laser,this study established a geometric model of the two-chip and three-channel cooling system,setting the positive direction of the-axis as the flow direction of the dual-channel. The thermal-fluid-solid coupling method and OPD calculation model were combined to simulate the influence of the Reynolds number and heat load on the OPD. Results show that the transition Reynolds number of the cooling system is 2600. Under the same heat load,as the Reynolds number in the microchannels increases,the peak and valley positions of the OPD move to the flow direction of the single channel,and the peak-to-valley value increases. Under the same Reynolds number,as the heat load increases,the thermal deformation of the gain medium increases,the peak and valley positions of the OPD remain unchanged,and the peak-to-valley value increases. To ensure light quality,the Reynolds number should be controlled within the range of 2200—2600 when the actual heat load is 2000W,and the heat load should be controlled within 2400W when the Reynolds number is 2300. The thermal-fluid-solid coupling model combined with the OPD calculation method can be used for the development and application of solid-state lasers and guide the optimization of the operating conditions of actual direct liquid-cooled solid-state lasers.
microchannel;thermal-fluid-solid coupling;solid-state laser;Reynoldsnumber;heat load
10.11784/tdxbz202101007
TN248.1
A
0493-2137(2022)04-0364-07
2021-01-06;
2021-03-25.
潘艷秋(1962—??),女,博士,教授.
潘艷秋,yqpan@dlut.edu.cn.
國(guó)家自然科學(xué)基金資助項(xiàng)目(61705230).
Supported by the National Natural Science Foundation of China(No. 61705230).
(責(zé)任編輯:田?軍)