劉文欽 吳馥凌 王龍 楊琴 吳江杰 侯連兵 唐斕 侯楚祺
中圖分類號(hào) R285 文獻(xiàn)標(biāo)志碼 A 文章編號(hào) 1001-0408(2021)24-2987-07
DOI 10.6039/j.issn.1001-0408.2021.24.08
摘 要 目的:探討丹參治療術(shù)后腹腔粘連(PAA)的潛在作用機(jī)制。方法:利用中藥系統(tǒng)藥理學(xué)分析平臺(tái)(TCMSP)、Swiss- ADME、Perl、UniProt等數(shù)據(jù)庫檢索丹參活性成分及其靶點(diǎn)基因,利用GeneCards、在線人類孟德爾遺傳數(shù)據(jù)庫(OMIM)、PubMed數(shù)據(jù)庫檢索與PAA相關(guān)的靶點(diǎn)基因。利用生物信息學(xué)在線數(shù)據(jù)庫作圖工具繪制維恩(Venn)圖,篩選活性成分-PAA的交叉靶點(diǎn)。利用STRING平臺(tái)構(gòu)建活性成分-PAA相關(guān)靶點(diǎn)網(wǎng)絡(luò)、交叉靶點(diǎn)的蛋白互作(PPI)網(wǎng)絡(luò)等,并篩選樞紐基因。借助R3.6.1軟件進(jìn)行基因本體(GO)和京都基因與基因組百科全書(KEGG)通路富集分析。以樞紐基因編碼蛋白為受體、活性成分丹參酮ⅡA為配體,采用AutoDock 1.5.6工具進(jìn)行分子對(duì)接。結(jié)果:共得到38種高胃腸道吸收的丹參活性成分及其相應(yīng)的72個(gè)靶點(diǎn)基因,以及755個(gè)與PAA相關(guān)的靶點(diǎn)基因。Venn圖結(jié)果顯示,丹參活性成分與PAA共有33個(gè)交叉靶點(diǎn)。丹參酮ⅡA、二氫丹參內(nèi)酯等成分可能是活性成分-PAA相關(guān)靶點(diǎn)網(wǎng)絡(luò)的重要節(jié)點(diǎn),F(xiàn)OS、APP、ACHE、CASP3、PTGS2可能是交叉靶點(diǎn)PPI網(wǎng)絡(luò)的樞紐基因。GO富集結(jié)果表明,交叉靶點(diǎn)主要富集于腎上腺素受體活性、兒茶酚胺結(jié)合、G蛋白偶聯(lián)胺受體活性等;KEGG通路富集分析表明,交叉靶點(diǎn)主要富集于神經(jīng)活性配體-受體相互作用、環(huán)磷酸鳥苷酸依賴的蛋白激酶、內(nèi)分泌抵抗、表皮生長因子受體酪氨酸激酶抑制劑抵抗和鈣信號(hào)通路等。分子對(duì)接分析表明,丹參酮ⅡA可與原癌基因蛋白c-Fos、淀粉樣前體蛋白、乙酰膽堿酯酶、胱天蛋白酶3和前列腺素G/H合酶2上VAL-580等多個(gè)氨基酸殘基形成氫鍵。結(jié)論:丹參活性成分可能通過直接或間接作用于神經(jīng)活性配體-受體相互作用、環(huán)磷酸鳥苷酸依賴的蛋白激酶、內(nèi)分泌抵抗、表皮生長因子受體酪氨酸激酶抑制劑抵抗和鈣信號(hào)通路等途徑來發(fā)揮治療PAA的作用。
關(guān)鍵詞 術(shù)后腹腔粘連;丹參;網(wǎng)絡(luò)藥理學(xué);分子對(duì)接
Investigation on the Mechanism of Salvia miltiorrhiza in the Treatment of Postoperative Abdominal Adhesion Based on Network Pharmacology and Molecular Docking
LIU Wenqin1,WU Fuling2,WANG Long2,YANG Qin2,WU Jiangjie2,HOU Lianbing2,TANG Lan3,HOU Chuqi2(1. Dept. of Scientific Research and Educational Management, the Affiliated Foshan Maternity&Child Healthcare Hospital of Southern Medical University, Guangdong Foshan 528000,China; 2. Dept. of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; 3. School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China)
ABSTRACT? ?OBJECTIVE: To investigate the potential mechanism of Salvia miltiorrhiza in the treatment of postoperative abdominal adhesion (PAA). METHODS: Active components and target genes of S. miltiorrhiza were retrieved from TCMSP database, SwissADME database, Perl database, UniProt database and other databases. GeneCards, OMIM and PubMed database were used to retrieve target genes related to PAA. Venn diagram was drawn by using mapping tool of bioinformatic online database so as to screen the intersecting targets of active component-PAA. STRING platform was adopted to establish target network related to active component-PAA and protein-protein interaction (PPI) network of intersecting targets, etc., and to screen hub genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were carried out by using R3.6.1 software. Using the protein encoded by hub gene as receptor and tanshinone ⅡA as ligand, the molecular docking was carried out with AutoDock 1.5.6 tool. RESULTS: A total of 38 active components of S. miltiorrhiza with high gastrointestinal absorption and their corresponding 72 targets,755 PAA-related target genes were identified. Results of Venn diagram showed that there were 33 intersecting targets of active components of S. miltiorrhiza with PAA. Tanshinone ⅡA, dihydrotanshinolac- tone and other components may be important nodes of the target network related to active component-PAA. FOS, APP, ACHE, CASP3 and PTGS2 may be the hub genes in PPI network of intersecting targets. Results of GO enrichment showed that the intersecting targets were mainly concentrated in adrenergic receptor activity, catecholamine binding, G protein-coupled amine receptor activity and so on; KEGG pathway enrichment analysis showed that the intersecting targets were mainly enriched in neuroactive ligand-receptor interaction, cGMP-PKG signaling pathway, endocrine resistance, EGFR-tyrosine kinase inhibitor resistance and calcium signaling pathway.Molecular docking analysis showed that tanshinone ⅡA could form hydrogen bonds with many amino acid residues such as VAL-580 of proto oncogenes c-Fos, amyloid precursor protein, acetylcholinesterase, caspase 3 and prostaglandin G/H synthase 2. CONCLUSIONS: The active components of S. miltiorrhiza play a role in the treatment of PAA by directly or indirectly acting on neuroactive ligand-receptor interaction, cGMP-PKG signaling pathway, endocrine resistance, EGFR-tyrosine kinase inhibitor resistance resistance and calcium signaling pathway.
KEYWORDS? ?Postoperative abdominal adhesion; Salvia miltiorrhiza; Network pharmacology; Molecular docking
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(No.82104505);中國博士后科學(xué)基金面上資助項(xiàng)目(No.2020M682818);廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金項(xiàng)目(No.2020A1515110371,No.2020A1515110324);中國醫(yī)藥教育協(xié)會(huì)2020重大科學(xué)攻關(guān)問題和醫(yī)藥技術(shù)難題科研課題(No.2020KTE003)
博士。研究方向:中藥治療術(shù)后腹腔粘連疾病。E-mail:liuwenqin1112@163.com
通信作者:博士。研究方向:術(shù)后腹腔粘連疾病。E-mail:houchuqi90@163.com
術(shù)后腹腔粘連(PAA)是腹部手術(shù)后的常見并發(fā)癥,臨床表現(xiàn)為腹腔內(nèi)臟器之間或臟器與腹壁之間的異常病理性連接,可導(dǎo)致小腸梗阻、女性不孕、慢性腹腔疼痛等,給患者帶來沉重的經(jīng)濟(jì)和精神負(fù)擔(dān)[1]。既往研究表明,PAA的形成與炎癥反應(yīng)、免疫反應(yīng)、纖維蛋白溶解、膠原降解、氧化應(yīng)激等過程密切相關(guān)[2-5]。
丹參Salvia miltiorrhiza Beg.是我國著名的傳統(tǒng)中藥材,臨床應(yīng)用已有數(shù)千年的歷史,具有抗炎、抗氧化、抗腫瘤等多種藥理活性[6]。研究發(fā)現(xiàn),含有丹參的中藥復(fù)方如丹紅注射液、常通口服液等對(duì)PAA均有良好的治療效果[7-8]。然而,丹參治療PAA的具體作用機(jī)制目前尚不明確。中藥常通過多靶點(diǎn)協(xié)同發(fā)揮治療作用,使得其作用機(jī)制研究的開展較為困難。網(wǎng)絡(luò)藥理學(xué)主要研究藥物與疾病之間的生物網(wǎng)絡(luò),其能識(shí)別、預(yù)測中藥活性成分與疾病靶點(diǎn)基因之間可能的結(jié)合位點(diǎn),而分子對(duì)接技術(shù)則有助于進(jìn)一步研究活性成分與靶點(diǎn)的對(duì)接方式[9]?;诖?,本研究擬從網(wǎng)絡(luò)藥理學(xué)和分子對(duì)接兩方面探討丹參治療PAA的潛在作用機(jī)制,為相關(guān)基礎(chǔ)和臨床研究提供新的方向。
1 資料與方法
1.1 丹參活性成分的篩選
利用中藥系統(tǒng)藥理學(xué)分析平臺(tái)數(shù)據(jù)庫(TCMSP,http://lsp.nwu.edu.cn/tcmsp.php)收集并選擇口服生物利用度(OB)≥30%、類藥性指數(shù)(DL)≥0.18、Caco-2細(xì)胞滲透性≥0.4的丹參活性成分[10-12]。其中,OB是口服藥物的重要藥動(dòng)學(xué)指標(biāo),代表活性成分經(jīng)口服后進(jìn)入體循環(huán)并產(chǎn)生理化效應(yīng)的能力;DL是判斷活性成分相似性的指標(biāo),通過與已知藥物進(jìn)行比較來確定某種活性成分是否具有治療作用;Caco-2細(xì)胞滲透性是一種基于化學(xué)結(jié)構(gòu)和理化特性的“金標(biāo)準(zhǔn)”滲透性篩選試驗(yàn)方法的重要指標(biāo)。然后,利用SwissADME數(shù)據(jù)庫(http://www.swissadme.ch/index.php)檢索并選擇具有高胃腸道吸收的候選活性成分作為后續(xù)分析的活性成分[13-15]。
1.2 丹參活性成分靶點(diǎn)基因的篩選
利用TCMSP數(shù)據(jù)庫獲得丹參活性成分的靶點(diǎn)蛋白,然后利用Perl數(shù)據(jù)庫(http://www.perl.org/)和UniProt數(shù)據(jù)庫(http://www.uniprot.org/uploadlists/)獲取靶點(diǎn)蛋白對(duì)應(yīng)的基因,去重后即得到丹參活性成分的靶點(diǎn)基因。
1.3 PAA相關(guān)靶點(diǎn)基因的篩選
利用GeneCards數(shù)據(jù)庫(http://www.genecards.org/)、在線人類孟德爾遺傳數(shù)據(jù)庫(OMIM,http://omim.org/)和PubMed數(shù)據(jù)庫(https://pubmed.ncbi.nlm.nih.gov/)等3個(gè)數(shù)據(jù)庫,以“postoperative abdominal adhesion”或“PAA”“abdominal adhesion,postoperative”“postoperative peritoneal adhesion”“PAA”或“peritoneal adhesion,postoperative”為關(guān)鍵詞,檢索與PAA相關(guān)的靶點(diǎn)基因。
1.4 成分-疾病交叉靶點(diǎn)的篩選
利用生物信息學(xué)在線數(shù)據(jù)庫作圖工具(http://bioinformatics.psb.ugent.be/webtools/Venn/)獲得維恩(Venn)圖,篩選出丹參活性成分靶點(diǎn)基因與PAA相關(guān)靶點(diǎn)基因的交叉靶點(diǎn)。
1.5 網(wǎng)絡(luò)構(gòu)建與分析
將“1.4”項(xiàng)下所得靶點(diǎn)導(dǎo)入STRING平臺(tái)(https://string-db.org)構(gòu)建蛋白互作(PPI)網(wǎng)絡(luò)。采用Cytoscape 3.7.1軟件構(gòu)建可視化網(wǎng)絡(luò),包括活性成分預(yù)測靶點(diǎn)網(wǎng)絡(luò)、PAA相關(guān)靶點(diǎn)網(wǎng)絡(luò)、活性成分-PAA相關(guān)靶點(diǎn)網(wǎng)絡(luò)和交叉靶點(diǎn)的PPI網(wǎng)絡(luò)。在網(wǎng)絡(luò)中,節(jié)點(diǎn)(degree)用于表示成分或靶點(diǎn)蛋白,邊(edge)用于表示成分、疾病和靶點(diǎn)蛋白之間的關(guān)系。利用Cytoscape 3.7.1的CytoHubba插件來探索網(wǎng)絡(luò)中的重要節(jié)點(diǎn)[12]。為考察靶點(diǎn)基因與其鄰近靶點(diǎn)基因之間的關(guān)系以及基因與整個(gè)網(wǎng)絡(luò)的關(guān)系,本研究采用接近中心性(closeness centrality)、度中心性(degree centrality)和最大鄰居組件(maximum neighborhood component)3個(gè)指標(biāo)對(duì)丹參治療PAA的樞紐基因進(jìn)行分析[16-17]。
1.6 GO和KEGG通路富集分析
使用帶有生物導(dǎo)體包的R3.6.1軟件對(duì)交叉靶點(diǎn)基因進(jìn)行基因本體(GO)和京都基因與基因組百科全書(KEGG)通路富集分析(P<0.05)及可視化展示。
1.7 分子對(duì)接分析
利用藥物分子靶點(diǎn)ZINC數(shù)據(jù)庫(http://zinc.doc- king.org/)獲得丹參活性成分的三維(3D)結(jié)構(gòu),利用蛋白質(zhì)結(jié)構(gòu)PDB數(shù)據(jù)庫(https://www.rcsb.org/)獲得交叉靶點(diǎn)的3D結(jié)構(gòu)。根據(jù)以下條件進(jìn)行篩選:(1)該生物體來自人類(homo sapiens);(2)通過X射線衍射得到蛋白質(zhì)結(jié)構(gòu);(3)蛋白質(zhì)的晶體分辨率小于3 ?(1 ?=10-10 m)。通過AutoDock 1.5.6分子對(duì)接工具對(duì)選擇出的活性成分和靶點(diǎn)蛋白進(jìn)行加氫、加電荷處理,然后計(jì)算結(jié)合能[18],通過AutoDock 1.5.6工具的Autogrid 4插件設(shè)置網(wǎng)格框坐標(biāo),將蛋白設(shè)置為剛性、配體設(shè)置為柔性,然后在AutoDock 1.5.6分子對(duì)接工具中進(jìn)行對(duì)接,并采用PyMol 2.3.2軟件可視化展示分子對(duì)接結(jié)果。
2 結(jié)果
2.1 丹參活性成分的篩選結(jié)果
利用TCMSP數(shù)據(jù)庫,在設(shè)定的過濾條件下,從202種丹參成分中篩選出41種活性成分。經(jīng)過SwissADME數(shù)據(jù)庫篩選后,獲得38種高胃腸道吸收的丹參活性成分用于后續(xù)分析,詳見表1。
2.2 丹參活性成分靶點(diǎn)基因的篩選結(jié)果
將“2.1”項(xiàng)下所得38種高胃腸道吸收的丹參活性成分導(dǎo)入TCMSP數(shù)據(jù)庫中,結(jié)合Perl數(shù)據(jù)庫和UniProt數(shù)據(jù)庫,共獲取到丹參活性成分的靶點(diǎn)基因72個(gè)。
2.3 PAA相關(guān)靶點(diǎn)基因的篩選結(jié)果
經(jīng)過篩選后,從GeneCards數(shù)據(jù)庫中獲得502個(gè)PAA相關(guān)靶點(diǎn)基因,從OMIM數(shù)據(jù)庫中獲得550個(gè)PAA相關(guān)靶點(diǎn)基因,從PubMed數(shù)據(jù)庫中獲得104個(gè)PAA相關(guān)靶點(diǎn)基因。根據(jù)3個(gè)在線數(shù)據(jù)庫的綜合信息,去除重復(fù)靶點(diǎn)基因后,共得到755個(gè)與PAA相關(guān)的靶點(diǎn)基因。
2.4 成分-疾病交叉靶點(diǎn)的篩選結(jié)果
在獲得PAA相關(guān)靶點(diǎn)基因和丹參活性成分靶點(diǎn)基因后,繪制Venn圖(圖1),共篩選出33個(gè)交叉靶點(diǎn),包括原癌基因蛋白c-Fos(FOS)、淀粉樣前體蛋白(APP)、乙酰膽堿酯酶(ACHE)、胱天蛋白酶3(CASP3)和前列腺素G/H合酶2(PTGS2)等。
2.5 網(wǎng)絡(luò)構(gòu)建與分析結(jié)果
活性成分預(yù)測靶點(diǎn)網(wǎng)絡(luò)顯示,單個(gè)靶點(diǎn)可以由多種活性成分共同調(diào)節(jié)以觸發(fā)生物效應(yīng)(圖2),如丹參酮ⅡA受FOS、APP、CASP3、ACHE、PTGS2等的調(diào)節(jié)。
PAA相關(guān)靶點(diǎn)網(wǎng)絡(luò)結(jié)果顯示,PAA受755個(gè)靶點(diǎn)基因的調(diào)控(圖3)。
活性成分-PAA相關(guān)靶點(diǎn)網(wǎng)絡(luò)結(jié)果顯示,丹參酮ⅡA、二氫丹參內(nèi)酯均有15條邊,4-亞甲基米酮有14條邊,鼠尾草酚酮有13條邊,2-異丙基-8-甲基菲-3,4-二酮有12條邊,丹參新醌D、異隱丹參酮及新隱丹參酮Ⅱ有11條邊(圖4)。邊數(shù)越多,說明與該活性成分相互作用的PAA靶點(diǎn)越多,故丹參酮ⅡA、二氫丹參內(nèi)酯可能是該網(wǎng)絡(luò)中的重要節(jié)點(diǎn)。
交叉靶點(diǎn)的PPI網(wǎng)絡(luò)結(jié)果顯示,該網(wǎng)絡(luò)由33個(gè)節(jié)點(diǎn)和174條邊組成(圖5)。其中,F(xiàn)OS有23條邊,APP有19條邊,ACHE有16條邊,CASP3和PTGS2均有15條邊,雌激素受體1(ESR1)、5-羥色胺受體3A(HTR3A)、Myc原癌基因蛋白(MYC)、信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(STAT3)均有14條邊,轉(zhuǎn)錄因子AP-1(JUN)和Mμ型阿片受體(OPRM1)均有13條邊,BCL-2樣蛋白1(BCL2L1)、基質(zhì)金屬蛋白酶-9(MMP9)、過氧化物酶體增殖物激活受體γ(PPARG)和鈉依賴性血清素轉(zhuǎn)運(yùn)蛋白(SLC6A4)均有12條邊,雄激素受體(AR)有11條邊。通過CytoHubba插件分析獲得最相關(guān)的5個(gè)樞紐基因,分別為FOS、ACHE、APP、CASP3和PTGS2(圖6),接近中心性、度中心性和最大鄰居組件3種方法的評(píng)分結(jié)果及其3D結(jié)構(gòu)圖見表2。
2.6 GO和KEGG通路富集分析結(jié)果
GO富集分析結(jié)果顯示,交叉靶點(diǎn)主要富集于腎上腺素受體活性(adrenergic receptor activity)、兒茶酚胺結(jié)合(catecholamine binding)、G蛋白偶聯(lián)胺受體活性(G protein-coupled amine receptor activity)、RNA聚合酶Ⅱ轉(zhuǎn)錄因子結(jié)合(RNA polymerase Ⅱ transcription factor binding)和核受體活性(nuclear receptor activity)等,詳見圖7。KEGG通路富集分析結(jié)果表明,交叉靶點(diǎn)主要富集于神經(jīng)活性配體-受體相互作用(neuroactive ligand-receptor interaction)、環(huán)磷酸鳥苷酸依賴的蛋白激酶(cGMP-PKG signaling pathway)、內(nèi)分泌抵抗(endocrine resistance)、表皮生長因子受體酪氨酸激酶抑制劑抵抗(EGFR tyrosine kinase inhibitor resistance)和鈣信號(hào)通路(calcium signaling pathway) ,詳見圖8。
2.7 分子對(duì)接結(jié)果
本研究選擇活性成分治療靶點(diǎn)網(wǎng)絡(luò)中交互邊數(shù)最多且與交叉靶點(diǎn)關(guān)系最密切的丹參酮ⅡA與FOS、APP、ACHE、CASP3和PTGS2進(jìn)行分子對(duì)接。分子對(duì)接結(jié)果表明,丹參酮ⅡA可與FOS上的VAL-580、GLN-671殘基形成氫鍵,與APP上的HIS-208、ARG-125、PRO-32、TYR-22殘基形成氫鍵,與ACHE上的TYR-510、GLY-523、ARG-525殘基形成氫鍵,與CASP3上的SER-180、ARG-341、SFR-343、ASN-342殘基形成氫鍵,與PTGS2上的LEU-22殘基形成氫鍵,詳見圖9。
3 討論
丹參作為我國傳統(tǒng)中藥材,被廣泛應(yīng)用于治療多種疾病,尤其對(duì)治療PAA具有重要作用[19]。本研究通過網(wǎng)絡(luò)藥理學(xué)分析了丹參治療PAA的活性成分、潛在治療靶點(diǎn)以及活性成分治療PAA的調(diào)控通路,并利用分子對(duì)接技術(shù)對(duì)丹參中關(guān)鍵活性成分及樞紐基因編碼蛋白之間的相互作用進(jìn)行了可視化展示。
本研究經(jīng)篩選得到38種高胃腸道吸收的丹參活性成分,包括丹參酮ⅡA和隱丹參酮等。有研究報(bào)道,丹參的主要活性成分丹參酮ⅡA和隱丹參酮對(duì)術(shù)后粘連組織的形成有明顯的抑制作用[20-21]。本研究結(jié)果顯示,與其他活性成分相比,丹參酮ⅡA能調(diào)控最多的靶點(diǎn)基因,可能是丹參治療PAA最重要的活性成分。本研究中分子對(duì)接模擬提供了丹參酮ⅡA與FOS、APP、ACHE、CASP3、PTGS2之間的相互作用方式。研究顯示,丹參酮ⅡA可以顯著抑制FOS的表達(dá),而FOS是丹參治療PAA的一個(gè)重要靶點(diǎn)[22]。FOS屬于激活蛋白1家族的一類轉(zhuǎn)錄因子,在反式激活和反式抑制中發(fā)揮重要作用[23]。在腹膜組織炎癥反應(yīng)期間,F(xiàn)OS可調(diào)節(jié)血管內(nèi)皮生長因子的產(chǎn)生[24]。此外,有研究顯示,F(xiàn)OS與MMP9及炎癥因子的表達(dá)顯著相關(guān)[25-26],而MMP9被認(rèn)為是PAA形成的關(guān)鍵蛋白,通常作為評(píng)價(jià)藥物治療效果的重要指標(biāo)[27]。本研究通過接近中心性、度中心性和最大鄰居組件3個(gè)指標(biāo)對(duì)交叉靶點(diǎn)PPI網(wǎng)絡(luò)中的樞紐基因進(jìn)行挖掘,結(jié)果顯示,F(xiàn)OS的上述3個(gè)指標(biāo)數(shù)值均最大,表明其可能是丹參治療PAA最關(guān)鍵的靶點(diǎn)。APP、ACHE、CASP3、PTGS2的各指標(biāo)數(shù)值也較大,但其是否在PAA形成中發(fā)揮了相應(yīng)作用,筆者尚未查閱到相關(guān)文獻(xiàn)。
本研究GO富集分析顯示,交叉靶點(diǎn)主要富集于腎上腺素受體活性、兒茶酚胺結(jié)合、G蛋白偶聯(lián)胺受體活性、RNA聚合酶Ⅱ轉(zhuǎn)錄因子結(jié)合和核受體活性;KEGG通路富集分析顯示,交叉靶點(diǎn)主要富集于神經(jīng)活性配體-受體相互作用、環(huán)磷酸鳥苷酸依賴的蛋白激酶、內(nèi)分泌抵抗、表皮生長因子受體酪氨酸激酶抑制劑抵抗和鈣信號(hào)通路,表明丹參可通過參與以上信號(hào)通路來治療PAA,而丹參是如何通過這些途徑治療PAA,將是本研究團(tuán)隊(duì)下一步的研究內(nèi)容。
本研究結(jié)果表明,丹參治療PAA的活性成分主要包括丹參酮ⅡA、隱丹參酮等。上述活性成分可能通過直接或間接作用于神經(jīng)活性配體-受體相互作用、環(huán)磷酸鳥苷酸依賴的蛋白激酶、內(nèi)分泌抵抗、表皮生長因子受體酪氨酸激酶抑制劑抵抗和鈣信號(hào)通路等途徑來發(fā)揮治療PAA的作用,與中藥多成分-多靶點(diǎn)-多通路的作用特點(diǎn)相符。同時(shí),本研究也可作為一種分子機(jī)制的預(yù)測,為進(jìn)一步研究丹參治療PAA的作用機(jī)制提供參考。
參考文獻(xiàn)
[ 1 ] LIU W Q,QIN F,WU F L,et al. Sodium aescinate significantly suppress postoperative peritoneal adhesion by inhibiting the RhoA/ROCK signaling pathway[J]. Phytomedicine,2020,69:153193.
[ 2 ] WEI G B,WU Y H,GAO Q,et al. Gallic acid attenuates postoperative intra-abdominal adhesion by inhibiting inflammatory reaction in a rat model[J]. Med Sci Monit,2018,24:827-838.
[ 3 ] WANG Q B,HUANG Y M,ZHOU R,et al. Regulation and function of IL-22 in peritoneal adhesion formation after abdominal surgery[J]. Wound Repair Regen,2020,8(1):105-117.
[ 4 ] WU Y H,LI E M,WANG Z J,et al. TMIGD1 inhibited abdominal adhesion formation by alleviating oxidative stress in the mitochondria of peritoneal mesothelial cells[J]. Oxid Med Cell Longev,2021,2021:9993704.
[ 5 ] HU Q Y,XIA X F,KANG X,et al. A review of physiolo- gical and cellular mechanisms underlying fibrotic postopera- tive adhesion[J]. Int J Biol Sci,2021,17(1):298-306.
[ 6 ] HAN L M,HUA W P,CAO X Y,et al. Genome-wide identification and expression analysis of the superoxide dismutase(SOD)gene family in salvia miltiorrhiza[J].Gene,2020,742:144603.
[ 7 ] WU F L,LIU W Q,F(xiàn)ENG H X,et al. Application of traditional Chinese medicines in postoperative abdominal adhesion[J]. Evid Based Complement Alternat Med,2020,2020:8073467.
[ 8 ] YANG X X,SHI H P,HOU L B. Chinese medicine compound Changtong oral liquid on postoperative intestinal adhesions[J]. World J Gastroenterol,2005,11(19):2967- 2970.
[ 9 ] HAO D C,XIAO P G. Network pharmacology:a rosetta stone for traditional Chinese medicine[J]. Drug Dev Res,2014,75(5):299-312.
[10] WEI M Q,LI H,LI Q F,et al. Based on network pharmacology to explore the molecular targets and mechanisms of gegen qinlian decoction for the treatment of ulcerative colitis[J]. Biomed Res Int,2020,2020:5217405.
[11] KIM M,PARK K H,KIM Y B. Identifying active compounds and targets of fritillariae thunbergii against influenza- associated inflammation by network pharmacology ana- lysis and molecular docking[J]. Molecules,2020,25(17):3853.
[12] ZHANG S P,ZHANG C,LI L H,et al. Prediction of anti- liver fibrosis effect of Piperis Longi Fructus based on network pharmacology[J]. Zhongguo Zhong Yao Za Zhi,2021,46(4):845-854.
[13] DAINA A,MICHIELIN O,ZOETE V. SwissADME:a free web tool to evaluate pharmacokinetics,drug-likeness and medicinal chemistry friendliness of small molecules[J]. Sci Rep,2017,7:42717.
[14] AYAR A,AKSAHIN M,MESCI S,et al. Antioxidant,cytotoxic activity and pharmacokinetic studies by SwissAdme,molinspiration,osiris and DFT of PhTAD-substituted dihydropyrrole derivatives[J]. Curr Comput Aided Drug Des,2021,17:5722-2728.
[15] HAN J W,WAN M J,MA Z C,et al. Prediction of targets of curculigoside a in osteoporosis and rheumatoid arthritis using network pharmacology and experimental verification[J]. Drug Des Devel Ther,2020,14:5235-5250.
[16] ZHANG H,ZHONG J N,TU Y B,et al. Integrated bioinformatics analysis identifies hub genes associated with the pathogenesis and prognosis of esophageal squamous cell carcinoma[J]. Biomed Res Int,2019,2019:2615921.
[17] CHOUDHARY S,ANAND R,PRADHAN D,et al. Tran- scriptomic landscaping of core genes and pathways of mild and severe psoriasis vulgaris[J]. Int J Mol Med,2021,47(1):219-231.
[18] ZHANG H,DAN W C,HE Q Y,et al. Exploring the biological mechanism of huang yam in treating tumors and preventing antitumor drug-induced cardiotoxicity using network pharmacology and molecular docking technology?[J]. Evid Based Complement Alternat Med,2021,25:9988650.
[19] RAISI A,DEZFOULIAN O,DAVOODI F,et al. Salvia miltiorrhiza hydroalcoholic extract inhibits postoperative peritoneal adhesions in rats[J]. BMC Complement Med Ther,2021,21(1):126.
[20] HOU L,QIN F,MA Y,et al. Efficacy and mechanism of tanshinoneⅡA liquid nanoparticles in preventing experimental postoperative peritoneal adhesions in vivo and in vitro[J]. Int J Nanomed,2015,10:3699-3717.
[21] WANG C X,GUO R S,GU Q L,et al. The prevention effects of cryptotanshinone nanoemulsion on postoperative peritoneal adhesions[J]. Drug Dev Ind Pharm,2019,45(5):695-702.
[22] FENG J,ZHENG Z. Effect of sodium tanshinoneⅡA sulfonate on cardiac myocyte hypertrophy and its underlying mechanism[J]. Chin J Integr Med,2008,14(3):197-201.
[23] HU J W,DING G Y,F(xiàn)U P Y,et al. Identification of FOS as a candidate risk gene for liver cancer by integrated bioinformatic analysis[J]. Biomed Res Int,2020(8):1-10.
[24] CATAR R,WITOWSKI J,WAGNER P,et al. The proto- oncogene c-Fos transcriptionally regulates VEGF production during peritoneal inflammation[J]. Kidney Int,2013,84(6):1119-1128.
[25] JIANG R,XU X H,SUN Z,et al. Protective effects of ginseng proteins on photoaging of mouse fibroblasts induced by UVA[J]. Photochem Photobiol,2020,96(1):113-123.
[26] DING Y,HAO K,LI Z,et al. c-Fos separation from Lamin A/C by GDF15 promotes colon cancer invasion and metastasis in inflammatory microenvironment[J]. J Cell Physiol,2020,235(5):4407-4421.
[27] BAYHAN Z,ZEREN S,KOCAK F E,et al. Antiadhesive and anti-inflammatory effects of pirfenidone in postoperative intra-abdominal adhesion in an experimental rat model[J]. J Surg Res,2016,201(2):348-355.
(收稿日期:2021-10-19 修回日期:2021-11-08)