熊 穎,周 波,鐘海雁
杏仁種皮酚類物質(zhì)的低共熔溶劑提取及其抗氧化能力
熊 穎1,2,3,周 波1,2,鐘海雁1,2※
(1. 林產(chǎn)可食資源安全與加工利用湖南省重點實驗室,長沙 410004;2. 中南林業(yè)科技大學(xué)食品科學(xué)與工程學(xué)院,長沙 410004; 3. 湖南省植物園,長沙 410116)
為了探討低共熔溶劑(Deep Eutectic Solvents, DESs)對杏仁種皮酚類物質(zhì)的提取率及其提取物抗氧化能力,以4種傳統(tǒng)溶劑和5種低共熔溶劑為提取溶劑,比較評價了低共熔溶劑對杏仁種皮酚類物質(zhì)的提取效果,并采用DPPH、ABTS自由基清除法和氧自由基吸收能力(Oxygen Radical Absorption Capacity, ORAC)分析杏仁種皮低共熔溶劑提取物的抗氧化能力。結(jié)果表明,低共熔溶劑對杏仁種皮酚類物質(zhì)的提取效果更佳,其中氯化膽堿-草酸(DESs2)和氯化膽堿-蘋果酸(DESs3)兩組低共熔溶劑對杏仁種皮酚類的提取率分別為酸化甲醇的2.18和1.84倍;與酸化甲醇的杏仁種皮提取物相比,DESs2和DESs3杏仁種皮提取物的DPPH自由基清除能力分別提高了26.89%和73.13%,ABTS自由基清除能力分別提高了33.18%和114.81%,氧自由基吸收能力分別提高了14.92和17.73mol/g。HPLC結(jié)果表明傳統(tǒng)溶劑的杏仁種皮提取液中酚類物質(zhì)組成較復(fù)雜,而氯化膽堿-草酸(DESs2)、氯化膽堿-蘋果酸(DESs3)和氯化膽堿-蘋果酸-脯氨酸(DESs5)的杏仁種皮提取液中酚類物質(zhì)組成較為單一,說明低共熔溶劑在提取酚類物質(zhì)時具有很強的專一性。
酚類化合物;抗氧化能力;低共熔溶劑;杏仁種皮
杏仁種皮又被稱為杏仁紅衣、杏仁種皮,顏色深黃,是杏仁深加工過程中的副產(chǎn)物,除了少數(shù)被用作飼料之外,大部分都被丟棄[1]。杏仁種皮含有的酚類物質(zhì)種類繁多,如沒食子酸、原兒茶酸、綠原酸、沒食子酸丙酯等[2-6],酚類物質(zhì)除了具有清除自由基[7]、抗氧化[8]的功效之外,還具有抗菌[9-11]、抗動脈粥樣硬化[12]、調(diào)節(jié)腸道菌群[13-14]、抗腫瘤[15-16]等功效。
低共熔溶劑(Deep Eutectic Solvents,DESs)是一種綠色溶劑,這類溶劑具有低毒、可降解、環(huán)境友好以及提取的高效性和目標(biāo)性明確的特點。隨著低共熔溶劑的不斷研究和開發(fā),國內(nèi)外許多學(xué)者開始利用低共熔溶劑提取植物活性成分,如酚酸[17]、黃酮[18]、酚類物質(zhì)[19]、皂苷[20]等。然而目前還沒有關(guān)于低共熔溶劑提取杏仁種皮中酚類物質(zhì)的研究報道。盡管很多DESs應(yīng)用于活性物質(zhì)提取的研究均證明了其有效性,但DESs在實際應(yīng)用中仍存在的一些問題,尤其是DESs固有的低蒸氣壓使其從提取液中被回收具有一定難度,由此可見DESs作為新型綠色溶劑的全部潛力仍未開發(fā)。
本研究比較了杏仁種皮的5種低共熔溶劑和4種傳統(tǒng)溶劑提取物的抗氧化能力,并分析了低共熔溶劑和傳統(tǒng)溶劑杏仁種皮提取物酚類組成的區(qū)別,以期為杏仁種皮的開發(fā)利用和低共熔溶劑的高效利用提供新思路。
杏仁種皮(山杏):河北省張家口市永昌源果仁食品有限公司;1,1-二苯基-2-三硝基苯肼(DPPH)分析純上海源葉生物科技有限公司;福林酚分析純合肥博美生物科技有限公司;2,2-偶氮二異丁基脒二鹽酸鹽(ABAP)標(biāo)準(zhǔn)品美國Sigma公司;沒食子酸分析純天津市科密歐化學(xué)試劑有限公司;甲醇色譜純美國Sigma公司;乙酸色譜純天津市化學(xué)試劑研究所有限公司;2,2-聯(lián)氮-雙(3-乙基苯并噻唑啉-6-磺酸)二銨鹽(ABTS)分析純上海阿拉丁生化科技股份有限公司;沒食子酸標(biāo)準(zhǔn)品美國Sigma公司;原兒茶酸標(biāo)準(zhǔn)品美國Sigma公司;3,4-二羥基苯乙酸標(biāo)準(zhǔn)品美國Sigma公司;兒茶素標(biāo)準(zhǔn)品美國Sigma公司;綠原酸標(biāo)準(zhǔn)品美國Sigma公司;沒食子酸丙酯標(biāo)準(zhǔn)品美國Sigma公司。
數(shù)顯控溫磁力攪拌器HJ-4A江蘇金壇市金城國勝實驗儀器廠;恒溫水浴鍋XMTD-7000北京市永光明醫(yī)療儀器有限公司;離心機Centrifuge 5418 德國Eppendorf公司;UV1200紫外可見分光光度計上海美普達儀器公司;1200型高效液相色譜儀美國Agilent公司;Agile ZORBAX SB-C18分析型色譜柱4.6 mm×250 mm,5m 美國Agilent公司。
1.3.1 提取前處理
取適量杏仁種皮放入粉碎機中初步磨粉,隨后取出放入研缽中,加入適量液氮進一步研磨杏仁種皮粉,過80目篩,處理后的杏仁種皮用密封袋裝好封口,于4 ℃保存。
綜合文獻方法和預(yù)試驗結(jié)果[21-23]選用四種傳統(tǒng)溶劑(Conventional Solvents,CS)對杏仁種皮酚類物質(zhì)進行提?。?0%甲醇(MeOH)、60%乙醇(EtOH)、酸化甲醇(MeAc,甲醇∶去離子水∶12 mol∶L HCl為70∶29∶1)和去離子水。
低共熔溶劑參考前人研究和預(yù)試驗結(jié)果用相同的氫受體和不同的氫供體來制備[24-26]。將氫供體和氫受體置于錐形瓶中,在80 ℃水浴下不斷攪拌至形成穩(wěn)定無色透明的液體[27],由于低共熔溶劑黏度較大,為探究黏度對提取物的影響,本研究參考文獻報道[28]設(shè)置了四個不同的濃度梯度(100%、90%、75%和50%,均為質(zhì)量分?jǐn)?shù)),制備的溶劑組分配比與名稱如表1。
表1 低共熔溶劑的組成
1.3.2 提取方法
以1:10的料液比將杏仁種皮粉和溶劑置于10 mL燒杯中,保鮮膜封口,在25 ℃條件下不間斷攪拌提取12 h。隨后將混合物在4 000 r/min下離心20 min,取上清液并用對應(yīng)溶劑定容至5 mL。
1.3.3 總酚含量和抗氧化能力測定
總酚的測定采用福林酚法,參照GB/T 8313-2008測定提取液和空白溶劑的吸光度,以提取液和空白溶劑的吸光度之差作為總酚吸光度。吸光度()與沒食子酸濃度(,g/mL)的標(biāo)準(zhǔn)曲線為:=0.084 5+0.058 5,2=0.997 9。杏仁種皮總酚含量由公式(1)計算,杏仁種皮的總酚含量以沒食子酸當(dāng)量計(mg/g)。
式中為待測液總酚濃度,g/mL;為提取物定容體積,mL;為稀釋因子;為杏仁種皮樣品質(zhì)量,g。
酚類物質(zhì)的抗氧化能力采用DPPH、ABTS和ORAC(Oxygen Radical Absorbance Capacity)三種方法進行評價,三種評價抗氧化能力的方法均以Trolox為對照品,酚類物質(zhì)的抗氧化能力以Trolox當(dāng)量計(mol/g),以提取液和空白溶劑的抗氧化能力之差作為酚類物質(zhì)的抗氧化能力。DPPH自由基清除能力的測定參考李志曉等[29]的方法,吸光度()和Trolox濃度(,mol/g)的標(biāo)準(zhǔn)曲線為:=?0.038 8+0.872 9,2=0.997 2。ABTS自由基清除能力的檢測參考Luo等[30]的方法,吸光度()和Trolox濃度(,mol/g)的標(biāo)準(zhǔn)曲線為:=?0.021 39+0.678 2,2=0.995 4。ORAC測定按照本實驗室方法進行[31],杏仁種皮ORAC氧自由基吸收能力以Trolox當(dāng)量表示(mol/g)。曲線下面積()和Trolox濃度(,mol/g)的線性回歸方程為:=0.002 8+ 0.274 3,2=0.997 3。
1.3.4 提取物HPLC分析
取適量1.3.2中的種皮提取液用色譜級甲醇適當(dāng)稀釋得待測液,離心后取2 mL上清液過0.45m濾膜,待測。由于實驗室已根據(jù)本研究所用杏仁種皮的特性建立了杏仁種皮酚類物質(zhì)的HPLC分析方法,因此采用本實驗室方法設(shè)定HPLC參數(shù)[32]。
1.3.5 數(shù)據(jù)處理
數(shù)據(jù)計算采用Excel 2019進行,數(shù)據(jù)分析采用SPSS 22.0進行,圖片繪制采用Origin 2018,所有數(shù)值均為三次平行測定的算術(shù)平均值。
不同溶劑對杏仁種皮酚類物質(zhì)提取的影響如圖1a所示,圖1a表明傳統(tǒng)溶劑對杏仁種皮提取率為0.14~0.55 mg/g,而DESs對杏仁種皮的提取率為0.14~1.20 mg/g,且不同DESs對杏仁種皮酚類物質(zhì)的提取效果也有較大的差別,這可能是因為溶劑組分搭配不同使得溶劑和酚類物質(zhì)之間作用力有所區(qū)別,從而導(dǎo)致對酚類物質(zhì)的提取效果出現(xiàn)差異[33],總體看來DESs對杏仁種皮酚類物質(zhì)的提取效果要普遍優(yōu)于傳統(tǒng)溶劑。
此外如圖1a所示,DESs對杏仁種皮酚類物質(zhì)的提取率受溶劑濃度影響較大,且不同種類DESs對酚類物質(zhì)提取率隨著濃度變化而表現(xiàn)出不同的變化趨勢。DESs1的提取率隨濃度降低而升高,這可能是由于氯化膽堿呈堿性而甘油呈中性導(dǎo)致DESs1呈堿性,植物本身的生理環(huán)境呈弱酸性[34],因此高濃度DESs1的酚類提取率較低,但水的加入能沖淡溶劑的堿性,因此50%DESs1的提取率為100%DESs1的5.5倍。隨著溶劑濃度從100%降低至50%,DESs2、DESs3和DESs5的杏仁種皮提取率分別減少了0.88、0.71和0.32 mg/g,這是因為這三種溶劑組分中含有機酸,酸性溶劑具有更強的極性,因此更加有利于酚類物質(zhì)的提取,這三個組別中低濃度溶劑的提取效果較差是因為加水導(dǎo)致溶劑酸度降低從而影響酚類提取率[35]。在一定濃度范圍內(nèi)DESs4溶劑濃度的降低導(dǎo)致總酚提取率有所降低,但當(dāng)濃度繼續(xù)降低時總酚提取率會有所增加,這可能是因為水不僅能在一定程度上減弱溶劑與酚類物質(zhì)之間的作用力還會降低溶劑黏度,因此導(dǎo)致DESs4組別的提取率出現(xiàn)先降后增的趨勢[36]。
從圖1b~圖1d可以看出各組提取物的抗氧化能力均存在較大的區(qū)別,且各組提取物的DPPH、ABTS和ORAC(氧自由基清除能力)均與總酚含量變化的趨勢基本一致,這說明總酚含量對提取物的抗氧化能力有較大影響。傳統(tǒng)溶劑提取物的三種自由基清除能力由高到低依次是酸化甲醇、乙醇、甲醇、去離子水,DESs2和DESs3組的杏仁種皮提取物由于總酚含量較高,因此具有較強的抗氧化能力。通過對比可知相同組別提取物的抗氧化能力與其總酚含量變化趨勢基本一致,而不同組別提取物抗氧化能力與其總酚含量變化趨勢無明顯規(guī)律可循,這可能是由于提取物中酚類物質(zhì)種類和含量復(fù)雜程度不一,酚類之間或酚類與其他物質(zhì)之間存在協(xié)同作用從而影響到對自由基的清除效果[37-38],因此推測相同組別提取物酚類組成比較類似,但提取量存在一定的區(qū)別,不同種類DESs提取物中酚類化合物的組成和提取量均存在一定差異。
杏仁種皮中天然活性成分種類十分豐富,為進一步討論傳統(tǒng)溶劑和低共熔溶劑對杏仁種皮酚類物質(zhì)提取的針對性,本研究綜合文獻報道[2-6]和本實驗室條件,采用HPLC對照5種標(biāo)準(zhǔn)品初步分析了杏仁種皮的四種傳統(tǒng)溶劑和五種DESs提取物中酚類物質(zhì)組成的差異。5種標(biāo)準(zhǔn)品的保留時間和標(biāo)準(zhǔn)曲線等信息如表2所示。
表2 各標(biāo)準(zhǔn)品的保留時間、回歸方程和決定系數(shù)
部分樣品HPLC對比圖如圖2所示,從圖2a可以看出不同傳統(tǒng)溶劑提取液所含的物質(zhì)種類十分相似,甲醇、乙醇和酸化甲醇的杏仁種皮提取液中主要含有沒食子酸、綠原酸和保留時間為10.134和11.916 min的物質(zhì),去離子水的杏仁種皮提取液中主要含有綠原酸、保留時間為24.403 min的化合物以及沒食子酸丙酯,保留時間為10.134、11.916和24.403 min的物質(zhì)被分別命名為2號、3號和4號物質(zhì),前人的研究也表明傳統(tǒng)溶劑能對杏仁種皮中的沒食子酸、綠原酸和沒食子酸丙酯進行有效提取[2,5],但由于杏仁產(chǎn)地或品種的不同,提取物中具體酚類組成也有所區(qū)別。從圖2b可以看出不同種類DESs提取物的組成區(qū)別較大,DESs1的種皮提取液中酚類化合物的組成與傳統(tǒng)溶劑類似,DESs2和DESs3的種皮提取液中主要含有保留時間為7.314 min 的物質(zhì),該物質(zhì)被命名為1號物質(zhì),DESs4提取物主要含有3號物質(zhì)、3,4-二羥基苯乙酸和綠原酸,DESs5提取物中主要含有大量的原兒茶酸。
根據(jù)HPLC圖譜可以得知各組提取物中主要含有沒食子酸、原兒茶酸、3,4-二羥基苯乙酸、綠原酸、沒食子酸丙酯和四種未知物。有標(biāo)樣酚類物質(zhì)的含量對比結(jié)果如圖3所示,圖3表明傳統(tǒng)溶劑對杏仁種皮中的沒食子酸、綠原酸、沒食子酸丙酯均有一定的提取效果。DESs1組對杏仁種皮酚類的提取效果與傳統(tǒng)溶劑類似,且沒食子酸的提取量受DESs1濃度影響較大,濃度為90%的DESs1對沒食子酸具有較好的提取效果,這可能是因為DESs1在該濃度下的黏度與溶劑極性更有利于沒食子酸的溶出和擴散。DESs2組的杏仁種皮提取物中幾乎不含以上五種已知酚,僅在100%DESs2提取物中有少量沒食子酸的存在。DESs3組別對杏仁種皮酚類的提取效果與DESs2類似,但100%DESs3對原兒茶酸有一定的提取作用。DESs4的杏仁種皮提取物中五種已知酚類的組成與傳統(tǒng)溶劑類似,但各提取物含量受溶劑濃度影響較大。DESs5提取物中僅含有原兒茶酸且提取量受溶劑濃度影響較大,DESs5在不同濃度下對原兒茶酸的提取量介于0.19~0.47 mg/g,這可能是因為DESs5為多元DESs,且該溶劑的氫供體均為極性較強的有機酸,而提取物中的目標(biāo)產(chǎn)物原兒茶酸擁有較強的分子極性,因此推測極性較強的溶劑更有利于杏仁種皮中原兒茶酸的提取。
未鑒定酚類物質(zhì)的峰面積對比結(jié)果如圖4所示。圖4表明傳統(tǒng)溶劑和DESs1對2號和3號物質(zhì)的提取效果較好,對4號物質(zhì)也有一定的提取效果,這在一定程度上表明了傳統(tǒng)溶劑和DESs1對杏仁種皮酚類物質(zhì)的針對性提取效果較差,提取物的抗氧化能力受多種酚類物質(zhì)共同作用的影響。DESs2組杏仁種皮提取物主要含1號物質(zhì),這說明DESs2的組分對該物質(zhì)的提取有較強的針對性,有報道表明DESs2的葡萄皮提取物中主要含各種黃酮苷[26],因此推測DESs2可能與各類黃酮苷的作用力較強,由此可知1號物質(zhì)可能為某種黃酮苷。DESs3組別提取物主要含有1號物質(zhì)和少量3號物質(zhì),且這兩種酚類物質(zhì)提取效果均受溶劑濃度影響很大,其中1號物質(zhì)隨著DESs3濃度降低而減少,而3號物質(zhì)在溶劑濃度為75%時突然出現(xiàn),這表明3號物質(zhì)的提取對溶劑的極性有一定要求。DESs4提取物中未知酚的組成與傳統(tǒng)溶劑相比更單一,4號物質(zhì)僅在溶劑濃度為50%時才出現(xiàn),這說明DESs對酚類的針對性是可調(diào)節(jié)的。DESs5提取物中不含任何未知酚,由此可見DESs5對原兒茶酸的提取有較強的針對性。
圖3和圖4均表明不同溶劑對提取物組成有較大的影響,其中DESs2、DESs3和DESs5在對杏仁種皮中的酚類進行提取時表現(xiàn)出了較強的專一性,這種專一性的出現(xiàn)往往與DESs的結(jié)構(gòu)有關(guān)[39]。由于目前關(guān)于各種DESs具體形成機理的研究較少,根據(jù)Abbott等[40]提出的理論,低共熔溶劑的形成可簡單描述為陽離子和陰離子與氫供體作用形成陽離子與配位陰離子。圖5為本研究使用的五種DESs形成過程簡圖,各類DESs的氫供體與氯離子形成配位陰離子,而膽堿陽離子分子鏈較長,使得配位陰離子與酚類物質(zhì)結(jié)合能力更強,這也是DESs對特定的某些酚類物質(zhì)表現(xiàn)出高提取率的重要原因[41]。
DESs1和DESs4組由于氫供體為多元醇,處于不同位點的游離—OH基團對杏仁種皮中的酚類物質(zhì)均有一定的作用力,因此導(dǎo)致這兩組提取物的酚類物質(zhì)組成比較復(fù)雜,前人的研究結(jié)果也印證了這一規(guī)律[42-44]。DESs2和DESs3的氫供體為多元有機酸,其中DESs2的氫供體為草酸,草酸高度對稱的分子結(jié)構(gòu)使得配位陰離子對酚類物質(zhì)的作用力較為集中,導(dǎo)致DESs2提取的目標(biāo)產(chǎn)物為某一類物質(zhì),因此DESs2的杏仁種皮提取物酚類組成比較單一[26],DESs3的氫供體雖然也是多元有機酸,但分子結(jié)構(gòu)不對稱且有一個游離—OH基團,目標(biāo)產(chǎn)物與溶劑作用位點較多,這在一定程度上決定了DESs3的杏仁種皮提取物比DESs2更復(fù)雜[45-46]。DESs5為多元DESs,目前對于多元DESs理化性質(zhì)的研究較少,在本研究中DESs5的氫供體均為極性較強的有機酸,提取物中目標(biāo)產(chǎn)物原兒茶酸的分子極性較強,因此推測當(dāng)多元DESs中含有機酸時,提取物中的酚類極性較強的可能性較大,此外也有文獻報道表明當(dāng)DESs中含脯氨酸時,提取物的酚類組成更加單一[47],這與本研究中出現(xiàn)的現(xiàn)象是類似的。
氯化膽堿-草酸(DESs2)和氯化膽堿-蘋果酸(DESs3)兩組低共熔溶劑對杏仁種皮酚類的提取率分別為酸化甲醇的2.18和1.84倍;與酸化甲醇的杏仁種皮提取物相比,DESs2和DESs3杏仁種皮提取物的DPPH自由基清除能力分別提高了26.89%和73.13%,ABTS自由基清除能力分別提高了33.18%和114.81%,氧自由基吸收能力分別提高了14.92和17.73mol/g。
本研究采用低共熔溶劑和傳統(tǒng)溶劑進行杏仁種皮酚類物質(zhì)的提取,主要從總酚得率、抗氧化能力和提取物組成三個方面進行了對比。不同溶劑對杏仁種皮酚類物質(zhì)提取率和提取物的抗氧化能力有較大影響,低共熔溶劑對杏仁種皮酚類物質(zhì)的提取與傳統(tǒng)溶劑相比具有明顯的優(yōu)勢,其中氯化膽堿-草酸(DESs2)和氯化膽堿-蘋果酸(DESs3)兩組低共熔溶劑的杏仁種皮酚類提取率分別為酸化甲醇的2.18和1.84倍,提取物的DPPH自由基清除能力分別提高了13.32和36.22mol/g,ABTS自由基清除能力分別提高了9.59和33.18mol/g,氧自由基吸收能力分別提高了17.73和14.92mol/g。同組低共熔溶劑在不同濃度下種皮提取物抗氧化能力與提取物的總酚含量呈正相關(guān),不同種類低共熔溶劑杏仁種皮提取物的抗氧化能力與總酚含量之間無明顯規(guī)律,低共熔溶劑杏仁種皮提取物與傳統(tǒng)溶劑相比普遍具有更高的總酚含量和更強的抗氧化能力。
通過HPLC分析,DESs2、DESs3和DESs5由于組分中含有機酸,因此杏仁種皮提取物酚類組成與傳統(tǒng)溶劑相比表現(xiàn)出很強的單一性,其中DESs5的杏仁種皮提取物中原兒茶酸含量高達0.19~0.47 mg/g,DESs1和DESs4由于組分中含多元醇,因此杏仁種皮提取物中酚類組成較復(fù)雜。與傳統(tǒng)溶劑相比低共熔溶劑均表現(xiàn)出了良好的杏仁種皮酚類物質(zhì)提取的優(yōu)勢。低共熔溶劑種類影響提取物酚類的組成,而溶劑濃度影響提取物中各酚類物質(zhì)的含量。因此低共熔溶劑可以作為杏仁種皮酚類物質(zhì)提取的綠色高效溶劑。
由于本研究是初步對比了低共熔溶劑與傳統(tǒng)溶劑對杏仁種皮酚類物質(zhì)的提取效果,還沒有對未知峰進行物質(zhì)鑒定,因此下一步還應(yīng)對未知物質(zhì)進行鑒定,對低共熔溶劑與不同酚類的作用機制進行研究,從而進一步說明低共熔溶劑的組成對杏仁種皮中酚類物質(zhì)提取的影響。
[1] 吳東棟,張清安,范學(xué)輝,等. 苦杏仁種皮中生物活性成分的研究進展[J]. 食品與發(fā)酵工業(yè),2019,45(7):288-293.
Wu Dongdong, Zhang Qing’an, Fan Xuehui, et al. Bioactive components of apricot kernel skin[J]. Food and Fermentation Industries, 2019, 45(7): 288-293. (in Chinese with English abstract)
[2] 陸彩瑞. 長柄扁桃和山杏種皮多酚的提取、成分鑒定及生物活性研究[D]. 西安:西北大學(xué),2018.
Lu Cairui. Study on the Extraction, Chemical Composition and Biological Activity of Polyphenols fromPall and Apricot (L. Lam) seed coat[D]. Xi'an: Northwest University, 2018. (in Chinese with English abstract)
[3] Bolling B W, Dolnikowski Q, Blumberg J B, et al. Polyphenol content and antioxidant ability of California almonds depend on cultivar harvest year[J]. Food Chemistry, 2010, 122(3): 819-825.
[4] Monagas M, Garrido I, Lebrón-Aguilar R, et al. Almond ((Mill.)DA Webb) kernel coats as a potential source of bioactive polyphenol[J]. Journal of Agricultural and Food Chemistry, 2007, 55(21): 8498-8507.
[5] 侯雙瑞. 烘焙對杏仁油氧化穩(wěn)定性影響的研究[D]. 長沙:中南林業(yè)科技大學(xué),2018.
Hou Shuangrui. Study on the Influence of Roasting on Oxidative Stability of Apricot Kernel Oil[D]. Changsha: Central South University of Forestry and Technology, 2018. (in Chinese with English abstract)
[6] Smeriglio A, Mandalmi Q, Bisignano C, et al. Polyphenolic content and biological properties of Avola almond (Mill. DA Webb) skin and its industrial byproducts[J]. Industrial Crops & Products, 2016, 83: 283-293.
[7] 趙強,劉樂,楊潔,等. 響應(yīng)面法優(yōu)化藜麥糠中多酚超聲提取工藝及其抗氧化活性[J]. 中國糧油學(xué)報,2020,35(7):143-149.
Zhao Qiang, Liu Le, Yang Jie, et al. Optimization of ultrasonic-assisted extraction of polyphenols fromWilld. bran by response surface methodology and its antioxidant ability[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(7): 143-149. (in Chinese with English abstract)
[8] 張怡一,徐茜,陳琳,等. 薏米中多酚化合物的分離純化及抗氧化活性分析[J]. 食品科學(xué),2017,38(13):26-33.
Zhang Yiyi, Xu Qian, Chen Lin, et al. Isolation and purification of polyphenols from adlay and their antioxidant ability[J]. Food Science, 2017, 38(13): 26-33. (in Chinese with English abstract)
[9] 戴航宇,滕春瑩,張榮濤. 樺褐孔菌多酚抑菌活性分析研究[J]. 中國釀造,2020,39(11):109-115.
Dai Hangyu, Teng Chunying, Zhang Rongtao. Antibacterial ability of polyphenols from[J]. China Brewing, 2020, 39(11): 109-115. (in Chinese with English abstract)
[10] 王亞萍,費學(xué)謙,陸寬寬,等. 油茶籽餅粕中甲醇提取物抑制黃曲霉菌效果及成分分析[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(11):322-329.
Wang Yaping, Fei Xueqian, Lu Kuankuan, et al. Inhibitory effect ofand component analysis of methanol extraction from camellia seed cake[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 322-329. (in Chinese with English abstract)
[11] 葛達娥,魏照輝,圖爾蓀阿依·圖爾貢,等. 丁香酚對藍莓鏈格孢霉的抑制作用[J]. 食品科學(xué),2020,41(19):68-73.
Ge Da’e, Wei Zhaohui, Tursunay·Turgun, et al. Inhibitory effect of eugenol onsp. isolated from blueberry[J] Food Science, 2020, 41(19): 68-73. (in Chinese with English abstract)
[12] 何忠梅,李成恩,段翠翠,等. 短梗五加果多酚預(yù)防大鼠動脈粥樣硬化作用[J]. 食品科學(xué),2018,39(1):200-206.
He Zhongmei, Li Cheng’en, Duan Cuicui, et al. Preventive effect of polyphenols isolated fromfruits on atherosclerosis in rats[J]. Food Science, 2018, 39(1): 200-206. (in Chinese with English abstract)
[13] 劉冬敏,黃建安,劉仲華. 腸道微生物與茶及茶多酚的相互作用在調(diào)節(jié)肥胖及并發(fā)癥中的作用[J]. 天然產(chǎn)物研究與開發(fā),2018,30(9):1640-1648.
Liu Dongmin, Huang Jian’an, Liu Zhonghua. The regulation effect of interaction between gut microbiota and tea polyphenols in obesity and comorbidity[J]. Natural Product Research and Development, 2018, 30(9): 1640-1648. (in Chinese with English abstract)
[14] 徐卓,項想,尚爾鑫,等. 丹參莖葉總酚酸對2型糖尿病腎病小鼠腸道菌群和短鏈脂肪酸的調(diào)節(jié)作用[J/OL]. 藥學(xué)學(xué)報:1-26 [2020-11-29]. https://doi.org/10.16438/j.0513-4870.2020-1259.
Xu Zhuo, Xiang Xiang, Shang Erxin, et al. Regulatory effect of total phenolic acid from the stems and leaves ofon intestinal microflora and short-chain fatty acids in type 2 diabetic nephropathy mice[J/OL]. Acta Pharmaceutica Sinica: 1-26 [2020-11-29]. https://doi.org/10.16438/j.0513-4870.2020-1259. (in Chinese with English abstract)
[15] 孔德棟,趙悅伶,王岳飛,等. 茶多酚對腫瘤免疫逃逸的抑制機制研究進展[J]. 浙江大學(xué)學(xué)報:農(nóng)業(yè)與生命科學(xué)版,2018,44(5):539-548.
Kong Dedong, Zhao Yueling, Wang Yuefei, et al. Review on inhibition mechanism of tea polyphenols against tumor immune escape[J]. Journal of Zhejiang University: Agriculture and Life Sciences, 2018, 44(5): 539-548. (in Chinese with English abstract)
[16] 鐘上勇,李星毅,王艷紅,等. 酚類天然產(chǎn)物Buxifoximes A的合成及生物活性[J]. 四川大學(xué)學(xué)報:自然科學(xué)版,2020,57(2):348-351.
Zhong Shangyong, Li Xingyi, Wang Yanhong, et al. Total synthesis and biological evaluation of phenolic natural product Buxifoximes A[J]. Journal of Sichuan University: Natural Science Edition, 2020, 57(2): 348-351. (in Chinese with English abstract)
[17] Park H E, Tang B, Row K H. Application of deep eutectic solvents as additives in ultrasonic extraction of two phenolic acids from[J]. Analytical Letters, 2014, 47(9): 1476-1484.
[18] 熊蘇慧,唐潔,李詩卉,等. 一種新型天然低共熔溶劑用于玉竹總黃酮的綠色提取[J]. 中草藥,2018,49(10):2378-2386.
Xiong Suhui, Tang Jie, Li Shihui, et al. A new type of natural eutectic solvent for green extraction of total flavonoids from[J]. Chinese Traditional and Herbal Drugs, 2018, 49(10): 2378-2386. (in Chinese with English abstract)
[19] Stefou I, Grigorakis S, Loupassaki S. Development of sodium propionate-based deep eutectic solvents for polyphenol extraction from onion solid wastes[J]. Clean Technologies and Environmental Policy, 2019, 21(8): 1563-1574.
[20] Riberio B D, Coelho M A Z, Marrycho I M. Extraction of saponins from sisal () and jua () with cholinium-based ionic liquid and deep eutectic solvents [J]. European Food Research and Technology, 2013, 237: 965-975.
[21] 杜凱,馬養(yǎng)民,郭林新. 杏仁皮單寧提取工藝優(yōu)化及其DPPH自由基清除活性[J]. 食品工業(yè)科技,2019,40(21):174-178.
Du Kai, Ma yangmin, Guo Linxin. Optimization of extraction process of tannins from almond skin and its DPPH radical scavenging activity[J]. Science and Technology of Food Industry, 2019, 40(21): 174-178. (in Chinese with English abstract)
[22] 姜麗巍,白娟,張海婷,等. 山杏仁皮多酚提取及其抑菌和抗氧化性研究[J]. 現(xiàn)代食品,2019(9):182-185,189.
Jiang Liwei, Bai Juan, Zhang Haiting, et al. Study on extraction of polyphenols from almond peel and their antibacterial and antioxidant activities[J]. Modern Food, 2019(9): 182-185, 189. (in Chinese with English abstract)
[23] Bisignano C, Mandalari G, Smeriglio A, et al. Almond skin extracts abrogate HSV-1 replication by blocking virus binding to the cell[J]. Viruses, 2017, 9(7):178. https://doi.org/10.3390/v9070178.
[24] Saha S K, Dey S, Chakraborty R. Effect of choline chloride-oxalic acid based deep eutectic solvent on the ultrasonic assisted extraction of polyphenols from Aegle marmelos[J/OL]. Journal of Molecular Liquids, 2019, 287:110956. http://doi.org/10.1016/j.molliq.2019.110956.
[25] Luo Q, Zhang J R, Li H B, et al. Green Extraction of Antioxidant Polyphenols from Green Tea (Camellia sinensis)[J/OL]. Antioxidants. 2020, 9(9): 785. https://doi.org/10.3390/antiox9090785.
[26] Bubalo C M, C′urko N, Toma?evic M, et al. Green extraction of grape skin phenolics by using deep eutectic solvents[J]. Food Chemistry, 2016, 200(1): 159-166.
[27] Dai Y T, Witkamp G J, Verpoorte R, et al. Tailoring prop erties of natural deep eutectic solvents with water to facilitate their applications[J]. Food Chemistry, 2015, 187(15): 14-19.
[28] 尚憲超,譚家能,杜詠梅,等. 超聲輔助深共熔溶劑提取兩種煙草多酚的方法研究[J]. 中國煙草科學(xué),2017,38(6):55-60.
Shang Xianchao, Tan Jianeng, Du Yongmei, et al. Green extraction of two target tobacco phenolic compounds using deep eutectic solvents[J]. Chinese Tobacco Science, 2017, 38(6): 55-60. (in Chinese with English abstract)
[29] 李志曉,金青哲,葉小飛,等. 精煉過程中油茶籽油活性成分和抗氧化性的變化[J]. 中國油脂,2015,40(8):1-5.
Li Zhixiao, Jin Qingzhe, Ye Xiaofei, et al. Changes of bioactive constituents and antioxidant ability of oil-tea camellia seed oil during refining[J]. China Oils and Fats, 2015, 40(8): 1-5. (in Chinese with English abstract)
[30] Luo W, Zhao M, Yang B, et al. Identification of bioactive compounds inL. fruit and their free radical scavenging activities[J]. Food Chemistry, 2009, 114(2): 499-504.
[31] 陳佩云,鐘海雁. 熱回流和超聲條件下不同溶劑對油茶粕多酚提取的影響[J]. 食品與機械,2016,32(4):172-175,186.
Chen Peiyun, Zhong Haiyan. Effects of different solvents on extraction of phenolics from oil-tea meal under hot reflux and ultrasonic assistances[J]. Food & Machinery, 2016, 32(4): 172-175, 186. (in Chinese with English abstract)
[32] 孫亞娟. 不同烘焙溫度對帶種皮壓榨杏仁油品質(zhì)特性的影響[D]. 長沙:中南林業(yè)科技大學(xué),2017.
Sun Yajuan. Influence of Different Roasting Temperature on Quality Characteristics of Oil Pressed With Skins Ofapricot Kernel[D]. Changsha: Central South University of Forestry and Technology, 2017. (in Chinese with English abstract)
[33] García A, Rodríguez-Juan E, Rodriguéz-Gutierrez G, et al. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs)[J]. Food Chemistry, 2016, 197(15): 554-561.
[34] Dai Y T, van Sprosen J, Witkamp G J, et al. Natural deep eutectic solvents as new potential media for green technology[J]. Analytical Chimica Acta, 2013(766): 61-68.
[35] Oliveria F S, Pereiro A B, Rebelo L P N, et al. Deep eutectic solvents as extraction media for azeotropic mixtures[J]. Green Chemistry, 2013, 15: 1326-1341.
[36] 黃皓,王珍妮,李莉,等. 甘油水溶液提取米糠多酚綠色工藝優(yōu)化及多酚種類鑒定[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(4):305-312.
Huang Hao, Wang Zhenni, Li Li, et al. Optimization of green extraction process and identification of polyphenols variety from rice bran using glycerol/water system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 305-312. (in Chinese with English abstract)
[37] 羿月同,李莎莎,樊梓鸞,等. 紅豆越橘花青素與金銀花多酚協(xié)同抗氧化活性[J/OL]. 精細(xì)化工:1-8 [2021-03-19]. https://doi.org/10.13550/j.jxhg.20200980.
Yi Yuetong, Li Shasha, Fan Ziluan, et al. Synergism antioxidation of lingonberry anthocyanin and Lonicera japonica polyphenols[J/OL]. Fine Chemicals: 1-8 [2021-03-19]. https://doi.org/10.13550/j.jxhg.20200980. (in Chinese with English abstract)
[38] Su S W, Wang R C, Guo S T, et al. Walnut phenolic compounds: Binding with proteins and antioxidant activities[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 309-314.
[39] Florindo C, Oliveira F S, Rebelo L P N, et al. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2416-2425.
[40] Abbott A P, Harris R C, Ryder K S. Application of hole theory to define ionic liquids by their transport properties[J]. The Journal of Physical Chemistry B, 2007, 111: 4910-4913.
[41] Zhang Y, Li Z Y, Wang H Y, et al. Efficient separation of phenolic compounds from model oil by the formation of choline derivative-based deep eutectic solvents[J]. Separation and Purification Technology, 2016, 163: 310-318.
[42] Peng X, Duan M H, Yao X H, et al. Green extraction of five target phenolic acids fromwith deep eutectic solvent[J]. Separation and Purification Technology, 2016, 157: 249-257.
[43] Wei Z, Qi X, Li T, et al. Application of natural deep eutectic solvents for extraction and determination of phenolics inleaves by ultra performance liquid chromatography[J]. Separation and Purification Technology, 2015, 149: 237-244.
[44] Qi X L, Peng X, Huang Y Y, et al. Green and efficient extraction of bioactive flavonoids fromL. by deep eutectic solvents-based negative pressure cavitation method combined with macroporous resin enrichment[J]. Industrial Crops & Products, 2015, 70: 142-148.
[45] Wei Z F, Wang X Q, Peng X, et al. Fast and green extraction and separation of main bioactive flavonoids from[J]. Industrial Crops & Products, 2015, 63: 175-181.
[46] Li J, Han Z G, Zou Y P, et al. Efficient extraction of major catechins inleaves using green choline chloride-based deep eutectic solvents[J]. RSC Advances, 2015, 5(114): 93937-93944.
[47] Nam M W, Zhao J, Lee M S,et al. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from[J]. Green Chemistry, 2015, 17(3): 1718-1727.
Antioxidant capacity of phenols from apricot kernel coat extracted with deep eutectic solvent
Xiong Ying1,2,3, Zhou Bo1,2, Zhong Haiyan1,2※
(1.,410004,;2.,,410004,;3.,410116,)
A new green solvent (Deep Eutectic Solvents, DESs) was used to investigate the antioxidant ability and phenolic composition of apricot kernel coat extracts. In this study, four kinds of conventional solvents and five kinds of deep eutectic solvents were also selected with different concentrations, thereby determining the extraction efficiency of apricot kernel coat polyphenols. DPPH and ABTS free radical scavenging ability and Oxygen Radical Absorption Capacity (ORAC) were used to evaluate the antioxidant ability of apricot kernel coat extracts. Furthermore, a High-Performance Liquid Chromatography (HPLC) was utilized to compare the phenolic composition of apricot kernel coat extracts by conventional and deep eutectic solvents. The standards were also set as gallic acid, protocatechuic acid, 3,4-dihydroxy phenylacetic acid, chlorogenic acid, and propyl gallate. The results showed that the acidified methanol among the conventional solvents presented the best extraction efficiency, where the extraction yield of phenols was 0.55 mg/g. The deep eutectic solvents showed a great difference in the extraction efficiency among different formulations and concentrations. However, the deep eutectic solvents presented a better extraction efficiency, compared with conventional solvents, especially that choline chloride - oxalic acid (DESs2) and choline chloride - malic acid (DESs3) presented a better extraction efficiency for the phenolic compounds from apricot kernel coat. The extraction yields of apricot kernel coat phenolic compounds by DESs2 and DESs3 were 2.20 and 1.85 times that of acidified methanol, respectively. Extracts by acidified methanol showed the best antioxidant ability among the conventional solvents, whereas, the antioxidant ability of apricot kernel coat extracts by deep eutectic solvents was also better than that of conventional solvents. The extracts by DESs3 showed a better DPPH and ABTS radical scavenging ability, followed by DESs2. Specifically, the DPPH and ABTS radical scavenging abilities of apricot kernel coat extracts by DESs3 were 1.73 and 2.15 times higher than that of acidified methanol. The apricot kernel coat extracts by DESs2 and DESs3 showed better oxygen radical absorption capacity, increasing by 14.92 and 17.73mol/g, respectively, compared with the acidified methanol. The results of HPLC showed that there were at least nine kinds of phenols, including gallic acid, protocatechuic acid, 3,4-dihydroxy phenylacetic acid, chlorogenic acid, propyl gallate, and four phenolic compounds with no standards in the extracts from the apricot kernel coat. The phenolic composition of extracts by conventional solvents was complex, and the extraction yields of each phenolic compound were relatively low. There were eight kinds of phenols in the extracts by conventional solvents, while there was a much simpler phenolic composition of extracts by deep eutectic solvents. Extracts by DESs2 and DESs3 contained a large quantity of phenolic components with a retention time of 7.314 min, while this component was not found in extracts by conventional solvents. There was only a large amount of protocatechuic acid in the extracts by choline chloride - malic acid - proline (DESs5), where the extraction yield of protocatechuic acid was 0.19-0.47 mg/g under different concentrations. Consequently, DESs can be expected to serve as an efficient solvent for the effective extraction of phenolic compounds from apricot kernel coats.
phenolic compounds; antioxidant ability; deep eutectic solvents; apricot kernel coat
熊穎,周波,鐘海雁. 杏仁種皮酚類物質(zhì)的低共熔溶劑提取及其抗氧化能力[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(15):289-298.doi:10.11975/j.issn.1002-6819.2021.15.034 http://www.tcsae.org
Xiong Ying, Zhou Bo, Zhong Haiyan. Antioxidant capacity of phenols from apricot kernel coat extracted with deep eutectic solvent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 289-298. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.15.034 http://www.tcsae.org
2021-03-21
2021-05-06
湖南省教育廳科學(xué)研究重點項目(18A154);湖南省創(chuàng)新平臺(2019TP1029)
熊穎,研究方向為林產(chǎn)可食資源高值化利用。Email:yuuei6666@163.com
鐘海雁,教授,研究方向為木本糧油加工利用及林產(chǎn)可食資源高值化利用。Email:zhonghaiyan631210@126.com
10.11975/j.issn.1002-6819.2021.15.034
TS209
A
1002-6819(2021)-15-0289-10