亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        復雜地形中機載LiDAR點云構建DEM的插值算法對比

        2021-11-26 10:32:12李朋飛張曉晨胡晉飛
        農(nóng)業(yè)工程學報 2021年15期
        關鍵詞:區(qū)域方法研究

        李朋飛,張曉晨,嚴 露,胡晉飛,李 豆,丹 楊

        復雜地形中機載LiDAR點云構建DEM的插值算法對比

        李朋飛,張曉晨,嚴 露,胡晉飛※,李 豆,丹 楊

        (西安科技大學測繪科學與技術學院,西安 710054)

        機載激光雷達(Light Detection and Ranging,LiDAR)可快速、高效的獲取大范圍地形信息,已成為高精度地形建模的重要數(shù)據(jù)獲取手段。然而,針對復雜地形的機載LiDAR點云構建數(shù)字高程模型(Digital Elevation Model,DEM)的插值誤差研究缺乏,嚴重限制了其在土壤侵蝕、開采沉陷等地表過程研究中的應用。該研究基于黃土高塬溝壑區(qū)典型地形的機載LiDAR數(shù)據(jù),對比了反距離加權(Inverse Distance Weighted,IDW)、克里金(Kriging)、樣條函數(shù)(Spline)、自然鄰域(Natural Neighbor,NN)、趨勢面(Trend)、不規(guī)則三角網(wǎng)(Triangulated Irregular Network,TIN)等插值算法的插值誤差。首先優(yōu)選了IDW、Kriging、Spline、Trend等4種算法的關鍵參數(shù),其次分析了不同點云密度和地形下IDW、Kriging、Spline、NN、TIN等5種算法的插值誤差及其空間分布。結果表明:1)IDW最優(yōu)插值參數(shù)為權指數(shù)1和搜索點數(shù)12,Kriging為無方向、高斯函數(shù)和搜索點數(shù)12,Spline為規(guī)則樣條函數(shù)和搜索點數(shù)32,Trend誤差達米級,不適用于地形復雜區(qū)域。2)當點云密度較小時(1~19點/m2),IDW、Kriging、NN、TIN4種插值方法較為準確地描述地形。當點云密度較大時(39~77點/m2),各個插值方法的DEM空間分布差異不大。3)針對黃土高塬溝壑區(qū)復雜地形區(qū)域,點云密度越大,DEM的誤差越小。陡坡區(qū)域DEM的平均絕對誤差明顯高于緩坡區(qū)域,隨著點云密度增大,陡坡區(qū)域誤差明顯減小,而緩坡區(qū)域變化較小。當點云密度較小時(1~19點/m2),緩坡和陡坡最優(yōu)插值插值方法分別為NN和TIN;當點云密度較大時(39~77點/m2),緩坡和陡坡最優(yōu)插值方法均為Spline。研究結果可為機載LiDAR用于地形復雜區(qū)域的高精度地形建模與地表過程研究提供依據(jù)。

        激光雷達;DEM;插值算法;復雜地形;黃土高原

        0 引 言

        高精度數(shù)字高程模型(Digital Elevation Model,DEM)對土壤侵蝕監(jiān)測[1]、地表沉降監(jiān)測、徑流和土壤侵蝕過程模擬[2]等研究有重要意義。其數(shù)據(jù)源獲取途徑包括地形圖數(shù)字化[3]、傳統(tǒng)地面測量[4]、航空攝影測量[5]、光學遙感[6]、合成孔徑雷達[7]和激光雷達(Light Detection and Ranging,LiDAR)[8-9]等。相較于其他方法,機載LiDAR可部分穿透植被,快速獲取較大范圍地表的高精度三維點云,且不受天氣影響[10],已成為獲取高精度地形建模數(shù)據(jù)的重要手段[3]。

        機載LiDAR獲取的原始點云,需經(jīng)過濾波、分類、插值等過程,才能獲得高精度的DEM。其中,插值算法優(yōu)劣直接影響DEM的精度,進而影響機載LiDAR在地表過程研究中的應用。已有插值算法可分為基于三角網(wǎng)插值與基于規(guī)則柵格插值兩大類[6]。前者包括不規(guī)則三角網(wǎng)(Triangulated Irregular Network,TIN)[11];后者主要包括反距離加權(Inverse Distance Weighted,IDW)[12]、克里金(Kriging)[13]、樣條函數(shù)(Spline)、自然鄰域(Natural Neighbor,NN)、趨勢面(Trend)[14]等。近年來,國內(nèi)外學者已開展點云密度[15-16]、分辨率[17]、插值算法[18]、地形特征[19-20]、濾波算法[21]等對DEM精度影響的研究。然而,較少研究將不同算法用于機載LiDAR點云,并探討所獲得DEM的不確定性(即誤差),制約了機載LiDAR在地表過程研究中的應用[22]。

        黃土高原地形破碎復雜,復雜的地形條件對高精度DEM的構建提出了挑戰(zhàn)。迄今鮮有研究將機載LiDAR用于黃土高原地表過程研究,而機載LiDAR所構建DEM的誤差不明,是限制其廣泛應用的主要原因之一[10,22]。有效評價不同插值算法在機載LiDAR點云插值中的誤差,明確不同地形、點云質量等條件下的最優(yōu)算法與其誤差大小,無疑有助于確定機載LiDAR所能監(jiān)測的土壤侵蝕過程、地表沉降大小等,進而為機載LiDAR在黃土高原與其他地形復雜區(qū)域地表過程研究中的應用奠定基礎。

        鑒于此,本研究基于機載LiDAR獲取的黃土高塬溝壑區(qū)典型流域董莊溝的點云數(shù)據(jù),對比IDW、Kriging、NN、Spline、TIN、Trend等插值算法生成DEM的誤差,探究不同地形、點云密度、插值算法下DEM誤差變化規(guī)律,為機載LiDAR應用于地形復雜區(qū)域地表過程研究提供參考。

        1 研究區(qū)概況及數(shù)據(jù)預處理

        1.1 研究區(qū)概況

        董莊溝流域位于甘肅省慶陽市(106°20′~108°45′ E,35°15′~37°10′ N),屬于黃土高塬溝壑區(qū)(圖1)。年降雨量150~750 mm[23-24],年平均氣溫3.6~14.3 ℃[23],海拔1 200~1 350 m。流域植被以刺槐和旱生灌叢為主[25],土壤類型主要包括風沙土、砂質黃土、典型黃土及黏土[26]。流域侵蝕類型以水力侵蝕和重力侵蝕為主[27],經(jīng)長期強烈侵蝕,溝壑縱橫,梁峁和溝谷地形差異大,地形地貌復雜[28]。

        本研究以董莊溝流域溝頭附近典型區(qū)域為例,篩選地形條件相異的典型地塊為研究對象(圖1),編號1、2、3地塊為緩坡區(qū)域,地形起伏及地表粗糙度較低,編號4、5、6、7、8地塊為陡坡區(qū)域,地形起伏大、地表粗糙度高。同時,編號1~3區(qū)和編號4~8區(qū)地塊內(nèi)部地形無明顯差異。

        1.2 數(shù)據(jù)獲取與預處理

        利用機載LiDAR系統(tǒng)(SZT-R250)于2019年5月采集目標區(qū)域點云數(shù)據(jù)。機載LiDAR具體參數(shù)為:激光發(fā)射頻率為100 kHz,飛行速度7 km/h,航高50 m,掃描速度為100 000點/s,掃描角為90°~270°,獲取的原始點云密度為86點/m2。

        采集完成后進行飛行航跡和慣導姿態(tài)解算、點云配準和精簡、坐標轉換等預處理,生成las格式點云數(shù)據(jù)。以獲取的野外實景照片、實地考察結果等為參照,在TerraSolid 2013中,采取手動方式進行濾波獲取地面點云,獲得的地面點云密度為77點/m2,并采用所獲地面點云開展DEM插值與誤差檢驗[11]。

        2 研究方法

        已有插值方法眾多,常用于生態(tài)環(huán)境研究的方法有IDW、Kriging、NN、Spline、Trend、TIN等[29-30]。因此,利用以上方法插值機載LiDAR點云,探討不同算法構建DEM的誤差,同時分析插值參數(shù)、點云密度、地形特征等影響因素對插值方法誤差的影響,探討不同地形條件與點云密度條件下的最優(yōu)插值算法,為復雜地形條件下的機載LiDAR點云插值提供參考。

        2.1 插值方法

        反距離加權插值(IDW)以采樣點與插值點間的距離為權重計算加權平均值,離插值點越近的采樣點權重越大[31-32],當采樣點距離插值點距離較遠時,權重忽略不計。此方法適用于采樣點均勻且密集地區(qū)[33]。IDW的主要參數(shù)有搜索點數(shù)和權指數(shù)。

        克里金插值法(Kriging)與反距離加權插值方法較為類似,差異主要在于權重選擇[34],該方法是采用半變異函數(shù)作為權重進行無偏最優(yōu)估計的一種地統(tǒng)計方法[35]。其優(yōu)勢在于不僅考慮插值點與采樣點之間的距離,還兼顧空間分布關系[36],適用于空間相關性較好的采樣點,但可能會出現(xiàn)邊緣效應[29]。Kriging的關鍵參數(shù)為搜索方向、搜索點數(shù)和變異函數(shù)。

        自然鄰域插值(NN)是基于Voronoi結構的插值方法[37],該算法基于泰森多邊形,計算各邊垂直平分點連線構成的新多邊形與原始泰森多邊形的比值,并將比值作為權重,因此無需設置插值參數(shù)[37]。該方法具有局部性,對局部特性的繼承性較好,但局部點缺失時會出現(xiàn)失真[38]。

        樣條插值(Spline)以最小曲率面逼近各采樣點,以獲取最佳的平滑曲面[40]。其優(yōu)勢在于能顧及大范圍的采樣點,生成的曲面光滑[39-40],適用于復雜的高曲率曲面[41],但過于平滑會造成失真。Spline的主要參數(shù)有搜索點數(shù)和函數(shù)類型。

        趨勢面插值(Trend)以最小二乘原理為基礎,用多項式對采樣點進行擬合[42],多項式的次數(shù)是關鍵參數(shù)。多項式階數(shù)越高,擬合曲面越復雜。趨勢面插值有時并非最佳擬合,而是將數(shù)據(jù)分成區(qū)域塊[15]。

        不規(guī)則三角網(wǎng)(TIN)利用一系列點構建三角形[43]。TIN方法的優(yōu)勢在于能夠在地形復雜區(qū)域保留地表細節(jié),然而,其邊緣梯度可能存在突然變化的缺點[29]。

        2.2 插值參數(shù)優(yōu)選

        所采用的6種插值方法中,TIN和NN無需進行插值參數(shù)優(yōu)選,故僅對IDW、Kriging、Spline、Trend4種算法進行參數(shù)優(yōu)選。待優(yōu)選參數(shù)及取值見表1,通過對比各算法關鍵參數(shù)不同取值下的誤差,獲取了最優(yōu)取值。

        2.3 點云抽取

        本研究所獲取機載LiDAR地面點云密度較高(77點/m2),可通過點云抽取獲取不同密度的點云,為研究不同密度點云所構建DEM的誤差奠定了基礎。為使所獲點云涵蓋不同密度范圍,抽取率(所提取點數(shù)量占總點數(shù)的比例)確定為100%、50%、25%、12.5%、5%、1%,所對應點云密度分別為77、39、19、10、4、1點/m2。

        表1 不同插值算法參數(shù)待選取值

        注:IDW、Kriging、Spline、Trend分別為反距離加權插值、克里金插值、樣條插值、趨勢面插值算法。

        Note: IDW, Kriging, Spline and Trend refer to the inverse distance weighted interpolation algorithm, Kriging interpolation algorithm, Spline interpolation algorithm and Trend interpolation algorithm respectively.

        2.4 精度評價

        由于研究區(qū)域地形復雜,難以到達,同時缺乏地面控制點,因此未能采用地面三維激光掃描儀、GPS等儀器獲取更高精度的地面高程數(shù)據(jù),用以驗證機載LiDAR點云所構建DEM的精度。鑒于此,本文基于機載LiDAR獲取的地面點云,利用交叉驗證法進行DEM誤差分析。交叉驗證法為插值精度驗證的常用方法,已廣泛用于滑坡、氣象、地形插值算法的精度研究中[44-45]。在本研究中,將處理完成的地面點云數(shù)據(jù)隨機分為兩部分,一部分用于構建0.5 m分辨率DEM,占比99%,剩余1%用于DEM精度驗證。首先在所構建DEM中提取與驗證點云位置對應的柵格高程值;其次基于所提取柵格高程值與對應驗證點云高程值,計算誤差指標,評估插值算法的誤差。

        采用平均絕對誤差(Mean Absolute Error,MAE)、均方根誤差(Root Mean Square Error,RMSE)、決定系數(shù)(Coefficient of Determination,2)3個指標定量評價插值方法構建DEM的誤差。其中MAE和RMSE的值越高,2越低,DEM插值精度越低,誤差越大;反之,則DEM插值精度越高,誤差越低。

        3 結果與討論

        3.1 插值算法的參數(shù)優(yōu)選

        由圖2a、2b可知,隨著搜索點數(shù)增大,IDW算法所得DEM的誤差先減小后趨于穩(wěn)定。當搜索點數(shù)相同時,誤差均隨權指數(shù)的增大而增加。當權指數(shù)為1時,與其他權指數(shù)的變化規(guī)律不同,搜索點數(shù)高于16時,搜索點間的距離變化過大,導致誤差值隨搜索點數(shù)的增加而增加。該結果與陳娟等[46]所得結論一致。當搜索點數(shù)小于32時,權指數(shù)為1的MAE、RMSE誤差值明顯低于權指數(shù)為2~5,且在搜索點數(shù)為12時誤差值較小。故本文以權指數(shù)為1、搜索點數(shù)為12作為IDW插值參數(shù)的優(yōu)選結果。

        當搜索方向為無方向時,Kriging算法所得DEM誤差隨搜索點數(shù)的減小呈現(xiàn)先減小后增大的趨勢,主要原因可能為研究區(qū)地形起伏大,導致地形突變地區(qū)誤差突增。當搜索方向為四方向和八方向時,MAE、RMSE均隨搜索點數(shù)的增大而增大,可能由采樣點的非均勻分布所致[34]。當搜索點數(shù)大于8時,無方向明顯優(yōu)于其余兩個搜索方向。故搜索點數(shù)8、12、16和無方向為潛在優(yōu)選參數(shù)。隨著搜索點數(shù)的增加,Kriging的RMSE先減小后增大,在搜索點數(shù)為12時達到最小值,而MAE呈緩慢上升態(tài)勢。與此同時,當函數(shù)模型為高斯函數(shù)時,誤差在3種變異函數(shù)中最小,高斯模型在復雜地貌下優(yōu)于其余兩種函數(shù)模型。綜上,為均衡插值效率和插值精度,選定無方向、高斯函數(shù)、搜索點數(shù)12作為Kriging插值參數(shù)的優(yōu)選結果。

        隨著搜索點數(shù)增加,Spline算法所得DEM的MAE和RMSE均先減小后穩(wěn)定。當搜索點數(shù)達32時,誤差趨于穩(wěn)定,原因可能為當搜索點數(shù)較少時,擬合的曲面存在“失真”,造成估計不準[47]。相同搜索點數(shù)下,規(guī)則樣條函數(shù)明顯優(yōu)于張力樣條函數(shù),可能由于高階次導數(shù)能更好描述復雜地形變化[40]。綜上,在保證插值精度的前提下兼顧插值效率,以規(guī)則樣條函數(shù)和搜索點數(shù)32作為Spline插值參數(shù)的優(yōu)選結果。

        Trend算法中多項式次數(shù)變化對誤差有明顯影響,當次數(shù)大于2時誤差值趨于平穩(wěn)(圖2)。將該方法用于黃土高塬溝壑區(qū)會導致DEM插值誤差過大,平均絕對誤差、均方根誤差達到米級,因此在后文中不予考慮。

        3.2 不同插值算法下DEM質量

        當抽取率>50%~100%(點云密度>39~77點/m2)時,IDW、Kriging、Spline、NN、TIN這5種插值方法的DEM空間分布差異較小,未有明顯的優(yōu)劣之分。當抽取率為1%~25%(點云密度1~19點/m2)時,IDW、Kriging、NN、TIN這4種插值方法能夠較為準確的描述地形特征,僅有Spline出現(xiàn)“失真”,即部分柵格高程值明顯偏離采樣點的高程值(如圖3a~3d中圓圈所標注區(qū)域),表明在點云密度較小時,Spline描述地形的能力較差。

        3.3 不同插值算法所構建DEM的誤差

        3.3.1 整體誤差評價

        由圖4可知,隨著點云密度的增大,5種插值方法的MAE和RMSE均先減小后趨于穩(wěn)定。當抽取率1%~12.5%(點云密度1~10點/m2)時,MAE和RMSE驟減,最大變化量分別為0.232和0.319 m;抽取率>12.5%~25%(點云密度>10~19點/m2)時,MAE和RMSE緩慢減少,最大變化量分別為0.024和0.073 m;抽取率>25%~100%(點云密度>19~77點/m2)時,5種插值方法的MAE和RMSE趨于平穩(wěn),最大變化量不足0.011 m。

        當抽取率小于12.5%(點云密度小于10點/m2)時,TIN和NN的整體誤差明顯低于IDW、Kriging、Spline。當抽取率為1%(點云密度為1點/m2)時,TIN的MAE和RMSE最小,分別為0.208和0.298 m;當抽取率為>5%~12.5%(點云密度>4~10點/m2)時,NN的MAE和RMSE最小,分別為0.170~0.175 m和0.259~0.262 m。Polat等以伊斯坦布爾城區(qū)為研究區(qū),在0.3點/m2的點云密度下研究發(fā)現(xiàn)IDW、NN、Kriging3種插值方法中NN插值效果最好[15],與本研究結果一致,但該研究區(qū)域較為平坦,未開展地形復雜區(qū)域各算法誤差的對比,同時所獲取點云密度較低,未能開展較高點云密度下的插值誤差分析。

        抽取率>12.5%~25%(點云密度>10~19點/m2)時,Spline的MAE和RMSE的變化量分別為0.024和0.073 m,高于其余4種插值方法,說明Spline對點云密度的變化更為敏感。當抽取率高于25%(點云密度>19點/m2)時,5種插值方法構建DEM的誤差趨于平緩,且MAE和RMSE變化量均不大于0.011和0.010 m,說明當點云密度足夠大時,插值方法對DEM的精度影響較小,同時Spline的整體誤差小于其余4種算法,其MAE和RMSE分別為0.164~0.168 m和0.249~0.255 m。

        不同的點云密度下,5種插值所得DEM與采樣點實測值均有很好的相關性,決定系數(shù)2均大于0.99。Habib等以摩洛哥的平原和丘陵為研究區(qū),認為IDW、普通克里金(Ordinary Kriging,OK)、薄板樣條插值(Thin Plate Spline,TPS)這3種插值方法的2可達到0.99[48],但需注意,該研究區(qū)域為較平坦的平原與丘陵區(qū),并未涉及地形復雜區(qū)域;Polat等研究也發(fā)現(xiàn)不同抽取率(10%、30%、50%、70%、100%)下的2變化不大[15],但如前所述,與本文不同,其研究區(qū)較平坦且點云密度較低。此外,本文中各插值方法在不同抽取率下2未有明顯變化,可能原因之一為驗證數(shù)據(jù)和訓練數(shù)據(jù)均由機載LiDAR獲取,并未使用更高精度數(shù)據(jù)(如GPS-RTK)評估DEM構建誤差。后續(xù)可將GPS-RTK等儀器獲取的數(shù)據(jù)作為驗證數(shù)據(jù),進一步評估構建DEM的精度。

        3.3.2 誤差空間分布

        以5×5個柵格作為基本單元計算驗證點與DEM模型的MAE,獲取不同抽取率下各插值算法的DEM誤差空間分布特征(圖5)。由圖5可知,研究區(qū)左下方誤差相較于右上方整體偏高,同時,編號1~3區(qū)DEM誤差明顯低于編號4~8區(qū),且在點云密度為1點/m2時尤為明顯。說明平緩地區(qū)的DEM誤差低于陡峭區(qū)域,且在低點云密度下,二者差異更加明顯。

        在緩坡區(qū)域(編號1~3區(qū))隨著點云密度增大,誤差減小,當點云密度高于10點/m2時,5種插值算法的誤差減小幅度低,表明緩坡區(qū)域對點云密度變化的敏感度較低,亦表明當緩坡區(qū)域點云密度高于10點/m2,點云密度的增加對降低DEM誤差作用不明顯。當點云密度為1~19點/m2時,編號1~3區(qū)NN生成 DEM誤差低于其余4種算法,MAE為0.049~0.171 m;點云密度>39~77點/m2時,Spline誤差值最小,MAE為0.010~0.123 m。

        在陡坡區(qū)域(編號4~8區(qū)),插值誤差隨點云密度的增大亦減小,尤其當點云密度從1點/m2升高至4點/m2時5種插值算法的誤差成倍減少;當點云密度>4~19點/m2時,各區(qū)域插值方法的DEM誤差整體減小;當點云密度高于39點/m2時,DEM誤差趨于穩(wěn)定。因此,陡坡區(qū)域的點云密度越高,對地形變化復雜的區(qū)域細節(jié)描述越精確。當點云密度為1~19點/m2時,編號4~8區(qū)采用TIN方法的DEM插值誤差低于其余4種算法,MAE為0.062~0.776 m;而在點云密度>39~77點/m2時,Spline算法最優(yōu),MAE為0.051~0.593 m。

        4 結 論

        本研究以黃土高塬溝壑區(qū)董莊溝流域內(nèi)典型區(qū)域為例,基于機載LiDAR獲取的點云,對比了IDW、Kriging、Spline、NN、Trend、TIN等插值算法的插值誤差。首先優(yōu)選了IDW、Kriging、Spline、Trend等4種算法的參數(shù),其次分析了IDW、Kriging、Spline、NN、TIN等5種插值方法在不同點云密度、地形下構建DEM的誤差及其分布特征。主要結論如下:

        1)針對黃土高塬溝壑區(qū)地形復雜區(qū)域,IDW、Kriging、Spline插值參數(shù)的優(yōu)選結果分別為:權指數(shù)1、搜索點數(shù)12;無方向、高斯函數(shù)、搜索點數(shù)12;規(guī)則樣條函數(shù)和搜索點數(shù)32。Trend不適用于地形復雜區(qū)域。所得最優(yōu)參數(shù)對地形復雜區(qū)域插值參數(shù)初步選取有參考意義,但在其他地區(qū)應用時,仍需進一步驗證調整,以獲取最優(yōu)參數(shù)。

        2)當點云密度較小時(1~19點/m2),IDW、Kriging、NN、TIN等4種插值方法較為準確地描述地形,Spline所得DEM存在失真。當點云密度較大時(39~77點/m2),各個插值方法的DEM空間分布差異不大。

        3)針對黃土高塬溝壑區(qū)復雜地形區(qū)域,點云密度越大,DEM的誤差越小。隨著點云密度增大,陡坡區(qū)域誤差明顯減小,而緩坡區(qū)域變化較小。當點云密度較小時(1~19點/m2),緩坡和陡坡最優(yōu)插值插值方法分別為NN和TIN;當點云密度較大時(39~77點/m2),緩坡和陡坡最優(yōu)插值方法均為Spline。

        [1] Li A, Zhang X C, Liu B Y. Effects of DEM resolutions on soil erosion prediction using Chinese Soil Loss Equation[J]. Geomorphology, 2021, 384: 107706.

        [2] Bircher P, Liniger H P, Prasuhn V. Comparing different multiple flow algorithms to calculate RUSLE factors of slope length (L) and slope steepness (S) in Switzerland[J]. Geomorphology, 2019, 346: 106850.

        [3] 李振洪,李鵬,丁咚,等. 全球高分辨率數(shù)字高程模型研究進展與展望[J]. 武漢大學學報:信息科學版,2018,43(12):1927-1942.

        Li Zhenhong, Li Peng, Ding Dong, et al. Reacher progress of global high resolution digital elevation models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1927-1942. (in Chinese with English abstract)

        [4] Zhu Y, Liu X, Zhao J, et al. Effect of DEM interpolation neighbourhood on terrain factors[J]. International Journal of Geo-Information, 2019, 8(1): 1-30.

        [5] 劉燕,楊樹文,薛理,等. 參考地理數(shù)據(jù)的大比例尺影像無控定位[J]. 測繪通報,2020(8):18-22,27.

        Liu Yan, Yang Shuwen, Xue Li, et al. Uncontralled positioning of large-scale image with reference to geographic data[J]. Bulletin of Surveying and Mapping, 2020(8): 18-22, 27. (in Chinese with English abstract)

        [6] 江海英,賈坤,趙祥,等. 山地葉面積指數(shù)反演理論、方法與研究進展[J]. 遙感學報,2020,24(12):1433-1449.

        Jiang Haiying, Jia Kun, Zhao Xiang, et al. Review on the theory, method, and research progress of leaf area index estimation in mountainous areas[J]. Journal of Remote Sensing, 2020, 24(12): 1433-1449. (in Chinese with English abstract)

        [7] 何永紅,靳鵬偉,舒敏. 基于多尺度相關性分析的InSAR對流層延遲誤差改正算法[J]. 地球信息科學學報,2020,22(9):1878-1886.

        He Yonghong, Jin Pengwei, Shu Min. InSAR tropospheric delay error correction algorithm based on multi-scale correlation analysis[J]. Journal of Geo-Information Science, 2020, 22(9): 1878-1886. (in Chinese with English abstract)

        [8] 張凡,李華山,江濤. 基于布模擬算法在LiDAR點云中生成數(shù)字高程模型[J]. 激光與光電子學進展,2020,57(13):114-121.

        Zhang Fan, Li Huashan, Jiang Tao. Generating Digital Elevation Model in Lidar point cloud based on cloth distributed simulation algorithm[J]. Laser and Optoelectronics Progress, 2020, 57(13): 114-121. (in Chinese with English abstract)

        [9] Hui Z, Jin S, Xia Y, et al. Wood and leaf separation from terrestrial LiDAR point clouds based on mode points evolution[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178: 219-239.

        [10] 李豆,李朋飛,穆興民,等. 機載LiDAR測量復雜地形中濾波算法的比較研究[J]. 水土保持研究,2021,28(4):171-178.

        Li Dou, Li Pengfei, Mu Xingmin, et al. Accuracy of airborne Lidar point cloud filtering for areas with complex terrain[J]. Research of Soil and Water Conservation, 2021, 28(4): 171-178. (in Chinese with English abstract)

        [11] 岳彥利,羅明良,張斌. 干熱河谷沖溝DEM插值誤差的空間分布研究[J]. 武漢大學學報:信息科學版,2018,43(7):1122-1128.

        Yue Yanli, Luo Mingliang, Zhang Bin. Study on spatial distribution of DEM interpolation errors in the gully of dry-hot valley[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1122-1128. (in Chinese with English abstract)

        [12] 柴華彬,胡吉彪,耿思佳. 融合實測數(shù)據(jù)的地表沉降SBAS-InSAR監(jiān)測方法[J/OL]. 煤炭學報,2021-01-08 [2021-07-30]. https://doi.org/10.13225/j.cnki.jccs.ST20.1563.

        Chai Huabin, Hu Jibiao, Geng Sijia. SBAS-InSAR monitoring method of ground subsidence in mining areas by fusion with measured data[J/OL]. Journal of China Coal Society, 2021-01-08[2021-07-30]. https://doi.org/10.13225/ j.cnki.jccs. ST20.1563. (in Chinese with English abstract)

        [13] Wang Y, Xiao Z, Aurangzeib M, et al. Effects of freeze-thaw cycles on the spatial distribution of soil total nitrogen using a geographically weighted regression kriging method[J]. Science of the Total Environment, 2020, 763: 142993.

        [14] 劉煒,焦樹林,李銀久,等. 喀斯特地表植被覆蓋變化及其與氣候因子相關性分析[J]. 水土保持研究,2021,28(3):203-215.

        Liu Wei, Jiao Shulin, Li Yinjiu, et al. Analysis on the of correlation between vegetation cover of land surface and climatic factors in Karst area[J]. Research of Soil and Water Conservation, 2021, 28(3): 203-215. (in Chinese with English abstract)

        [15] Polat N, Uysal M, Toprak A S. An investigation of DEM generation process based on LiDAR data filtering, decimation, and interpolation methods for an urban area[J]. Measurement, 2015, 75: 50-56.

        [16] 周建紅,楊彪,王華,等. 長江中下游河道岸灘低空機載LiDAR點云地形濾波算法[J]. 河海大學學報:自然科學版,2019,47(1):26-31.

        Zhou Jianhong, Yang Biao, Wang Hua, et al. Filtering algorithm of the low-attitude airborne LiDAR point clouds for topographic survey of the middle-lower Yangtze River riparian zone[J]. Journal of Hohai University: Natural Science Edition, 2019, 47(1): 26-31. (in Chinese with English abstract)

        [17] López-Vicente M, álvarez S. Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops[J]. Earth Surface Processes and Landforms, 2018, 43: 1403-1415.

        [18] Habib M. Evaluation of DEM interpolation techniques for characterizing terrain roughness[J]. Catena, 2021, 198: 105072.

        [19] 熊禮陽,湯國安,楊昕,等. 面向地貌學本源的數(shù)字地形分析研究進展與展望[J]. 地理學報,2021,76(3):595-611.

        Xiong Liyang, Tang Guoan, Yang Xin, et al. Geomorphology-oriented digital terrain analysis: progress and perspectives[J]. Acta Geographica Sinica, 2021, 76(3): 595-611. (in Chinese with English abstract)

        [20] Yang D, Qiu H, Hu S, et al. Influence of successive landslides on topographic changes revealed by multitemporal high-resolution UAS-based DEM[J]. Catena, 2021, 202: 105229.

        [21] Zeybek M , Sanlioglu I . Point cloud filtering on UAV based point cloud[J]. Measurement, 2019, 133: 99-111.

        [22] Okyay U, Telling J, Glennie C L, et al. Airborne lidar change detection: An overview of Earth sciences applications[J]. Earth-Science Reviews, 2019, 198: 102929.

        [23] 侯青青,裴婷婷,陳英,等. 1986—2019年黃土高原干旱變化特征及趨勢[J]. 應用生態(tài)學報,2021,32(2):649-660.

        Hou Qingqing, Pei Tingting, Chen Ying, et al. Variations of drought and its trend in the Loess Plateau from 1986 to 2019[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 649-660. (in Chinese with English abstract)

        [24] 胡宇美,馬理輝,李蕊,等. 黃土高原地區(qū)森林生態(tài)系統(tǒng)地下生物量的因素分析[J/OL]. 生態(tài)學報,2021-07-05 [2021-07-30]. http://kns.cnki.net/kcms/detail/11.2031.Q.20210705.1534.040.html.

        Hu Yumei, Ma Lihui, Li Rui, et al. Factor analysis of underground biomass in forest ecosystem on the Loess Plateau[J/OL]. Acta Ecologica Sinica, 2021-07-05 [2021-07-30]. http://kns.cnki.net/kcms/detail/11.2031.Q.20210705. 1534.040.html. (in Chinese with English abstract)

        [25] 趙廣舉,穆興民,田鵬,等. 黃土高原植被變化與恢復潛力預測[J]. 水土保持學報,2021,35(1):205-212.

        Zhao Guangju, Mu Xingmin, Tian Peng, et al. Prediction of vegetation variation and vegetation restoration potential in the Loess Plateau[J]. Journal of Soil and Water Conservation, 2021, 35(1): 205-212. (in Chinese with English abstract)

        [26] 李婷,呂一河,任艷姣,等. 黃土高原植被恢復成效及影響因素[J]. 生態(tài)學報,2020,40(23):8593-8605.

        Li Ting, Lü Yihe, Ren Yanjiao, et al. Gauging the influencing of vegetation restoration and the influence factors in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(23): 8533-8605. (in Chinese with English abstract)

        [27] Zhao G J, Mu X M, Wen Z, et al. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China[J]. Land Degradation & Development, 2013, 24(5): 499-510.

        [28] Li P F, Hao M K, Hu J F, et al. Spatiotemporal patterns of hillslope erosion investigated based on field scouring experiments and terrestrial laser scanning[J]. Remote Sensing, 2021, 13(9): 1674.

        [29] Li J, Heap A D. Spatial interpolation methods applied in the environmental sciences: A review[J]. Environmental Modelling & Software, 2014, 53: 173-189.

        [30] Li J, Heap A D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors[J]. Ecological Informatics, 2011, 6(3/4): 228-241.

        [31] 徐翔,許瑤,孫青青,等. 復雜山地環(huán)境下氣候要素的空間插值方法比較研究[J]. 華中師范大學學報:自然科學版,2018,52(1):122-129.

        Xu Xiang, Xu Yao, Sun Qingqing, et al. Comparison study on meteorological spatial interpolation approaches in kangdian region of China[J]. Journal of Central China Normal University: Natural Science Edition, 2018, 52(1): 122-129. (in Chinese with English abstract)

        [32] Fan J L, Wu L F, Zheng J, et al. Medium-range forecasting of daily reference evapotranspiration across China using numerical weather prediction outputs downscaled by extreme gradient boosting[J]. Journal of Hydrology, 2021, 601: 126664.

        [33] 張孟丹,余鐘波,谷黃河,等. 無定河流域降水量空間插值方法比較研究[J]. 人民黃河,2021,43(4):30-37,99.

        Zhang Mengdan, Yu Zhongbo, Gu Huanghe, et al. Comparative study on spatial interpolation methods of rainfall in the Wuding River Basin[J]. Yellow River, 2021, 43(4): 30-37, 99. (in Chinese with English abstract)

        [34] 蔣偉達,孫永福,劉紹文,等. 基于IDW的埕島海域水下三角洲地形演變[J]. 海洋科學進展,2020,38(4):697-707.

        Jiang Weida, Sun Yongfu, Liu Shaowen, et al. Terrain evolution of subaqueous delta in Chengdao sea area based on IDW[J]. Advances in Marine Science, 2020, 38(4): 697-707. (in Chinese with English abstract)

        [35] Chen C, Hu B, Li Y. Easy-to-use spatial Random Forest-based downscaling-calibration method for producing high resolution and accurate precipitation data[J]. Hydrology and Earth System Sciences Discussions, 2021, 332: 1-50.

        [36] Nath H, Islam M R. Spatial variability of metal elements in soils of a waste disposal site in Khulan: A geostatistical study[C]// Proceedings of the 5th International Conference on Advances in Civil Engineering (ICACE 2020). Berlin: Springer, 2021.

        [37] 楊秋麗,魏建新,鄭江華,等. 離散點云構建數(shù)字高程模型的插值方法研究[J]. 測繪科學,2019,44(7):16-23.

        Yang Qiuli, Wei Jianxin, Zheng Jianghua, et al. Comparison of interpolation methods of digital elevation model using discrete point cloud data[J]. Science of Surveying and Mapping, 2019, 44(7): 16-23. (in Chinese with English abstract)

        [38] 馮波,陳明濤,岳冬冬,等. 基于兩種插值算法的三維地質建模對比[J]. 吉林大學學報:地球科學版,2019,49(4):1200-1208.

        Feng Bo, Chen Mingtao, Yue Dongdong, et al. Comparison of 3D geological modeling based on two different interpolation algorithms[J]. Journal of Jilin University: Earth Science Edition, 2019, 49(4): 1200-1208. (in Chinese with English abstract)

        [39] 張錦明,游雄,萬剛. 徑向基函數(shù)算法中插值參數(shù)對DEM精度的影響[J]. 武漢大學學報:信息科學版,2013,38(5):608-612.

        Zhang Jinming, You Xiong, Wan Gang. Effects of interpolation parameters in Multi-Log Radial Basis Function on DEM accuracy[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 608-612. (in Chinese with English abstract)

        [40] 徐洋,戰(zhàn)超,王慶,等. 基于海圖數(shù)據(jù)的水下岸坡插值精度分析對比研究[J]. 海洋通報,2019,38(6):632-639.

        Xu Yang, Zhan Chao, Wang Qing, et al. A comparative study on interpolation accuracy of underwater slope terrain based on sea chart data[J]. Marine Science Bulletin, 2019, 38(6): 632-639. (in Chinese with English abstract)

        [41] Brecheisen Z S, Richter D B. Gully-erosion estimation and terrain reconstruction using analyses of microtopographic roughness and LiDAR[J]. Catena, 2021, 202: 105264.

        [42] 崔曉臨,程贇,張露,等. 基于DEM修正的MODIS地表溫度產(chǎn)品空間插值[J]. 地球信息科學學報,2018,20(12):1768-1776.

        Cui Xiaolin, Cheng Yun, Zhang Lu, et al. Spatial interpolation of MODIS land surface temperature products based on DEM correction[J]. Journal of Geo-Information Science, 2018, 20(12): 1768-1776. (in Chinese with English abstract)

        [43] 曹林,朱興洲,代勁松,等. 基于機載小光斑LiDAR數(shù)據(jù)插值的亞熱帶森林丘陵地形的誤差分析[J]. 南京林業(yè)大學學報:自然科學版,2014,38(4):7-13.

        Cao Lin, Zhu Xingzhou, Dai Jinsong, et al. Error analysis of DEM interpolation based on small-foolprint airborne Lidar in subtropical hilly forest[J]. Journal of Nanjing Forestry University: Natural Science Edition, 2014, 38(4): 7-13. (in Chinese with English abstract)

        [44] 羅路廣,裴向軍,黃潤秋. 強震山區(qū)地震滑坡發(fā)生概率研究:以九寨溝國家地質公園為例[J]. 巖石力學與工程學報,2020,39(10):2079-2093.

        Luo Luguang, Pei Xiangjun, Huang Runqiu. Earthquake- triggered landslide occurrence probability in strong mountainous area: A case study of Jiuzhaigou National Geological Park[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2079-2093. (in Chinese with English abstract)

        [45] Zou W Y, Yin S Q, Wang W T. Spatial interpolation of the extreme hourly precipitation at different return levels in the Haihe River basin[J]. Journal of Hydrology, 2021, 598: 126273.

        [46] 陳娟,羅明良,張斌,等. 反距離加權插值參數(shù)變化對元謀沖溝DEM構建的影響[J]. 中國水土保持科學,2015,13(1):29-34.

        Chen Juan, Luo Mingliang, Zhang Bin, et al. Effects of interpolation parameters in inverse distance weighted method on DEM accuracy in dry-hot valleys of yuanmou[J]. Science of Soil and Water Conservation, 2015, 13(1): 29-34. (in Chinese with English abstract)

        [47] 朱海金. 基于不同插值算法生成DEM及對地形因子影響的研究[D]. 福州:福州大學,2013.

        Zhu Haijin. Study on Different Interpolation Algorithms to Generate DEM and the Influence of Terrain Factor[D]. Fuzhou: Fuzhou University, 2013. (in Chinese with English abstract)

        [48] Habib A, Khoshelham K, Akdim N, et al. Impact of spatial resolution, interpolation and filtering algorithms on DEM accuracy for geomorphometric research: A case study from Sahel-Doukkala, Morocco[J]. Modeling Earth Systems and Environment, 2018, 4(4): 1537-1554.

        Comparison of interpolation algorithms for DEMs in topographically complex areas using airborne LiDAR point clouds

        Li Pengfei, Zhang Xiaochen, Yan Lu, Hu Jinfei※, Li Dou, Dan Yang

        (,,710054,)

        Airborne Light Detection and Ranging (LiDAR) technology has widely been used to efficiently acquire terrain data over large areas, particularly providing data sources for the generation of high-resolution Digital Elevation Models (DEMs). However, little was known about the errors in the interpolation of airborne LiDAR point clouds for topographically complex areas, thereby resulting in the less application of airborne LiDAR in the earth surface process. In this study, the errors of six commonly-used DEM interpolations were assessed using the airborne LiDAR point clouds acquired from a topographically complex area in the gullied Loess Plateau, China. Six DEM interpolations included the Inverse Distance Weighted (IDW), Kriging, Spline, Natural Neighbor (NN), Triangulated Irregular Network (TIN), and Trend. Firstly, four parameters were optimized, including IDW, Kriging, Spline, and Trend. Secondly, the optimized algorithms were applied to produce DEMs. Lastly, the errors of DEMs were quantitatively evaluated using mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (2). Results showed that: 1) The optimal values of IDW weights and searching points were 1 and 12, respectively. The optimal parameters for Kriging included non-orientation, Gauss function, and 12 searching points. Spline performed best in regular spline functions and 32 of searching points. Nevertheless, Trend was unsuitable for the topographically complex area, due to the produced DEMs with meter-level errors. 2) In terms of quality, IDW, Kriging, NN, and TIN produced relatively sound DEMs at the 1%-25% subsampling rate (1-19 points /m2), whereas, unreasonable outliers were found in the DEMs produced by Spline. Additionally, there were similar spatial patterns in the DEMs produced by IDW, Kriging, NN, TIN, and Spline, when the subsampling rate was 50%-100% (39-77 points /m2). 3) Excellent relations (2>0.99) were found between the elevation measurements and the DEMs produced using point clouds of different subsampling rates. The average MAE and RMSE of produced DEMs firstly decreased rapidly, and then stabilized, as the point density increased, demonstrating that the reduction of interpolation errors varied slowly, as the point density reached a certain level. TIN produced the lowest error at a 1% subsampling rate (1 points/m2), with the MAE and RMSE of 0.208 and 0.298 m, respectively. At the 5%-12.5% subsampling rate (4-10 points/m2), NN produced the lowest error, where the MAE and RMSE were 0.170-0.175 m and 0.259-0.262 m, respectively. At the >25%-100% subsampling rate (>19-77 points/m2), Spline yielded the lowest error with the MAE and RMSE of 0.164-0.168 and 0.249-0.255 m, respectively. More importantly, the interpolation errors for steep areas were considerably higher than those for gently-sloping areas. The errors for steep areas decreased markedly, while those for gently-sloping areas changed slightly, as the point density increased. NN and TIN were the most suitable interpolation for gently- and steep-sloping areas at the point density of 1-19 points/m2, with the MAE of 0.049-0.171 and 0.062-0.776 m, respectively. Spline yielded the lowest interpolation errors for both steep- and gently-sloping areas with the MAE of 0.010-0.123 and 0.051-0.593 m, respectively when the point density was between 39-77 points/m2. The findings can provide promising potential support to the earth surface process, thereby generating high-resolution DEMs for the topographically complex areas.

        LiDAR; DEM; interpolation algorithms; complex topography; Loess Plateau

        李朋飛,張曉晨,嚴露,等. 復雜地形中機載LiDAR點云構建DEM的插值算法對比[J]. 農(nóng)業(yè)工程學報,2021,37(15):146-153.doi:10.11975/j.issn.1002-6819.2021.15.018 http://www.tcsae.org

        Li Pengfei, Zhang Xiaochen, Yan Lu, et al. Comparison of interpolation algorithms for DEMs in topographically complex areas using airborne LiDAR point clouds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 146-153. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.15.018 http://www.tcsae.org

        2021-03-31

        2021-07-07

        國家自然科學基金(41807063;41977059)

        李朋飛,博士,副教授,研究方向為地貌遙感與土壤侵蝕過程模擬。Email:pengfeili@xust.edu.cn

        胡晉飛,博士,講師,研究方向為水土保持與土壤侵蝕。Email:jinfeih@163.com

        10.11975/j.issn.1002-6819.2021.15.018

        P237

        A

        1002-6819(2021)-15-0146-08

        猜你喜歡
        區(qū)域方法研究
        FMS與YBT相關性的實證研究
        遼代千人邑研究述論
        視錯覺在平面設計中的應用與研究
        科技傳播(2019年22期)2020-01-14 03:06:54
        EMA伺服控制系統(tǒng)研究
        可能是方法不對
        關于四色猜想
        分區(qū)域
        用對方法才能瘦
        Coco薇(2016年2期)2016-03-22 02:42:52
        四大方法 教你不再“坐以待病”!
        Coco薇(2015年1期)2015-08-13 02:47:34
        捕魚
        隔壁的日本人妻bd高清中字| 成人无码午夜在线观看| 欧美三级超在线视频| 黄片亚洲精品在线观看| 凌辱人妻中文字幕一区| 日韩国产成人无码av毛片蜜柚| 国产免费资源高清小视频在线观看| 国产av91在线播放| 亚洲国产天堂久久综合网| 亚洲日韩精品一区二区三区| 大胆欧美熟妇xxbbwwbw高潮了| 国产精品女丝袜白丝袜| 高清不卡av一区二区| 亚洲av综合av成人小说| 大地资源网更新免费播放视频| 久久国产精品男人的天堂av | 亚洲精品无amm毛片| 国产精品一久久香蕉国产线看观看| 久久色悠悠亚洲综合网| 精品国产成人av久久| 精品无码久久久久成人漫画 | 99久久国产综合精品麻豆| 国产韩国精品一区二区三区| 沐浴偷拍一区二区视频| 东北老女人高潮大喊舒服死了| 亚洲成人日韩| av男人的天堂手机免费网站| 十八禁视频在线观看免费无码无遮挡骂过 | 漂亮丰满人妻被中出中文字幕| 成人免费777777被爆出| 久久久精品国产亚洲AV蜜| 亚洲精品综合久久中文字幕| 五十六十日本老熟妇乱| 99亚洲精品久久久99| 亚洲av成人一区二区三区不卡| 熟妇高潮一区二区三区在线观看| 精品人妻伦九区久久aaa片69| 小13箩利洗澡无码免费视频| 国产精品综合一区久久| 中文字幕+乱码+中文字幕一区| 一本无码av一区二区三区|