黃婷苗,王朝輝,黃倩楠,侯賽賓
黃淮麥區(qū)小麥籽粒鋅含量差異原因與調(diào)控*
黃婷苗1,3,王朝輝1,2?,黃倩楠1,2,侯賽賓1,2
(1. 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,陜西楊凌 712100;2. 西北農(nóng)林科技大學(xué)旱區(qū)作物逆境生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100;3. 山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,山西太谷 030800)
小麥高產(chǎn)優(yōu)質(zhì)生產(chǎn)對保障我國糧食安全和人們營養(yǎng)健康有重要意義。通過實(shí)地調(diào)研和取樣分析,研究了黃淮麥區(qū)276個田塊的小麥籽粒鋅含量與產(chǎn)量和產(chǎn)量構(gòu)成、施肥和土壤養(yǎng)分、作物鋅吸收利用等參數(shù)的關(guān)系。結(jié)果表明,黃淮麥區(qū)缺鋅和非缺鋅土壤的比例分別為42%和58%,兩種土壤上的小麥籽粒鋅含量分別介于16~52和17~58 mg·kg–1,分別有7%和9%樣本的籽粒鋅達(dá)到推薦值40 mg·kg–1。缺鋅田塊,籽粒鋅含量與磷肥用量(= –0.273,< 0.01)、0~20 cm土壤有效磷(= –0.283,< 0.01)顯著負(fù)相關(guān),高低籽粒鋅組的磷肥用量分別為73和137 kg·hm–2,土壤有效磷分別為13和20 mg·kg–1,有效鋅分別為0.8和0.7 mg·kg–1,但籽粒產(chǎn)量低于非缺鋅土壤(7 204 和7 857 kg·hm–2)。非缺鋅田塊,籽粒鋅含量與磷肥用量顯著負(fù)相關(guān)(= –0.181,< 0.05),與0~20 cm(= 0.236,< 0.01)和20~40 cm(= 0.183,< 0.05)土壤有效鋅顯著正相關(guān),高低鋅組的磷肥用量分別為112和145 kg·hm–2,0~20 cm的土壤有效磷分別為29和30 mg·kg–1,有效鋅分別為3.3和2.2 mg·kg–1。因此,在缺鋅土壤上,應(yīng)首先解決土壤缺鋅問題,將有效鋅提升至臨界值1.0 mg·kg–1以上,非缺鋅土壤有效鋅保持在3.0 mg·kg–1以上,同時適當(dāng)減少磷肥用量和降低土壤有效磷水平,以減少磷對小麥鋅吸收的負(fù)面影響,維持黃淮麥區(qū)小麥高產(chǎn)并改善籽粒鋅營養(yǎng)。
籽粒鋅含量;產(chǎn)量;肥料用量;土壤養(yǎng)分;調(diào)控措施
黃淮麥區(qū)是我國糧食主產(chǎn)區(qū),小麥種植面積約1 100萬hm2,占我國小麥總面積的44%[1]。長期以來受“施肥越多,產(chǎn)量越高”觀念影響,過量施用化學(xué)肥料不僅造成了土壤養(yǎng)分殘留,施肥的增產(chǎn)效應(yīng)下降,還導(dǎo)致作物營養(yǎng)品質(zhì)降低[2-3]。鋅是人體必需的微量營養(yǎng)元素,全球10%~32%人口遭受鋅營養(yǎng)失調(diào)威脅,以發(fā)展中國家和農(nóng)村人口更為嚴(yán)重[4]。我國以谷物為主食的人群鋅攝取量不足,約1億人口鋅營養(yǎng)不良[5]。滿足人體正常營養(yǎng)需求的小麥籽粒鋅含量應(yīng)達(dá)到40~60 mg·kg–1[6],而2009—2011年對我國小麥主產(chǎn)區(qū)調(diào)研表明,黃淮麥區(qū)的小麥籽粒鋅含量平均為30 mg·kg–1[7],亟待改善和提高。
一般認(rèn)為,籽粒鋅不足應(yīng)歸于較低的土壤供鋅水平[8]。有效鋅缺乏時,作物減產(chǎn)、鋅吸收降低,富鋅品種小麥鋅積累也會受阻[9-10]。根據(jù)土壤有效鋅分級標(biāo)準(zhǔn),有效鋅含量低于1.0 mg·kg–1為缺鋅或潛在性缺鋅土壤,高于1.0 mg·kg–1為非缺鋅土壤[11]。在黃淮麥區(qū),北京的田間試驗(yàn)發(fā)現(xiàn),有效鋅為2.2 mg·kg–1的石灰性沖積土上,氮肥用量從0增加至130 kg·hm–2時,小麥籽粒鋅含量由17 mg·kg–1增至27 mg·kg–1,施氮量為300 kg·hm–2時,籽粒鋅含量不再增加,為29 mg·kg–1[12]。山東有效鋅為1.5 mg·kg–1砂壤土的田間試驗(yàn)中,不同氮肥用量的小麥籽粒鋅含量介于47.5~52.2 mg·kg–1[13]。河北石灰性沖積土有效鋅為0.4 mg·kg–1時,低施磷處理的小麥籽粒鋅含量也會達(dá)40 mg·kg–1[14]。河南安陽265個小麥品種的試驗(yàn)表明,籽粒鋅含量存在較大變異,介于21.4~58.2 mg·kg–1[15]。說明除了土壤有效鋅,其他因素也可能對籽粒鋅含量的變異起決定作用,而其他因素的作用是否會因土壤有效鋅水平而異尚不明確。
本研究依托分布于黃淮麥區(qū)的28個國家小麥產(chǎn)業(yè)技術(shù)體系綜合試驗(yàn)站,開展了農(nóng)戶小麥鋅含量與栽培施肥和土壤養(yǎng)分關(guān)系研究,以期明確在缺鋅和非缺鋅土壤上小麥籽粒鋅含量變異及原因,探討不同土壤上提升小麥籽粒鋅含量的調(diào)控措施,為區(qū)域小麥高效優(yōu)質(zhì)生產(chǎn)提供依據(jù)和參考。
黃淮冬麥區(qū)主要包括山東全部、河南中北部、河北中南部、江蘇和安徽淮北地區(qū)以及陜西、山西、甘肅三省部分地區(qū)。該區(qū)夏季降水集中,雨熱同期,為溫帶濕潤半濕潤季風(fēng)氣候,年均溫11~14℃、降水570~1 000 mm。冬小麥-夏玉米輪作是主要的糧食作物種植制度,一年兩熟。小麥、玉米秸稈均還田。小麥季一般灌水1~4次,農(nóng)戶種植的小麥品種為當(dāng)?shù)赝扑]的主栽品系。土壤類型以黃潮土為主,部分為黃土和棕壤,壤土和砂壤土質(zhì)地為主。0~20 cm土層土壤的基本理化性狀如表1。
表1 黃淮麥區(qū)0~20 cm土層土壤的基本理化性狀(n = 276)
在2014—2015年和2015—2016年兩個小麥生長季,分別選擇代表性農(nóng)戶地塊128和148個,包括126個小麥品種。采用問卷調(diào)查獲得所選地塊的肥料用量、小麥品種、種植模式等信息。其中,施有機(jī)肥的田塊均折合成氮、磷、鉀純養(yǎng)分計(jì)入肥料用量。小麥?zhǔn)斋@時,每個田塊選擇10 m × 5 m長勢均勻的區(qū)域作為采樣區(qū)。在樣區(qū)內(nèi)隨機(jī)選擇三個有代表性的1 m2樣方,測定穗數(shù),并隨機(jī)采集包含100個穗的小麥全株[16],剪除根系,地上部秸稈和穗作為考種和化學(xué)分析樣品,風(fēng)干后脫粒。分取籽粒、秸稈和穎殼樣品30~40 g,快速用自來水和去離子水沖洗三次,于65℃烘干至恒重,計(jì)算風(fēng)干樣品含水量。測定小麥千粒重,計(jì)算穗粒數(shù)和收獲指數(shù)。烘干的植物樣品用碳化鎢研磨罐的球磨儀(MM400,德國)研細(xì)混勻,密封待測。籽粒、秸稈(包括莖葉、穎殼和穗軸)生物量和千粒重均以烘干質(zhì)量表示。
在采樣區(qū)的小麥行間,隨機(jī)選擇三個樣點(diǎn),20 cm為一層,用不銹鋼土鉆采0~100 cm的土壤樣品,同層的土樣捏碎混勻,取500 g作為分析樣品。風(fēng)干后,研磨過1 mm尼龍篩,用于測定土壤pH、硝態(tài)氮和銨態(tài)氮、有效磷、速效鉀和有效鐵、有效錳、有效銅、有效鋅含量;研磨過0.15 mm尼龍篩,用于分析土壤有機(jī)質(zhì)和全氮。
植株樣品用濃HNO3-H2O2微波消解,電感耦合等離子體質(zhì)譜儀ICP-MS(iCAP Qc,美國)測定鋅含量。以小麥粉國家標(biāo)準(zhǔn)物質(zhì)(GWB10011,GSB-2)監(jiān)控消解、測定過程質(zhì)量。
土壤pH采用2.5︰1水土比、pH計(jì)(PHS-3C,雷磁,上海)測定;1 mol·L–1KCl浸提、高分辨連續(xù)流動分析儀(AA3,SEAL,德國)測定硝態(tài)氮、銨態(tài)氮含量;0.5 mol·L–1的NaHCO3浸提、連續(xù)流動分析儀測定有效磷;1 mol·L–1的NH4OAc浸提、火焰光度計(jì)(Model 410,Sherwood,英國)測定速效鉀;有效鐵、有效錳、有效銅、有效鋅用pH 7.30的二乙三胺五乙酸-氯化鈣-三乙醇胺(DTPA- CaCl2-TEA)浸提、原子吸收分光光度計(jì)(Z-2000,Hitachi,日本)測定;有機(jī)質(zhì)用K2Cr2O7-H2SO4氧化法測定;全氮用濃H2SO4加混合催化劑消煮、連續(xù)流動分析儀測定。
籽粒產(chǎn)量以三要素的乘積表示,鋅吸收量和鋅收獲指數(shù)計(jì)算公式如下:
籽粒(秸稈)鋅吸收量/(g·hm–2)= 籽粒(秸稈)生物量/(kg·hm–2)×籽粒(秸稈)鋅含量/(mg·kg–1)/1 000
鋅收獲指數(shù)/% = 籽粒鋅吸收量 /(籽粒鋅吸收量+秸稈鋅吸收量)×100
為了便于土壤鋅營養(yǎng)調(diào)控與管理,根據(jù)0~20 cm土層的有效鋅含量將調(diào)研田塊劃分為缺鋅土壤(DTPA-Zn<1.0 mg·kg–1)和非缺鋅土壤(DTPA-Zn≥1.0 mg·kg–1)兩類[11]。兩類土壤間的差異用獨(dú)立樣本成組數(shù)據(jù)檢驗(yàn)分析;缺鋅、非缺鋅土壤,不同指標(biāo)與籽粒鋅含量的關(guān)系用皮爾森(Pearson)相關(guān)系數(shù)表示,顯著性水平設(shè)為0.05。所有分析均用統(tǒng)計(jì)軟件SPSS 21.0完成。
黃淮麥區(qū)土壤缺鋅和非缺鋅的田塊比例分別為42%和58%。分析表明(圖1),缺鋅田塊籽粒鋅含量介于16~52 mg·kg–1,平均為29 mg·kg–1,7%的樣本籽粒鋅達(dá)到滿足人體鋅營養(yǎng)需求的40~60 mg·kg–1推薦值。非缺鋅田塊,籽粒鋅含量介于17~58 mg·kg–1,平均為30 mg·kg–1,9%的樣本超過40 mg·kg–1。黃淮麥區(qū)小麥籽粒鋅含量平均為30 mg·kg–1。
分析表明,土壤缺鋅與否影響小麥籽粒產(chǎn)量和地上部鋅吸收(表2)。與非缺鋅田塊相比,缺鋅田塊的籽粒產(chǎn)量和收獲指數(shù)分別降低9%和3%,籽粒和秸稈鋅吸收分別降低13%和10%。相關(guān)分析表明,無論缺鋅還是非缺鋅田塊,小麥籽粒鋅含量與籽粒、秸稈鋅吸收量均呈極顯著正相關(guān)關(guān)系(< 0.01),與產(chǎn)量、秸稈生物量、產(chǎn)量構(gòu)成及鋅收獲指數(shù)無顯著相關(guān)。
表2 黃淮麥區(qū)缺鋅和非缺鋅土壤的小麥產(chǎn)量、產(chǎn)量構(gòu)成、鋅吸收利用及其與籽粒鋅含量的關(guān)系(n = 276)
注:同列不同小寫字母表示兩種土壤的差異達(dá)5%顯著水平,*和**分別代表相關(guān)性達(dá)顯著和極顯著水平,下同。Note:Different lowercase letters in the same column indicate significant difference between two soils at 0.05 level of-test,and * and ** represent significance of the correlations at< 0.05 and at< 0.01 level,respectively. ①Zn-deficiency,②Non-Zn-deficiency,③Correlation coefficients. The same below.
調(diào)研區(qū)域均未施用鋅肥,缺鋅、非缺鋅田塊,分別有10%和18%的農(nóng)戶施用了有機(jī)肥?;貧w分析表明,兩類土壤的籽粒鋅含量均隨磷肥用量增加明顯下降,而與氮鉀肥用量無關(guān)(圖2)。缺鋅田塊,平均氮、磷、鉀肥用量分別為241、128和78 kg·hm–2,磷肥用量為69~203 kg·hm–2時,籽粒鋅含量介于(27.6±13.0)~(30.3±13.0)mg·kg–1。非缺鋅田塊,平均氮、磷、鉀肥用量分別為224、135和80 kg·hm–2,磷肥用量為80~214 kg·hm–2時,籽粒鋅含量介于(28.2±14.0)~(30.9±14.0)mg·kg–1。
分析表明(圖3),決定小麥籽粒鋅含量變異的主要土壤養(yǎng)分因土壤鋅情況而異。相關(guān)分析發(fā)現(xiàn),缺鋅田塊,籽粒鋅含量與0~20 cm有效磷極顯著負(fù)相關(guān),與60~80 cm銨態(tài)氮顯著正相關(guān);回歸分析表明,0~20 cm土壤有效磷為5.5~34 mg·kg–1時,籽粒鋅含量介于(26.1±11.8)~(30.6±11.8)mg·kg–1(圖4a))。非缺鋅田塊,籽粒鋅含量與0~40 cm有效鋅和0~20 cm有效鐵均呈顯著正相關(guān)關(guān)系;回歸分析表明,0~20 cm土壤有效鋅為1.1~4.9 mg·kg–1時,籽粒鋅含量介于(28.9±13.8)~(32.7±13.8) mg·kg–1(圖4b))。
在黃淮麥區(qū),無論是缺鋅還是非缺鋅土壤,小麥籽粒鋅含量均存在較大變異(圖1),與伊朗、塞爾維亞和我國黃土高原等地的結(jié)果類似[17-19],兩種土壤上,分別有7%和9%的樣本籽粒鋅達(dá)到滿足人體鋅營養(yǎng)需求的40 mg·kg–1。調(diào)研中,農(nóng)戶小麥種植并不施用鋅肥,說明通過合理的農(nóng)藝措施調(diào)控,即使不施鋅肥,也可使小麥籽粒鋅含量提高至目標(biāo)需求值。兩種土壤上的小麥籽粒鋅含量均與產(chǎn)量無關(guān)(表2),可見“產(chǎn)量稀釋”效應(yīng)或者不存在,或者被其他因素的作用削弱,在實(shí)際生產(chǎn)中它并不是改善農(nóng)戶小麥籽粒鋅營養(yǎng)的限制因素。品種也可能是籽粒鋅含量變異的一個因素。雖然調(diào)研區(qū)域農(nóng)戶種植的品種繁多,且多為當(dāng)?shù)刂髟云贩N,但相同品種出現(xiàn)頻次有限,如種植最廣泛的濟(jì)麥22,在缺鋅、非缺鋅田塊出現(xiàn)的次數(shù)分別為11和20,多數(shù)品種不足三次,較少的樣本量限制了品種對籽粒鋅貢獻(xiàn)的分析,同時也從另一方面說明田間管理、土壤條件等對改善區(qū)域小麥籽粒鋅營養(yǎng)的重要性。因此,施肥和土壤養(yǎng)分引起的作物鋅吸收利用差異應(yīng)得到重視。
缺鋅田塊,籽粒鋅含量與磷肥用量、0~20 cm的土壤有效磷顯著負(fù)相關(guān)。說明較高的磷肥投入和表層土壤有效磷是該地區(qū)小麥籽粒鋅含量低的主要原因。大量研究表明,磷肥施用會降低根系鋅吸收、鋅由根系向地上部轉(zhuǎn)移以及菌根侵染,進(jìn)而誘導(dǎo)作物缺鋅,降低籽粒鋅含量[20-21]。在河北曲周有效鋅為0.4 mg·kg–1的石灰性沖積土上,純磷施用量由0增加至100 kg·hm–2時,小麥籽粒鋅含量由46 mg·kg–1降低至23 mg·kg–1[22],相應(yīng)的表層土壤有效磷從4 mg·kg–1增加至31 mg·kg–1[14]。本研究中,缺鋅田塊0~20 cm土壤有效磷平均為18 mg·kg–1(圖4),高于優(yōu)化作物生長所需的適宜范圍11~15 mg·kg–1[23-24],平均磷肥用量128 kg·hm–2,也高于當(dāng)?shù)囟ㄎ辉囼?yàn)推薦的最佳磷肥用量114 kg·hm–2[25]。因此,在保障小麥不減產(chǎn)的前提下,應(yīng)適當(dāng)減少磷肥投入,降低土壤有效磷,改善小麥鋅營養(yǎng)。
需注意的是,本研究中小麥籽粒鋅含量與土壤有效鋅無關(guān),而與地上部鋅吸收呈顯著正相關(guān)(表2)。小麥籽粒鋅來源于土壤鋅,但即使在土壤鋅缺乏的情況下,還會有其他因素促使小麥吸收了更多的鋅,以提高其籽粒鋅含量。除了品種外,氮肥的投入可能是另外一個重要原因。黃土高原缺鋅土壤上,氮肥用量由0增加至320 kg·hm–2時,小麥籽粒鋅含量從22 mg·kg–1增加至35 mg·kg–1,地上部鋅吸收由127 g·hm–2增至243 g·hm–2[26]。華北平原石灰性缺鋅土壤的研究也表明,氮肥用量由0增至300 kg·hm–2時,小麥根系和地上部鋅吸收分別增加了108%和304%,籽粒鋅含量由26 mg·kg–1增加至36 mg·kg–1[27]。黃淮麥區(qū),農(nóng)戶施氮量普遍較高,平均241 kg·hm–2。充足的氮營養(yǎng)可增強(qiáng)小麥鋅吸收和鋅在韌皮部的移動,進(jìn)而增加籽粒鋅的累積[28-29]。
可見,對于缺鋅田塊,降低磷肥投入和土壤有效磷是提高籽粒鋅含量的主要措施。為調(diào)控籽粒鋅至目標(biāo)值,將籽粒鋅含量高于40 mg·kg–1的樣本定為高鋅組,低于平均值(29 mg·kg–1)的定為低鋅組(圖5)。低、高鋅組的小麥平均籽粒鋅含量分別為24和45 mg·kg–1,籽粒產(chǎn)量為7 267和7 669 kg·hm–2,施磷量137和73 kg·hm–2,土壤有效磷20和13 mg·kg–1,有效鋅0.7和0.8 mg·kg–1??梢?,改善缺鋅土壤的小麥籽粒鋅營養(yǎng),不會以犧牲產(chǎn)量為代價,且兩組平均產(chǎn)量對應(yīng)的需磷(P2O5)量分別為65.8和68.4 kg·hm–2 [30],與高鋅組的施磷量73 kg·hm–2接近。因此,應(yīng)減少當(dāng)前較高的磷肥投入,使與作物從土壤帶走的磷量保持一致。黃淮麥區(qū)約有42%的田塊為缺鋅土壤,土壤有效鋅的差異雖然不能解釋籽粒鋅變異(圖3),但與非缺鋅土壤相比,缺鋅土壤的小麥產(chǎn)量確實(shí)降低(表2)。說明減施磷肥的同時,也應(yīng)解決土壤缺鋅問題,補(bǔ)施鋅肥或有機(jī)無機(jī)配施等[31-32],使缺鋅田塊的有效鋅至少先提升至臨界值1.0 mg·kg–1以上,以實(shí)現(xiàn)小麥增產(chǎn)提鋅。
研究表明,黃淮麥區(qū)58%的田塊屬于非缺鋅土壤。非缺鋅田塊,籽粒鋅含量與磷肥用量顯著負(fù)相關(guān)、而與土壤有效磷無關(guān)。土壤有效鋅為2.3~2.4 mg·kg–1的盆栽試驗(yàn)中,磷供應(yīng)從20 μmol·L–1增加至500 μmol·L–1時,小麥籽粒產(chǎn)量增加了113%,鋅含量降低了38%[33]。華北平原農(nóng)戶施磷肥常過高[34],本調(diào)研中磷肥用量介于0~518 kg·hm–2,平均為135 kg·hm–2,籽粒產(chǎn)量7 857 kg·hm–2,土壤有效磷高達(dá)29 mg·kg–1,已是小麥生長最佳土壤有效磷范圍的近2倍[23-24]。說明過高的磷供應(yīng)已成為抑制小麥鋅吸收的根本原因。多數(shù)關(guān)于磷鋅互作的田間研究主要集中于缺鋅土壤[21,35-36],對非缺鋅土壤的磷鋅作用機(jī)理有待進(jìn)一步探索。再者,本研究中,小麥籽粒鋅含量與土壤有效鋅、地上部鋅吸收均呈顯著正相關(guān)(圖3b,表2),證明在施磷過高、土壤有效磷也過高的非缺鋅土壤,較高的土壤有效鋅對小麥籽粒鋅含量提高亦重要。河北小麥-玉米輪作體系連續(xù)三年施用鋅肥的試驗(yàn)表明,小麥籽粒鋅含量與土壤有效鋅呈線性-平臺的關(guān)系,當(dāng)有效鋅高于7.57 mg·kg–1時,籽粒鋅含量不再增加,保持在53.6 mg·kg–1[37]。本研究中,非缺鋅田塊0~20 cm土壤的有效鋅介于1.0~9.8 mg·kg–1,多數(shù)農(nóng)田有效鋅仍低于7.57 mg·kg–1(圖4b)。墨西哥黏壤土的有效鋅高達(dá)9.55 mg·kg–1時,不會出現(xiàn)作物生長受阻和環(huán)境風(fēng)險(xiǎn)[38],同樣,河北石灰性土壤連續(xù)8年施鋅的研究也表明,合理鋅肥用量(5.7 kg·hm–2)明顯改善籽粒鋅營養(yǎng)的同時,不會引起其他重金屬元素(如Cu、Cd、Pb、Cr、As)積累帶來的健康風(fēng)險(xiǎn)[39]。因此,在黃淮麥區(qū),降低磷肥用量和土壤有效磷含量,提高土壤有效鋅,對改善小麥籽粒鋅營養(yǎng)非常重要。
同樣,將籽粒鋅含量高于40 mg·kg–1的樣本定為高鋅組,低于平均值30 mg·kg–1的定為低鋅組(圖6)。在非缺鋅土壤上,低、高鋅組的小麥籽粒鋅含量分別為25和46 mg·kg–1,籽粒產(chǎn)量為7 840和7 189 kg·hm–2,磷肥用量145和112 kg·hm–2,土壤有效磷30和29 mg·kg–1,有效鋅2.2和3.3 mg·kg–1(圖6),說明可在不減產(chǎn)的前提下,提高非缺鋅田塊的小麥籽粒鋅含量。兩組平均產(chǎn)量對應(yīng)的需磷(P2O5)量分別為69.2和70.8 kg·hm–2[30],低于農(nóng)戶施磷量。因此,在非缺鋅土壤上,更需減少磷肥用量,因有效磷過高,有效鋅成了決定小麥籽粒鋅的主要因素(圖3),降低磷肥用量的同時,也應(yīng)注重土壤有效鋅的提高,如提倡施用鋅肥或配施有機(jī)肥等[40-41],保持有效鋅在3.0 mg·kg–1以上。
黃淮麥區(qū)農(nóng)田土壤缺鋅和非缺鋅的比例為42%和58%,兩種土壤的小麥籽粒鋅含量均存在較大變異,分別有7%和9%的樣本籽粒鋅達(dá)到40 mg·kg–1推薦標(biāo)準(zhǔn)。無論土壤是否缺鋅,籽粒鋅含量不受“產(chǎn)量稀釋”效應(yīng)影響,但缺鋅田塊的籽粒產(chǎn)量、地上部鋅吸收明顯低于非缺鋅田塊。較高的磷肥用量和土壤有效磷及較低的有效鋅是實(shí)現(xiàn)小麥高產(chǎn)增鋅的主要障礙因子。缺鋅土壤,首先應(yīng)解決土壤缺鋅問題,至少先將有效鋅提高至臨界值1.0 mg·kg–1以上,非缺鋅土壤的有效鋅保持在3.0 mg·kg–1以上,同時減少磷肥用量、降低土壤有效磷,以減輕磷-鋅拮抗作用,維持小麥高產(chǎn)并改善籽粒鋅營養(yǎng)。
致 謝 感謝國家小麥產(chǎn)業(yè)技術(shù)體系綜合試驗(yàn)站科研人員、技術(shù)推廣工作者和當(dāng)?shù)剞r(nóng)戶在樣品采集方面給予的協(xié)作和支持。
[1] National Bureau of Statistics of the People’s Republic of China. China statistical yearbook [M]. Beijing:China Agriculture Press,2019. [中華人民共和國國家統(tǒng)計(jì)局. 中國統(tǒng)計(jì)年鑒[M]. 北京:中國農(nóng)業(yè)出版社,2019.]
[2] Liu H,Wang Z H,Yu R,et al. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China[J]. Agriculture,Ecosystems & Environment,2016,224:1—11.
[3] Pan J X,Zhang L,He X M,et al. Long-term optimization of crop yield while concurrently improving soil quality[J]. Land Degradation & Development,2019,30(8):897—909.
[4] Bouis H E,Eozenou P,Rahman A. Food prices,household income,and resource allocation:Socioeconomic perspectives on their effects on dietary quality and nutritional status[J]. Food and Nutrition Bulletin,2011,32(1_suppl1):S14—S23.
[5] Ma G S,Jin Y,Li Y P,et al. Iron and zinc deficiencies in China:What is a feasible and cost-effective strategy?[J]. Public Health Nutrition,2008,11(6):632—638.
[6] Bouis H E,Saltzman A. Improving nutrition through biofortification:A review of evidence from HarvestPlus,2003 through 2016[J]. Global Food Security,2017,12:49—58.
[7] Liu H,Wang Z H,Li F C,et al. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China[J]. Field Crops Research,2014,156:151—160.
[8] Dimkpa C O,Bindraban P S. Fortification of micronutrients for efficient agronomic production:A review[J]. Agronomy for Sustainable Development,2016,36:Article number 7.
[9] Chattha M U,Hassan M U,Khan I,et al. Biofortification of wheat cultivars to combat zinc deficiency[J]. Frontiers in Plant Science,2017,8:281.
[10] Khoshgoftarmanesh A H,Afyuni M,Norouzi M,et al. Fractionation and bioavailability of zinc(Zn)in the rhizosphere of two wheat cultivars with different Zn deficiency tolerance[J]. Geoderma,2018,309:1—6.
[11] Alloway B J. Soil factors associated with zinc deficiency in crops and humans[J]. Environmental Geochemistry and Health,2009,31(5):537—548.
[12] Shi R L,Zhang Y Q,Chen X P,et al. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat(L.)[J]. Journal of Cereal Science,2010,51(1):165—170.
[13] Xia H Y,Xue Y F,Liu D Y,et al. Rational application of fertilizer nitrogen to soil in combination with foliar Zn spraying improved Zn nutritional quality of wheat grains[J]. Frontiers in Plant Science,2018,9:677.
[14] Zhang W,Liu D Y,Liu Y M,et al. Zinc uptake and accumulation in winter wheat relative to changes in root morphology and mycorrhizal colonization following varying phosphorus application on calcareous soil[J]. Field Crops Research,2016,197:74—82.
[15] Zhang Y,Song Q C,Yan J,et al. Mineral element concentrations in grains of Chinese wheat cultivars[J]. Euphytica,2010,174(3):303—313.
[16] Ma X L,Wang Z H,Cao H B,et al. Yield variation of winter wheat and its relation to yield components,NPK uptake and utilization in drylands of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizer,2017,23(5):1135—1145.[馬小龍,王朝輝,曹寒冰,等. 黃土高原旱地小麥產(chǎn)量差異與產(chǎn)量構(gòu)成及氮磷鉀吸收利用的關(guān)系[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2017,23(5):1135—1145.]
[17] Karami M,Afyuni M,Khoshgoftarmanesh A H,et al. Grain zinc,iron,and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables[J]. Journal of Agricultural and Food Chemistry,2009,57(22):10876—10882.
[18] Nikolic M,Nikolic N,Kostic L,et al. The assessment of soil availability and wheat grain status of zinc and iron in Serbia:Implications for human nutrition[J]. Science of the Total Environment,2016,553:141—148.
[19] She X,Wang Z H,Ma X L,et al. Variation of winter wheat grain zinc concentration and its relation to major soil characteristics in dryland of the Loess Plateau[J]. Scientia Agricultura Sinica,2017,50(22):4338—4349. [佘旭,王朝輝,馬小龍,等. 黃土高原旱地冬小麥籽粒鋅含量差異與主要土壤理化性狀的關(guān)系[J]. 中國農(nóng)業(yè)科學(xué),2017,50(22):4338—4349.]
[20] Su D,Zhou L J,Zhao Q,et al. Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid,zinc,and iron in rice(L.)grains[J]. Journal of Agricultural and Food Chemistry,2018,66(7):1601—1611.
[21] Zhu Y G,Smith S E,Smith F A. Zinc(Zn)-phosphorus(P)interactions in two cultivars of spring wheat(L.)differing in P uptake efficiency[J]. Annals of Botany,2001,88(5):941—945.
[22] Zhang W,Liu D Y,Liu Y M,et al. Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat(L.)[J]. Journal of Agricultural and Food Chemistry,2017,65(8):1473—1482.
[23] Bai Z H,Li H G,Yang X Y,et al. The critical soil P levels for crop yield,soil fertility and environmental safety in different soil types[J]. Plant and Soil,2013,372(1/2):27—37.
[24] Tang X,Ma Y B,Hao X Y,et al. Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China[J]. Plant and Soil,2009,323(1/2):143—151.
[25] Zhang W. The mechanisms of zinc uptake and accumulation in wheat and maize as affected by phosphorus levels[D]. Beijing:China Agricultural University,2017. [張偉. 供磷水平對小麥玉米鋅吸收、累積的影響及其作用機(jī)制[D]. 北京:中國農(nóng)業(yè)大學(xué),2017.]
[26] Jin J J,Wang Z H,Dai J,et al. Effects of long-term N and P fertilization with different rates on Zn concentration in grain of winter wheat[J]. Journal of Plant Nutrition and Fertilizer,2014,20(6):1358—1367.[靳靜靜,王朝輝,戴健,等. 長期不同氮、磷用量對冬小麥籽粒鋅含量的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2014,20(6):1358—1367.]
[27] Xue Y F,Zhang W,Liu D Y,et al. Effects of nitrogen management on root morphology and zinc translocation from root to shoot of winter wheat in the field[J]. Field Crops Research,2014,161:38—45.
[28] Kutman U B,Yildiz B,Cakmak I. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat[J]. Journal of Cereal Science,2011,53(1):118—125.
[29] Mao H,Wang J,Wang Z,et al. Using agronomic biofortification to boost zinc,selenium,and iodine concentrations of food crops grown on the Loess Plateau in China[J]. Journal of Soil Science and Plant Nutrition,2014,14(2):459—470.
[30] Huang Q N,Wang Z H,Huang T M,et al. Relationships of N,P and K requirement to wheat grain yield of farmers in major wheat production regions of China[J]. Scientia Agricultura Sinica,2018,51(14):2722—2734.[黃倩楠,王朝輝,黃婷苗,等. 中國主要麥區(qū)農(nóng)戶小麥氮磷鉀養(yǎng)分需求與產(chǎn)量的關(guān)系[J]. 中國農(nóng)業(yè)科學(xué),2018,51(14):2722—2734.]
[31] Grüter R,Costerousse B,Mayer J,et al. Long-term organic matter application reduces cadmium but not zinc concentrations in wheat[J]. Science of the Total Environment,2019,669:608—620.
[32] Chen Y L,Jia Z,Shi J L,et al. Effect of straw return on diffusion,translocation and transformation of zinc in calcareous soil[J]. Acta Pedologica Sinica,2018,55(3):721—733.[陳艷龍,賈舟,師江瀾,等. 秸稈還田對石灰性土壤Zn擴(kuò)散遷移及形態(tài)轉(zhuǎn)化的影響[J]. 土壤學(xué)報(bào),2018,55(3):721—733.]
[33] Ova E A,Kutman U B,Ozturk L,et al. High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution[J]. Plant and Soil,2015,393(1/2):147—162.
[34] Li H,Huang G,Meng Q,et al. Integrated soil and plant phosphorus management for crop and environment in China. A review[J]. Plant and Soil,2011,349(1/2):157—167.
[35] Ryan M H,McInerney J K,Record I R,et al. Zinc bioavailability in wheat grain in relation to phosphorus fertiliser,crop sequence and mycorrhizal fungi[J]. Journal of the Science of Food and Agriculture,2008,88(7):1208—1216.
[36] Zhang W,Liu D Y,Li C,et al. Zinc accumulation and remobilization in winter wheat as affected by phosphorus application[J]. Field Crops Research,2015,184:155—161.
[37] Liu D Y,Zhang W,Pang L L,et al. Effects of zinc application rate and zinc distribution relative to root distribution on grain yield and grain Zn concentration in wheat[J]. Plant and Soil,2017,411(1/2):167—178.
[38] Vaca R,Lugo J,Martínez R,et al. Effects of sewage sludge and sewage sludge compost amendment on soil properties ands L. plants(heavy metals,quality and productivity)[J]. Revista Internacional de Contamination Ambiental,2011,27:303—311.
[39] Liu Y M,Liu D Y,Zhang W,et al. Health risk assessment of heavy metals(Zn,Cu,Cd,Pb,As and Cr)in wheat grain receiving repeated Zn fertilizers[J]. Environmental Pollution,2020,257:113581.
[40] Wang Z M,Pan F,Liu Q,et al. Effect of zinc application at jointing stage on zinc bioavailability in wheat grain[J]. Soils,2018,50(6):1222—1228.[王張民,潘斐,劉琦,等. 拔節(jié)期土壤施鋅對小麥籽粒中鋅生物有效性影響評估[J]. 土壤,2018,50(6):1222—1228.]
[41] Lu X C,Zou W X,Han X Z,et al. Determination of Zn availability in black soil with physical-chemical methods[J]. Acta Pedologica Sinica,2016,53(4):985—994. [陸欣春,鄒文秀,韓曉增,等. 黑土鋅有效度的物理化學(xué)研究法[J]. 土壤學(xué)報(bào),2016,53(4):985—994.]
Causes and Regulation of Variation of Zinc Concentration in Wheat Grains Produced in Huanghuai Wheat Production Region of China
HUANG Tingmiao1, 3, WANG Zhaohui1,2?, HUANG Qiannan1, 2, HOU Saibin1, 2
(1.College of Natural Resources and Environment, Northwest A&F university, Yangling, Shaanxi 712100, China; 2. State Key Laboratory of Crop Stress Biology in Arid Area, Northwest A&F University, Yangling, Shaanxi 712100, China; 3. College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China)
【Objective】China nowadays has approximately 100 million people suffering from zinc (Zn) deficiency, mainly because they live on cereal crops as their staple food and hence fail to take in adequate Zn, especially in the rural areas. As one of the major wheat-producing areas, the Huanghuai Plain contributes to about 70% of the wheat (L.) grain yield of China. So it is of great significance to understand causes of the variation of Zn concentration in wheat grains to guarantee high-yield and high-quality wheat production in the region, so as to ensure food security and human health.【Method】 Combined with a two-yearfarm survey, samples of wheat shoot (the aboveground part) and soil in the 0~100 cm layer were collected from 276 randomly selected farmers’ fields during the wheat harvesting season in the Huanghuai wheat production region for analysis of Zn concentration. Comparison was made between wheat grains produced in Zn-deficient (DTPA-Zn<1.0 mg·kg–1) and non-Zn-deficient (DTPA-Zn≥1.0 mg·kg–1) soils in grain Zn concentration and correlation analysis performed of grain Zn concentration with grain yield, yield components, fertilization rates, soil nutrients in the 0-100 cm layer, and Zn uptake and utilization of the crop, separately. 【Result】Results show that 42% and 58% of the wheat fields in the region were of Zn-deficient (DTPA-Zn<1.0 mg·kg–1) and non-Zn-deficient (DTPA-Zn≥1.0 mg·kg–1) soils, and produced grains with Zn concentration ranging from 16 to 52 mg·kg–1and from 17 to 58 mg·kg–1, respectively. About 7% and 9% of the grain samples from the two types of wheat fields met the recommended criterion (≥40 mg·kg–1) for grain Zn concentration. Generally, the farmers in the region prefer to grow local specific elite cultivars of wheat, however, it was difficult to identify high-Zn or potentially high-Zn traits of the cultivars due to the limited sample size at a regional scale. In this survey, the selected wheat fields did not receive any Zn fertilizer or other Zn-containing fertilizers, and only 10% and 18% of the fields of Zn-deficient soil and non-Zn-deficient soil were applied with organic manure. In the fields of Zn-deficient soils, grain Zn concentration had nothing to do with nitrogen (N) and potassium (K) fertilization rates, but did negatively, with phosphorus (P) fertilization rate (= –0.273,< 0.01) and available P in the 0-20 cm soil layer (= –0.283,< 0.01). In the two groups of wheat fields, high and low in grain Zn concentration, with soil available P being 13 and 20 mg·kg–1, and available Zn being 0.8 and 0.7 mg·kg–1in 0-20 cm soil, P2O5fertilizer was applied at 65.8 and 68.4 kg·hm–2to achieve targeted grain yield. Also, the grain yield and shoot Zn uptake were observed to be lower in the fields of Zn-deficient soils (7 204 kg·hm–2and 279 g·hm–2) than in the fields of non-Zn-deficient soils (7 857 kg·hm–2and 318 g·hm–2). In the fields of non-Zn-deficient soils, grain Zn concentration had nothing to do with N and K fertilization rates, either, but was negatively related to P fertilization rate (= –0.181,< 0.05) and positively to soil available Zn in the 0-20 cm (= 0.236,< 0.01) and 20–40 cm (= 0.183,< 0.05) soil layers. In the two groups of wheat fields of Zn-deficient and non-Zn-deficient soils, with available P being 29 and 30 mg·kg–1, and available Zn being 3.3 and 2.2 mg·kg–1in the 0-20 cm soil layer, P fertilizer was applied at a rate of 112 and 145 kg P2O5·hm–2, respectively, and P2O5requirement for targeted average grain yield reached 69.2 and 70.8 kg·hm–2, respectively.【Conclusion】Therefore, it could be considered that it is advisable to address the problem of lack of available soil Zn firstly, by increasing the content of soil available Zn up to the critical values of 1.0 and 3.0 mg·kg–1in the fields of Zn-deficient and non-Zn-deficient soils, respectively, and then to reduce P fertilizer application rate and hence available soil P content, so as to alleviate the negative effect of excessive P on crop Zn uptake and accumulation, for the purpose of maintaining high grain yield and improving grain Zn nutrition simultaneously in winter wheat grown in the Huanghuai wheat production region of China.
Grain Zn concentration; Grain yield; Fertilizer rates; Soil nutrients; Regulation measures
S512.1
A
10.11766/trxb202003150119
黃婷苗,王朝輝,黃倩楠,侯賽賓. 黃淮麥區(qū)小麥籽粒鋅含量差異原因與調(diào)控[J]. 土壤學(xué)報(bào),2021,58(6):1496–1506.
HUANG Tingmiao,WANG Zhaohui,HUANG Qiannan,HOU Saibin. Causes and Regulation of Variation of Zinc Concentration in Wheat Grains Produced in Huanghuai Wheat Production Region of China[J]. Acta Pedologica Sinica,2021,58(6):1496–1506.
*財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-03)和國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0200400)資助 Supported by China Agriculture Research System of MOF and MARA(No. CARS-03)and the National Key Research and Development Program of China(No. 2018YFD0200400)
Corresponding author,E-mail:w-zhaohui@263.net
黃婷苗(1990—),女,山西運(yùn)城人,博士,講師,主要從事小麥鋅營養(yǎng)研究。E-mail:huangtingmiao@126.com
2020–03–15;
2020–06–13;
22020–08–26
(責(zé)任編輯:陳榮府)