李騰升,魏倩倩,黃明麗,耿存珍,劉可忠,顏冬云?
糖醇螯合肥在農(nóng)業(yè)上的應(yīng)用研究進(jìn)展*
李騰升,魏倩倩,黃明麗,耿存珍,劉可忠,顏冬云?
(青島大學(xué)環(huán)境科學(xué)與工程學(xué)院,山東青島 266071)
糖醇是許多植物的光合作用初產(chǎn)物,在植物體內(nèi)具有多種生物學(xué)效應(yīng),作為配體合成的糖醇螯合肥能促進(jìn)鈣、硼等營(yíng)養(yǎng)元素在植株韌皮部遷移,該特性使其在農(nóng)業(yè)生產(chǎn)中備受關(guān)注,但是糖醇螯合肥在我國(guó)的發(fā)展仍處于初始階段,其科學(xué)研究遠(yuǎn)滯后于實(shí)際應(yīng)用,根源在于當(dāng)前的研究側(cè)重糖醇螯合肥的作物效應(yīng),較少關(guān)注施用糖醇螯合肥對(duì)土壤環(huán)境及根際、葉際微生物造成的生態(tài)影響。同時(shí),既往的研究通常忽略糖醇配體在生物體內(nèi)的作用,且應(yīng)用的糖醇螯合肥多為混合物,難以明確是糖醇、糖醇螯合物或按一定比例合成的混合物對(duì)作物生長(zhǎng)起到關(guān)鍵作用。此外,由于糖醇螯合物的螯合機(jī)理不明,難以利用有效手段對(duì)其進(jìn)行定性與定量分析,也阻礙了糖醇螯合肥的肥效機(jī)理研究?;诖耍疚暮?jiǎn)要闡述了糖醇螯合技術(shù)及糖醇螯合肥的優(yōu)勢(shì),并概述了糖醇配體在植物體內(nèi)的生物學(xué)效應(yīng),通過當(dāng)前糖醇螯合肥的應(yīng)用現(xiàn)狀指出糖醇螯合肥應(yīng)用研究和開發(fā)中的不足,旨在為糖醇螯合肥的發(fā)展提供技術(shù)依據(jù)與發(fā)展方向。
糖醇螯合肥料;作物;生物學(xué)效應(yīng);螯合機(jī)理
新中國(guó)成立70年來,化學(xué)肥料對(duì)我國(guó)糧食安全及社會(huì)、經(jīng)濟(jì)的平穩(wěn)發(fā)展起到重要作用,但由于無機(jī)肥料中的礦質(zhì)元素易于被土壤固定、吸附及淋溶流失等,導(dǎo)致肥料利用率低下,且過量或不合理施用加速了土壤環(huán)境質(zhì)量退化,造成資源和能源的浪費(fèi),難以滿足當(dāng)前生態(tài)農(nóng)業(yè)建設(shè)[1]。我國(guó)2019年正式實(shí)施的《中華人民共和國(guó)土壤污染防治法》[2]進(jìn)一步強(qiáng)調(diào)了農(nóng)業(yè)可持續(xù)發(fā)展的必要性。與普通無機(jī)肥料相比,螯合肥料的“閉環(huán)”結(jié)構(gòu)特性能夠有效減少養(yǎng)分流失、提高肥料利用率、改善土壤環(huán)境等[3-5],因此,推廣應(yīng)用螯合肥料更加符合農(nóng)業(yè)綠色發(fā)展理念[6]。
糖醇是一種新型螯合配體,以其為原料合成的糖醇螯合肥可有效促進(jìn)礦質(zhì)元素在植物韌皮部的運(yùn)輸,補(bǔ)充植物營(yíng)養(yǎng),在農(nóng)業(yè)生產(chǎn)中的作用逐漸得到證實(shí),但關(guān)于糖醇螯合物在植物和土壤中的遷移轉(zhuǎn)化過程、作物吸收機(jī)理及生態(tài)效應(yīng)等方面尚缺乏系統(tǒng)的認(rèn)知,部分原因在于市場(chǎng)上常見的糖醇螯合肥多以混合物的形式存在(螯合態(tài)與非螯合態(tài)并存,或多種螯合產(chǎn)物并存),且不同的生產(chǎn)工藝對(duì)應(yīng)的作用效果差異顯著[7-8],因此,采用有效手段進(jìn)行糖醇螯合物的定性及定量判斷,進(jìn)而推進(jìn)大田作物的肥效分析是亟需解決的科學(xué)問題。本文通過簡(jiǎn)述糖醇螯合技術(shù)及糖醇螯合肥的優(yōu)勢(shì),概述糖醇在植物體內(nèi)的生物學(xué)效應(yīng)及糖醇螯合肥的農(nóng)業(yè)應(yīng)用效果,分析了當(dāng)前研究中的不足,以期為糖醇螯合肥在我國(guó)生態(tài)型農(nóng)業(yè)中的應(yīng)用和推廣、促進(jìn)糖醇螯合肥的開發(fā)與機(jī)理研究提供參考。
糖醇是具有兩個(gè)及以上羥基結(jié)構(gòu)的多元醇,能為配位原子提供多個(gè)孤對(duì)電子且空間結(jié)構(gòu)滿足螯合物形成的必要條件[9]。糖醇螯合肥則是以不同類型糖醇(甘露醇、山梨醇、赤蘚糖醇等)為螯合配體,作物所需一種或多種無機(jī)礦質(zhì)元素(鈣、鎂、鋅、鉀等)為中心離子,經(jīng)特定螯合反應(yīng)而生成的水溶性肥料,其生產(chǎn)多采用水體系合成法[10-11],基本生產(chǎn)流程大致如圖1所示,在某些糖醇螯合肥的生產(chǎn)中還需要加入助劑以促進(jìn)原料溶解、維持產(chǎn)物穩(wěn)定等[12-13]。目前僅有糖醇螯合硼的螯合反應(yīng)歷程較為明確,實(shí)質(zhì)是硼酸或硼酸根離子與糖醇中兩個(gè)鄰位順式羥基發(fā)生脫水反應(yīng)而形成環(huán)狀結(jié)構(gòu)[14],但其他糖醇螯合物的反應(yīng)歷程及結(jié)構(gòu)構(gòu)型等需要進(jìn)一步的實(shí)驗(yàn)分析。
螯合肥之間的差異主要是由配體不同而造成的,目前常用的螯合配體主要分為兩類,一類是以乙二胺四乙酸(EDTA)等為代表的人工合成螯合劑,另一類是各種天然螯合劑,如腐殖酸、氨基酸、糖醇等。某些傳統(tǒng)螯合配體的生物降解性差導(dǎo)致其在環(huán)境中不斷積累,且此類配體更易與重金屬結(jié)合而存在潛在的浸出風(fēng)險(xiǎn),進(jìn)而造成二次污染等,因此,這些配體在可持續(xù)農(nóng)業(yè)發(fā)展中的認(rèn)可度正在不斷下降[15]。氨基酸螯合物最早用于動(dòng)物營(yíng)養(yǎng)強(qiáng)化,將其應(yīng)用于植物后發(fā)現(xiàn)同樣可有效改善植物營(yíng)養(yǎng)狀況,但有研究人員[16]指出,其原料的來源及生產(chǎn)過程可能會(huì)產(chǎn)生持久性有機(jī)污染物及重金屬污染等,對(duì)食品質(zhì)量及土壤環(huán)境帶來新的安全隱患。根據(jù)前人研究結(jié)果,表1對(duì)EDTA、腐殖酸及氨基酸配體的主要負(fù)面效應(yīng)進(jìn)行了總結(jié)。
表1 三種常見螯合配體的主要負(fù)面效應(yīng)
與其他同類螯合肥相比,糖醇作為螯合配體的優(yōu)勢(shì)之一在于與礦質(zhì)養(yǎng)分螯合后可攜帶目標(biāo)元素在植物韌皮部?jī)?nèi)進(jìn)行運(yùn)輸,提高礦質(zhì)元素的遷移性,緩解植物缺素癥狀。糖醇還是許多植物的主要光合產(chǎn)物,盡管在不同物種間的分布和積累模式存在較大差異[17-18],但仍具有多種重要的生物學(xué)效應(yīng)(具體內(nèi)容參見第2節(jié)),能夠在不同程度上調(diào)節(jié)植物的生長(zhǎng)發(fā)育,提高植物應(yīng)對(duì)脅迫的能力,且外源施用糖醇類物質(zhì)還可為植物提供碳營(yíng)養(yǎng)。同時(shí),由于糖醇螯合態(tài)礦質(zhì)元素與某些作物體內(nèi)元素的存在形式相似,且糖醇本身分子量較小,多羥基結(jié)構(gòu)決定其具有一定的潤(rùn)濕功能,因此,糖醇螯合肥的葉面滲透能力較強(qiáng),能夠促進(jìn)作物對(duì)養(yǎng)分的吸收[19]。此外,糖醇的來源相對(duì)廣泛,既可通過植物提取,又可通過微生物或相應(yīng)的單糖還原制取[20-21],原材料簡(jiǎn)單、成分單一,易于規(guī)模化生產(chǎn),便于糖醇螯合肥在大田作物上的推廣應(yīng)用。
糖醇是植物內(nèi)源產(chǎn)生的營(yíng)養(yǎng)物質(zhì),不僅能夠作為光合產(chǎn)物參與細(xì)胞代謝,還可作為載體促進(jìn)營(yíng)養(yǎng)元素在植物體內(nèi)的遷移。糖醇能通過維持細(xì)胞滲透壓、清除活性氧、調(diào)節(jié)關(guān)鍵酶活性等方式提高植物的抗逆性,信號(hào)傳導(dǎo)功能還可改變細(xì)胞的代謝過程,間接調(diào)控植物生理代謝,從而影響植物的生長(zhǎng)發(fā)育。
人們普遍認(rèn)為大多數(shù)高等植物中運(yùn)輸?shù)闹饕獱I(yíng)養(yǎng)物質(zhì)是蔗糖[35],而Webb和Burley[36]對(duì)蘋果樹進(jìn)行碳同位素標(biāo)記后發(fā)現(xiàn),山梨醇是蘋果韌皮部運(yùn)輸?shù)闹饕獱I(yíng)養(yǎng)物質(zhì),并推測(cè)在其他薔薇科植物中也是如此。隨后的研究發(fā)現(xiàn),由源端(成熟葉片)向庫端(根、幼葉、花和果實(shí)等)的運(yùn)輸途徑中存在山梨醇濃度的遞減趨勢(shì),間接證明山梨醇的運(yùn)輸物質(zhì)作用[37]。此外,山梨醇可通過主動(dòng)運(yùn)輸快速進(jìn)入植株韌皮部且難以被代謝消耗,表明其性質(zhì)比較穩(wěn)定,適宜長(zhǎng)距離運(yùn)輸,這也是山梨醇作為運(yùn)輸物質(zhì)的證據(jù)之一[38]。
糖醇可攜帶礦質(zhì)養(yǎng)分以螯合(絡(luò)合)物的形式在植物體內(nèi)快速遷移。鈣、硼等營(yíng)養(yǎng)元素從源向庫的轉(zhuǎn)運(yùn)需借助韌皮部運(yùn)輸,但韌皮部的堿性條件使得這些元素易于被固定,養(yǎng)分轉(zhuǎn)運(yùn)效率低下,易造成果實(shí)等庫端局部缺素的狀況[39-40]。然而在許多富含山梨醇的樹種中,硼素在老、幼葉間的濃度差異不大,且果實(shí)中的硼含量顯著高于葉片,研究認(rèn)為糖醇是促進(jìn)硼素遷移的主要因素[41]。此后在桃花、芹菜等薔薇科植物的外蜜腺或韌皮部汁液中均鑒定出硼-糖醇復(fù)合物的存在[42-43],直接證明硼素可與山梨醇形成穩(wěn)定的復(fù)合物,從而增強(qiáng)其在植物體內(nèi)的遷移性。為進(jìn)一步驗(yàn)證糖醇在促進(jìn)養(yǎng)分遷移中的關(guān)鍵作用,Brown等[44]將(山梨醇-6-磷酸脫氫酶,系山梨醇合成的關(guān)鍵酶)基因?qū)霟o法自身合成山梨醇的茄科植物后,該基因的成功表達(dá)使得硼素即使在供應(yīng)不足的情況下也具有較高的移動(dòng)性,植物亦未出現(xiàn)缺素癥狀。
糖醇在庫端可通過轉(zhuǎn)運(yùn)蛋白進(jìn)入細(xì)胞質(zhì)內(nèi)參與物質(zhì)代謝或作為貯藏物質(zhì)儲(chǔ)存能量。例如,山梨醇在果實(shí)被卸載后主要參與以下三個(gè)過程[45]:(1)被相關(guān)酶分解為果糖和葡萄糖,進(jìn)而參與淀粉、蔗糖和有機(jī)酸等有機(jī)物的合成;(2)降解后的產(chǎn)物可作為呼吸底物以維持細(xì)胞的物質(zhì)和能量需求;(3)進(jìn)入液泡等貯藏部位作為貯藏物質(zhì)儲(chǔ)存能量。除薔薇科植物外,某些物種在某些特定時(shí)期或部位也存在山梨醇代謝過程。同樣,甘露醇在許多藻類或陸生植物中也可作為貯藏物質(zhì)參與生命活動(dòng),如海帶[46]、羊草和大針茅[47]等。
在各種非生物脅迫條件下,植物會(huì)積累大量小分子有機(jī)物進(jìn)行滲透調(diào)節(jié)以維持正常的生命活動(dòng)。許多研究[48-49]證實(shí),山梨醇、甘露醇等與多種脅迫反應(yīng)緊密相關(guān),可作為滲透調(diào)節(jié)物質(zhì)增強(qiáng)作物的抗逆性,在提高作物抗旱性、耐鹽性和抵御低溫等方面發(fā)揮重要作用。轉(zhuǎn)基因技術(shù)的應(yīng)用證實(shí)了糖醇在植物響應(yīng)脅迫過程中的重要作用。相同脅迫條件下,將合成糖醇的關(guān)鍵酶基因?qū)胱陨頍o法合成糖醇的作物后,該基因的表達(dá)使得轉(zhuǎn)基因植物對(duì)脅迫的耐受性明顯優(yōu)于非轉(zhuǎn)基因植物[49-51]。此外,糖醇對(duì)活性氧的清除功能是植物積累糖醇的另一個(gè)重要原因,其可以有效減少由活性氧生成引起的膜脂過氧化反應(yīng),從而緩解植物受損癥狀[52]。
除了可作為光合同化產(chǎn)物、滲透調(diào)節(jié)物質(zhì)等直接參與生理代謝外,糖醇還可能通過信號(hào)傳導(dǎo)作用控制基因表達(dá),間接調(diào)控植物生命活動(dòng)。Berüter和Feusi[53]對(duì)蘋果果實(shí)進(jìn)行完全去葉或環(huán)割處理后,發(fā)現(xiàn)果實(shí)體內(nèi)的山梨醇含量和山梨醇脫氫酶(SDH)活性降低,同時(shí)基因的表達(dá)量減少,而葡萄糖含量則得到提高,表明葡萄糖和山梨醇可能會(huì)作為一種信號(hào)分子調(diào)控的轉(zhuǎn)錄,進(jìn)而影響SDH的活性。最新研究[54]發(fā)現(xiàn),抑制(醛糖-6-磷酸還原酶)基因表達(dá)的蘋果樹的花中,山梨醇合成的減少通過影響MYB轉(zhuǎn)錄因子的表達(dá)進(jìn)而導(dǎo)致蘋果花出現(xiàn)雄蕊發(fā)育異常和花粉管生長(zhǎng)減慢等現(xiàn)象,而外源施用山梨醇則可緩解該不利狀況。此外,糖醇還在植物防御反應(yīng)的調(diào)節(jié)中起到重要信號(hào)作用,如山梨醇可通過WRKY轉(zhuǎn)錄因子調(diào)節(jié)抗性基因的表達(dá)來調(diào)控蘋果對(duì)互隔交鏈孢菌的抗性[55]。
糖醇螯合肥對(duì)作物具有雙重效應(yīng),不僅能夠螯合礦質(zhì)元素,促進(jìn)作物對(duì)養(yǎng)分的吸收,提高肥料利用率,而且糖醇本身就是一種生物有機(jī)肥料,可廣泛參與植物的生理代謝,單獨(dú)施用糖醇同樣能夠改善作物的營(yíng)養(yǎng)狀況[19],因此,糖醇螯合肥的施用效果普遍優(yōu)于無機(jī)化學(xué)肥料。相關(guān)研究[16]結(jié)果表明,糖醇螯合肥能有效促進(jìn)作物生長(zhǎng)發(fā)育,改善果實(shí)品質(zhì),提高作物的抗病、抗逆性能。
營(yíng)養(yǎng)元素的缺乏會(huì)導(dǎo)致作物產(chǎn)生嚴(yán)重的生理障礙[56],施用糖醇螯合肥則可有效緩解缺素癥狀,促進(jìn)作物生長(zhǎng)發(fā)育。分別在桃[57]、草莓[58]和櫻桃番茄[59]上噴施糖醇螯合肥能夠提高作物功能性礦質(zhì)元素含量,引起葉綠素含量及相關(guān)酶活性發(fā)生變化,進(jìn)而促使產(chǎn)量、果實(shí)品質(zhì)等得到不同程度的提高和改善。李美玲等[60]通過田間小區(qū)試驗(yàn)發(fā)現(xiàn),在潛在缺鋅的石灰性土壤上向簇生朝天椒噴施糖醇鋅后,辣椒產(chǎn)量、鋅含量、維生素c、辣椒素和干物質(zhì)含量均得到顯著提高,效果優(yōu)于噴施硫酸鋅和乙二胺四乙酸鋅(Zn-EDTA)。Alvarez等[61]的水稻試驗(yàn)同樣證明糖醇鋅較Zn-EDTA而言是一種更為有效的新型螯合肥料。以柑橘枳橙砧木為試驗(yàn)對(duì)象,采用水培方式,研究山梨醇螯合硼和無機(jī)硼酸對(duì)其生長(zhǎng)及生理的影響,結(jié)果顯示:與無機(jī)硼酸相比,山梨醇螯合態(tài)硼更易向葉片等地上部位轉(zhuǎn)運(yùn),葉片中硼含量與積累量得到顯著提高,促進(jìn)了幼苗生長(zhǎng)[62]。同樣,本課題組[63-64]在對(duì)馬鈴薯、花生等大田作物噴施山梨醇螯合鈣的研究中也發(fā)現(xiàn),除產(chǎn)量、品質(zhì)等得到改善外,與無機(jī)鈣處理相比,螯合態(tài)鈣更易于從葉片經(jīng)莖部向地下部分運(yùn)輸,并促進(jìn)土壤中養(yǎng)分的輸出,提高了營(yíng)養(yǎng)元素的利用和轉(zhuǎn)運(yùn)效率。
不同物種、植物發(fā)育階段、施肥手段和環(huán)境條件等均為影響肥料肥效的重要因素。糖醇螯合肥作為水溶性肥料,適用于葉面噴施、無土培養(yǎng)及根部滴灌等,但不同施肥方式會(huì)導(dǎo)致肥效存在差異。與施用硝酸鈣相比,噴施和根施以氨基酸和糖醇為主劑的螯合鈣肥后,小白菜生物量分別提高18.95%和49.95%,植株鈣積累量分別提高6.84%和45.31%,品質(zhì)改善狀況也存在較大差異[65],這與本課題組[8]在油菜上的試驗(yàn)結(jié)果相似。林怡[66]研究了施用濃度對(duì)藍(lán)莓果實(shí)產(chǎn)量及品質(zhì)的影響,當(dāng)噴施Ca2+濃度為140 mg·L–1與175 mg·L–1的糖醇螯合鈣時(shí),藍(lán)莓株產(chǎn)、單果質(zhì)量和品質(zhì)等指標(biāo)得到有效提高;而噴施濃度為70 mg·L–1時(shí),藍(lán)莓果實(shí)僅有少數(shù)品質(zhì)指標(biāo)優(yōu)于對(duì)照。管雪強(qiáng)等[67]的研究結(jié)果同樣表明,糖醇螯合鈣在紅地球葡萄上的應(yīng)用效果因施肥濃度、方式、時(shí)期及植株部位等的不同而存在顯著差別。
果實(shí)的耐貯藏性決定其保持品質(zhì)的能力和貨架期的長(zhǎng)短,而病蟲害的侵染對(duì)果實(shí)貯藏和運(yùn)輸過程十分不利,不但影響外觀品質(zhì),還可能造成腐爛損失。糖醇螯合肥在提高果實(shí)耐貯藏性和抗病害能力方面具有一定的積極作用。向藍(lán)莓果樹噴施糖醇鈣后,不僅改善了藍(lán)莓果實(shí)的品質(zhì),且其耐貯藏性大大提高,果實(shí)霉變率也得到顯著降低;而噴施硝酸鈣的處理不但對(duì)藍(lán)莓產(chǎn)量、果實(shí)品質(zhì)及貯藏性無積極影響,反而過量噴施還導(dǎo)致單果質(zhì)量及果實(shí)縱徑的降低[66],原因可能與品種、土壤鈣素含量等多因素有關(guān)[68]。裴健翔等[69]以不同鈣源對(duì)‘寒富’蘋果進(jìn)行采后浸鈣處理后發(fā)現(xiàn),糖醇鈣處理提高了果實(shí)硬度,能顯著降低蘋果中果膠甲酯酶(PME)、多聚半乳糖醛酸酶(PG)和纖維素酶(CX)的活性,抑制原果膠和纖維素的降解及可溶性果膠的上升,從而更有效地維持果實(shí)硬度,延長(zhǎng)貯藏期。研究[70]發(fā)現(xiàn),與CaCl2處理相比,噴施糖醇鈣可促使果實(shí)中山梨醇轉(zhuǎn)運(yùn)蛋白和山梨醇脫氫酶基因的表達(dá)上調(diào),加速山梨醇在果實(shí)內(nèi)的轉(zhuǎn)運(yùn)和代謝,減少果實(shí)細(xì)胞間隙內(nèi)山梨醇堆積,降低‘岳冠’蘋果果實(shí)水心病的發(fā)生率和癥狀指數(shù)。
環(huán)境脅迫下,糖醇的滲透調(diào)節(jié)功能可有效緩解作物的應(yīng)激反應(yīng),螯合礦質(zhì)養(yǎng)分后對(duì)提高作物抗逆性的作用效果更加突出。高溫逆境下,噴施甘露糖醇鈣處理能夠減緩番茄幼苗葉片中葉綠素和類胡蘿卜素含量的下降幅度,顯著提高凈光合速率、蒸騰速率和氣孔導(dǎo)度等,對(duì)光合作用的促進(jìn)效果優(yōu)于噴施CaCl2處理[71]。后續(xù)的試驗(yàn)進(jìn)一步驗(yàn)證糖醇鈣可通過降低葉片中丙二醛含量,提高抗氧化酶活性及功能性鈣含量,抑制膜脂過氧化程度來緩解高溫脅迫產(chǎn)生的不利反應(yīng)[72]。缺硼會(huì)導(dǎo)致葉片中糖類物質(zhì)較易積累,使得葉片變厚變脆,而山梨醇螯合硼處理與對(duì)照處理相比可顯著降低丙二醛、脯氨酸含量和葉片損傷率,與無機(jī)硼酸處理相比,能更有效地促進(jìn)枳橙葉片中多糖物質(zhì)的轉(zhuǎn)運(yùn),提高作物抗逆能力[62]。同樣,在緩解小麥幼苗鹽害脅迫反應(yīng)方面,糖醇螯合硼也具有類似的效果[73]。
土壤(重)金屬元素過量或污染不僅會(huì)對(duì)作物造成生理損傷,還會(huì)通過食物鏈危害人體健康[74],而糖醇螯合肥可從不同方面影響作物代謝活動(dòng),降低金屬毒害作用。閆磊等[75]利用山梨醇螯合硼處理油菜后,油菜的生物量、色素含量和超氧化物歧化酶活性得到顯著提高,而根部鋁含量、低聚糖、核酸和蛋白質(zhì)含量得到降低,在一定程度上緩解了鋁害反應(yīng)。唐琦[76]利用受鎘污染的土壤進(jìn)行盆栽試驗(yàn)證明,在水稻開花期兩次葉面噴施糖醇鈣可有效緩解鎘中毒現(xiàn)象,提高穗軸和籽粒中鈣含量,抑制鎘在穗軸中積累,從而抑制鎘向籽粒的轉(zhuǎn)運(yùn)。
我國(guó)糖醇螯合肥的應(yīng)用研究起步較晚,研究方向主要集中于糖醇螯合肥的作物效應(yīng),且已證明其施用效果良好,但由于作物生長(zhǎng)環(huán)境的復(fù)雜性與多變性導(dǎo)致糖醇螯合肥肥效存在較大差異,因此,系統(tǒng)探究作物對(duì)糖醇螯合物的響應(yīng)過程十分必要。此外,施用糖醇螯合肥產(chǎn)生的土壤效應(yīng)、生態(tài)效應(yīng)及糖醇螯合物的結(jié)構(gòu)性質(zhì)等方面的研究尚存在諸多問題亟需解決。為更好地促進(jìn)糖醇螯合肥在我國(guó)農(nóng)業(yè)中的應(yīng)用,將當(dāng)前研究存在的問題概括為以下四個(gè)方面。
糖醇螯合肥的受試作物種類較窄。目前糖醇螯合肥的研究對(duì)象多為播種面積較小的瓜果蔬菜等高附加值經(jīng)濟(jì)作物,而糧食作物在我國(guó)農(nóng)作物總播種面積中約占70%[77],卻較少開展糖醇螯合肥對(duì)糧食作物的肥效研究。盡管已有糖醇錳在大豆、玉米上的試驗(yàn)探究,但作物生育階段僅為幼苗期,結(jié)果不具有代表性[78],因此,推進(jìn)糖醇螯合肥在大田條件下的糧食作物試驗(yàn),對(duì)提高我國(guó)糧食產(chǎn)量及品質(zhì)具有重要意義。
糖醇螯合肥的肥效影響因素探究不深入。糖醇螯合肥的肥效易受多種因素限制,當(dāng)前研究重點(diǎn)關(guān)注施用濃度、施肥方式等對(duì)肥效產(chǎn)生的影響,而現(xiàn)實(shí)脅迫環(huán)境下及不同典型土壤類型中的限制因子通常是復(fù)雜、交互的,因此,在不同作物生育階段及各種環(huán)境因子共同作用下,螯合肥料可能具有不同的作用效果。此外,糖醇螯合肥的結(jié)構(gòu)特性也是導(dǎo)致肥效存在差異的重要因素[79],如糖醇螯合肥的養(yǎng)分組成會(huì)影響營(yíng)養(yǎng)元素間的交互作用,螯合強(qiáng)度會(huì)影響?zhàn)B分釋放的難易程度,螯合率則會(huì)影響作物對(duì)養(yǎng)分的吸收效率等,后續(xù)應(yīng)加強(qiáng)對(duì)此方面的研究,以探明肥料自身性質(zhì)與肥效之間的相關(guān)關(guān)系,促進(jìn)螯合肥品質(zhì)的提升。
糖醇螯合肥的作物吸收過程不清。不同于游離態(tài)礦質(zhì)元素,糖醇螯合肥中元素以螯合態(tài)形式存在,作物對(duì)其吸收過程可能會(huì)因此不同。同時(shí),雖諸多研究表明糖醇螯合肥可促進(jìn)作物對(duì)養(yǎng)分的吸收,但由于目前研究中施用的糖醇螯合肥多為混合物,且未經(jīng)螯合的糖醇和無機(jī)鹽混合物同樣能夠提高作物體內(nèi)養(yǎng)分含量[19,80],因此,難以明確是糖醇或絡(luò)合不完全的混合物還是完全絡(luò)合的螯合物對(duì)植株生長(zhǎng)起到關(guān)鍵促進(jìn)作用[75],而利用完全螯合的糖醇螯合肥展開試驗(yàn)則是解決上述問題的基礎(chǔ)和關(guān)鍵。
糖醇螯合肥的遷移轉(zhuǎn)化途徑不明。糖醇及鈣、鎂等元素在植物體內(nèi)的遷移轉(zhuǎn)化機(jī)制已有深入研究,但糖醇螯合物被植株吸收后的遷移轉(zhuǎn)化途徑尚無定論。李玉鵬等[64]通過對(duì)馬鈴薯各部位鈣元素含量進(jìn)行分析,間接證明噴施糖醇螯合鈣可促使鈣素從馬鈴薯地上部分向地下部分遷移,但此過程中鈣素形態(tài)變化、遷移機(jī)制等問題并未解決。此外,由于糖醇螯合態(tài)礦質(zhì)元素與某些以糖醇為光合產(chǎn)物的植物體內(nèi)元素存在形式類似,因此,糖醇螯合物被這類植物吸收后是否可直接被代謝消耗,以及在其他以蔗糖為同化產(chǎn)物的植物中的代謝過程是否與之相同等問題仍需深入探討。
糖醇螯合肥對(duì)土壤環(huán)境影響不明。當(dāng)前研究側(cè)重于糖醇螯合肥帶來的作物效應(yīng),卻較少關(guān)注其對(duì)土壤生態(tài)系統(tǒng)產(chǎn)生的影響。施用糖醇螯合肥后,土壤中養(yǎng)分盈虧、根際微生物群落結(jié)構(gòu)及土壤酶活性等的變化狀況均為未來研究的重點(diǎn)內(nèi)容。加強(qiáng)對(duì)糖醇螯合肥的土壤效應(yīng)研究能夠明確糖醇螯合物對(duì)土壤環(huán)境的生態(tài)影響及其在土壤-植物系統(tǒng)中的遷移特征,便于深入推進(jìn)糖醇螯合肥的肥效機(jī)理分析。此外,糖醇螯合物對(duì)土壤中主要礦質(zhì)營(yíng)養(yǎng)元素及重金屬是否具有活化作用,其吸附與解吸附的作用機(jī)制等尚需研究探討。
糖醇螯合肥對(duì)微生物生態(tài)影響不明。植物根際和葉際附著大量的微生物,其與植物之間存在復(fù)雜的交互作用,影響植物的生長(zhǎng)發(fā)育。糖醇作為一種優(yōu)質(zhì)碳源可能會(huì)被某些根際、葉際微生物吸收利用,導(dǎo)致群落結(jié)構(gòu)發(fā)生變化,進(jìn)而影響植物代謝過程[81-82],但目前并未發(fā)現(xiàn)有關(guān)糖醇螯合肥對(duì)此類微生物的影響研究,因此,施用糖醇螯合肥是否對(duì)其生命活動(dòng)、群落結(jié)構(gòu)及作物-微生物交互作用等造成影響尚待探究。
此外,植物在生態(tài)系統(tǒng)中的作用是將無機(jī)碳轉(zhuǎn)換為有機(jī)碳參與物質(zhì)循環(huán),而糖醇同樣能夠?yàn)橹参锾峁┯袡C(jī)碳營(yíng)養(yǎng),外源施加糖類物質(zhì)是否導(dǎo)致植物功能喪失亦值得深思[83]。
糖醇螯合肥的螯合機(jī)理未知。研究中使用的糖醇螯合肥大多采自市場(chǎng)或?qū)嶒?yàn)室自行合成,螯合工藝未知,盡管已有部分產(chǎn)品的合成工藝通過專利的形式呈現(xiàn),但未涉及糖醇螯合的螯合機(jī)理及產(chǎn)物的螯合強(qiáng)度等。Kutus等[84]以及Teichert和Ruck[85]曾對(duì)某些糖醇螯合物的反應(yīng)條件進(jìn)行了詳細(xì)的探究,但由于糖醇和無機(jī)鹽的種類繁多,不同反應(yīng)條件生成的螯合產(chǎn)物在螯合強(qiáng)度、結(jié)構(gòu)構(gòu)型等方面存在一定差異,導(dǎo)致糖醇螯合物螯合機(jī)理研究進(jìn)展緩慢,螯合反應(yīng)歷程不明確,其產(chǎn)物構(gòu)型也需要采用有效手段進(jìn)一步表征分析[86]。
糖醇螯合肥的檢測(cè)手段欠缺。螯合物的分離提純是其定性和定量分析的基礎(chǔ),但目前常見的分離提純技術(shù)多應(yīng)用于氨基酸螯合物,少見適用于糖醇螯合物的檢測(cè)方法[87]。本課題組[88-89]對(duì)簡(jiǎn)單螯合體系開發(fā)的糖醇螯合物提出了有效的分離提純及螯合率檢測(cè)方法,但此方法的建立基于糖醇與硝酸鹽合成的螯合產(chǎn)物,是否具有普適性需要進(jìn)一步的探究。市售產(chǎn)品魚目混珠,甚至某些“糖醇螯合肥”僅對(duì)糖醇與無機(jī)鹽進(jìn)行了簡(jiǎn)單混合,成分組成復(fù)雜、原料與反應(yīng)產(chǎn)物并存等問題嚴(yán)重影響糖醇螯合肥的肥效試驗(yàn)與機(jī)理分析,因此,探究適用性更廣的分離提純和螯合率測(cè)定方法是未來研究需要攻克的重點(diǎn)與難點(diǎn)。
肥料的綠色發(fā)展是實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展的必由之路,糖醇螯合肥利用率高、生態(tài)環(huán)境友好等特點(diǎn)符合當(dāng)前農(nóng)業(yè)生態(tài)文明建設(shè)需求,但其在研發(fā)和應(yīng)用方面仍存在諸多問題亟需解決。后續(xù)研究應(yīng)重點(diǎn)關(guān)注種植面積較廣的糧食作物,深入探究影響糖醇螯合肥肥效的內(nèi)外因素,借助同位素標(biāo)記、基因工程等技術(shù)手段明確糖醇螯合物在作物體內(nèi)的遷移轉(zhuǎn)化過程及對(duì)土壤環(huán)境、根際與葉際微生物的生態(tài)效應(yīng),以便科學(xué)地指導(dǎo)農(nóng)業(yè)生產(chǎn)活動(dòng),進(jìn)一步提高肥料利用率。同時(shí),也應(yīng)當(dāng)加強(qiáng)糖醇螯合肥螯合機(jī)理研究,尋求具有普適性的分離提純方法,結(jié)合掃描電鏡、紅外光譜等表征手段對(duì)螯合產(chǎn)物進(jìn)行構(gòu)型分析,并通過相應(yīng)的肥效研究強(qiáng)化糖醇螯合肥自身特性與作物響應(yīng)間的聯(lián)系,推進(jìn)糖醇螯合肥的研發(fā)與應(yīng)用。
[1] Xu Y,Yang F,Zhang W F,et al. Status and problems of chemical fertilizer application in crop plantations of China from 2014 to 2016[J]. Journal of Plant Nutrition and Fertilizers,2019,25(1):11—21. [徐洋,楊帆,張衛(wèi)峰,等. 2014—2016年我國(guó)種植業(yè)化肥施用狀況及問題[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2019,25(1):11—21.]
[2] The Fifth Session of the Standing Committee of the 13th National People’s Congress. Law of the People’s Republic of China on the prevention and control of soil pollution[Z].(2018–08–31). [第十三屆全國(guó)人民代表大會(huì)常務(wù)委員會(huì)第五次會(huì)議. 中華人民共和國(guó)土壤污染防治法[Z].(2018–08–31).]
[3] Niu J H,Liu C,Huang M L,et al. Effects of foliar fertilization:A review of current status and future perspectives[J]. Journal of Soil Science and Plant Nutrition,2021,21(1):104—118.
[4] Zhao A Q,Yang S,Wang B N,et al. Effects of ZnSO4and Zn-EDTA applied by broadcasting or by banding on soil Zn fractions and Zn uptake by wheat(L.)under greenhouse conditions[J]. Journal of Plant Nutrition and Soil Science,2019,182(2):307—317.
[5] Souri M K,Hatamian M. Aminochelates in plant nutrition:A review[J]. Journal of Plant Nutrition,2019,42(1):67—78.
[6] Zhang J L,Zhang J Z,Shen J B,et al. Soil health and agriculture green development:Opportunities and challenges[J]. Acta Pedologica Sinica,2020,57(4):783—796. [張俊伶,張江周,申建波,等. 土壤健康與農(nóng)業(yè)綠色發(fā)展:機(jī)遇與對(duì)策[J]. 土壤學(xué)報(bào),2020,57(4):783—796.]
[7] Li P C. Development and efficiency analysis of sorbitol chelated potassium fertilizer[D]. Qingdao,Shandong:Qingdao University,2020. [李鵬超. 山梨醇螯合鉀的研制及其肥效分析[D]. 山東青島:青島大學(xué),2020.]
[8] Sun W X. Effects of sorbitol-chelated calcium onL. growth and soil properties under salt stress[D]. Qingdao,Shandong:Qingdao University,2020. [孫文軒. 外源鈣對(duì)鹽脅迫下油菜生長(zhǎng)及土壤性質(zhì)的影響[D]. 山東青島:青島大學(xué),2020.]
[9] Ma Q. Study on the preparation method of trace metallic chelate fertilizer[D]. Zhengzhou:Zhengzhou University,2018. [馬強(qiáng). 微量金屬元素螯合肥制備方法研究[D]. 鄭州:鄭州大學(xué),2018.]
[10] Li P C,Geng C Z,Li L Y,et al. Calcium-sorbitol chelating technology and application in potatoes[J]. American Journal of Biochemistry and Biotechnology,2020,16(1):96—102.
[11] He J L,Zhang F K,Lu Y P,et al. Reaction conditions of sugar alcohol chelated calcium fertilizer and their influence on chelating rate[J]. Environmental Engineering,2019,37(6):160—164. [何江龍,張鳳魁,陸彥平,等. 糖醇螯合鈣肥的反應(yīng)條件及其對(duì)螯合率的影響[J]. 環(huán)境工程,2019,37(6):160—164.]
[12] Yin H. A preparation method of compound sugar alcohol foliar fertilizer:CN105330442A[P]. [2016–02–17]. [尹恒. 一種復(fù)合糖醇葉面肥的制備方法:CN105330442A[P]. [2016–02–17].]
[13] Chen C,Liang C,Wei P,et al. A high-content glycol-calcium-boron liquid fertilizer and its preparation method:CN108658675A[P]. [2018–10–16]. [陳成,梁承,韋萍,等. 一種高含量糖醇鈣硼清液肥及其制備方法:CN108658675A[P]. [2018–10–16].]
[14] Tang Y P,Luo L,Thong Z W,et al. Recent advances in membrane materials and technologies for boron removal[J]. Journal of Membrane Science,2017,541:434—446.
[15] Wu Y Q,Bai L Y,Huang M L,et al. Review on application of EDTA and its structural isomers in the environment[J]. Environmental Engineering,2019,37(8):159—163. [吳雅倩,白利勇,黃明麗,等. EDTA及其結(jié)構(gòu)異構(gòu)體在環(huán)境中的應(yīng)用綜述[J]. 環(huán)境工程,2019,37(8):159—163.]
[16] He J,Nie Z G,Li L Y,et al. The application effects of chelate fertilizers in agriculture[J]. Chinese Journal of Soil Science,2017,48(2):507—512. [何鍵,聶兆廣,李玲玉,等. 螯合肥料在農(nóng)業(yè)上的應(yīng)用效果研究[J]. 土壤通報(bào),2017,48(2):507—512.]
[17] Dai Y W,Meng Q,Mu W M,et al. Recent advances in the applications and biotechnological production of mannitol[J]. Journal of Functional Foods,2017,36:404—409.
[18] Suzuki Y. Polyol metabolism and stress tolerance in horticultural plants[M]. Berlin:Springer,2015:59—73.
[19] Ding S S,Li Y T,Yuan L,et al. Effects of sugar alcohols and amino acids on growth,quality and calcium nutrition of Chinese cabbage[J]. Journal of Plant Nutrition and Fertilizer,2016,22(3):744—751. [丁雙雙,李燕婷,袁亮,等. 糖醇和氨基酸對(duì)小白菜鈣營(yíng)養(yǎng)及生長(zhǎng)、品質(zhì)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2016,22(3):744—751.]
[20] Park Y C,Oh E J,Jo J H,et al. Recent advances in biological production of sugar alcohols[J]. Current Opinion in Biotechnology,2016,37:105—113.
[21] Zada B,Chen M Y,Chen C B,et al. Recent advances in catalytic production of sugar alcohols and their applications[J]. Science China Chemistry,2017,60(7):853—869.
[22] Chen L,Wang D,Zeng C,et al. Improving cobalt phytoextraction byL. grown in co-contaminated soils using biodegradable chelators[J]. Soil & Sediment Contamination,2019,28(5):461—472.
[23] Mets?rinne S,Rantanen P,Aksela R,et al. Biological and photochemical degradation rates of diethylenetriaminepentaacetic acid(DTPA)in the presence and absence of Fe(III)[J]. Chemosphere,2004,55(3):379—388.
[24] Yuan Z W,Vanbriesen J M. The formation of intermediates in EDTA and NTA biodegradation[J]. Environmental Engineering Science,2006,23(3):533—544.
[25] Wasay S A,Barrington S F,Tokunaga S. Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents[J]. Environmental Technology,1998,19(4):369—379.
[26] Collins R N,Onisko B C,Mclaughlin M J,et al. Determination of metal-EDTA complexes in soil solution and plant xylem by ion chromatography-electrospray mass spectrometry[J]. Environmental Science & Technology,2001,35(12):2589—2593.
[27] Wu L H,Luo Y M,Xing X R,et al. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk[J]. Agriculture,Ecosystems & Environment,2004,102(3):307—318.
[28] Vadas T M,Zhang X N,Curran A M,et al. Fate of DTPA,EDTA,and EDDS in hydroponic media and effects on plant mineral nutrition[J]. Journal of Plant Nutrition,2007,30(8):1229—1246.
[29] Kaur C,Bhandari B,Srivastava A,et al. Rhizobacteria versus chelating agents:Tool for phytoremediation[M]. Berlin:Springer,2020:249—266.
[30] Kumar D,Singh A P. Efficacy of potassium humate and chemical fertilizers on yield and nutrient availability patterns in soil at different growth stages of rice[J]. Communications in Soil Science and Plant Analysis,2017,48(3):245—261.
[31] Shao J H,Lu T J. Review of production of amino acid - based micro - element fertilizer & its application[J]. Phosphate & Compound Fertilizer,2000,15(4):48—51. [邵建華,陸騰甲. 氨基酸微肥的生產(chǎn)和應(yīng)用進(jìn)展[J]. 磷肥與復(fù)肥,2000,15(4):48—51.]
[32] Feng H J,Hu L F,Shan D,et al. Assessment on the risk of aquatic humics and prospect on its removal technology[J]. Bulletin of Science and Technology,2008,24(4):553—558. [馮華軍,胡立芳,單丹,等. 水體腐殖質(zhì)危害及去除的研究進(jìn)展[J]. 科技通報(bào),2008,24(4):553—558.]
[33] Senkyr J,Rocakova A,F(xiàn)etsch D. The acidobasic and complexation properties of humic acids[J]. Toxicological and Environmental Chemistry,1999,68(3/4):377—391.
[34] Liu Y L,Yan L,Zeng Y,et al. Effects of exogenous calcium L-aspartate nanoparticles on cotton growth and its potential mechanisms[J]. Journal of Agro?Environment Science,2020,39(1):62—69. [劉亞林,閆磊,曾鈺,等. 外源L-天冬氨酸納米鈣抑制棉花生長(zhǎng)的效應(yīng)及潛在機(jī)制[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2020,39(1):62—69.]
[35] Li Y G,Zhang Y M. Response of non-structural carbohydrate content ofto dehydration process[J]. Acta Ecologica Sinica,2018,38(23):8408—8416. [李永剛,張?jiān)? 荒漠齒肋赤蘚()非結(jié)構(gòu)性碳水化合物含量對(duì)植株脫水的響應(yīng)[J]. 生態(tài)學(xué)報(bào),2018,38(23):8408—8416.]
[36] Webb K L,Burley J W. Sorbitol translocation in apple[J]. Science,1962,137(3532):766.
[37] Chong C. Study of the seasonal and daily distribution of sorbitol and related carbohydrates within apple seedlings by analysis of selected tissues and organs[J]. Canadian Journal of Plant Science,1971,51(6):519—525.
[38] Loescher W H. Physiology and metabolism of sugar alcohols in higher plants[J]. Physiologia Plantarum,1987,70(3):553—557.
[39] Hocking B,Tyerman S D,Burton R A,et al. Fruit calcium:Transport and physiology[J]. Frontiers in Plant Science,2016,7:569.
[40] Brdar-Jokanovi? M. Boron toxicity and deficiency in agricultural plants[J]. International Journal of Molecular Sciences,2020,21(4):1424.
[41] Brown P H,Hu H N. Phloem mobility of boron is species dependent:Evidence for phloem mobility in sorbitol-rich species[J]. Annals of Botany,1996,77(5):497—506.
[42] Brown P H,Shelp B J. Boron mobility in plants. Plant and Soil,1997,193(1):85—101.
[43] Hu H N,Penn S G,Lebrilla C B,et al. Isolation and characterization of soluble boron complexes in higher plants:The mechanism of phloem mobility of boron[J]. Plant Physiology,1997,113(2):649—655.
[44] Brown P H,Bellaloui N,Hu H N,et al. Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency[J]. Plant Physiology,1999,119(1):17—20.
[45] Wang X L. Gene cloning and tissue and subcellular localization of apple sorbitol dehydrogenase[D]. Beijing:China Agricultural University,2006. [王秀玲. 蘋果山梨醇脫氫酶的基因克隆及其組織和亞細(xì)胞定位[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2006.]
[46] Chi S,Liu T,Liu C,et al. Characterization of mannitol metabolism genes inexplains its key role in mannitol biosynthesis and evolutionary significance in Laminariales[J]. bioRxiv,2018,https://doi.org/10.1101/ 243402.
[47] Zhang G H,Li Z J,Pan Q M,et al. Changes of carbohydrate contents in below ground organs ofandin the Inner Mongolian steppes[J]. Acta Prataculturae Sinica,2006,15(3):42—49. [張光輝,李增嘉,潘慶民,等. 內(nèi)蒙古典型草原羊草和大針茅地下器官中碳水化合物含量的季節(jié)性變化[J]. 草業(yè)學(xué)報(bào),2006,15(3):42—49.]
[48] Yang G,Li L Y,Huang M L,et al. Progresses in study on sorbitol effect on plants resistance[J]. Soils,2018,50(3):446—454. [楊光,李玲玉,黃明麗,等. 山梨醇對(duì)植株抗逆性作用的研究進(jìn)展[J]. 土壤,2018,50(3):446—454.]
[49] Gangola M P,Ramadoss B R. Sugars play a critical role in abiotic stress tolerance in plants[M]//Wani S H. Biochemical,physiological,and molecular avenues for combating abiotic stress in plants. Amsterdam:Elsevier,2018.
[50] Hasanuzzaman M,Roychowdhury R,Karmakar J,et al. Recent advances in biotechnology and genomic approaches for abiotic stress tolerance in crop plants[M]//Thangadurai D,Sangeetha J. Genomics and proteomics. New York:Apple Academic Press,2015.
[51] Khalil S R M,Ibrahim A S,Hussien B A,et al. Cloning of a functional mannose-6-phosphate reductase() gene homolog from Egyptian celery plants():Overexpression in non-mannitol producing plants resulted in mannitol accumulation in transgenic individuals[J]. 3 Biotech,2017,7(5):341.
[52] Singh M,Kumar J,Singh S,et al. Roles of osmoprotectants in improving salinity and drought tolerance in plants:A review[J]. Reviews in Environmental Science and Bio/Technology,2015,14(3):407—426.
[53] Berüter J,F(xiàn)eusi M E S. The effect of girdling on carbohydrate partitioning in the growing apple fruit[J]. Journal of Plant Physiology,1997,151(3):277—285.
[54] Meng D,He M Y,Bai Y,et al. Decreased sorbitol synthesis leads to abnormal stamen development and reduced pollen tube growth via an MYB transcription factor,,in apple ()[J]. New Phytologist,2018,217(2):641—656.
[55] Meng D,Li C L,Park H J,et al. Sorbitol modulates resistance to Alternaria alternata by regulating the expression of anresistance gene in apple[J]. The Plant Cell,2018,30(7):1562—1581.
[56] Mikula K,Izydorczyk G,Skrzypczak D,et al. Controlled release micronutrient fertilizers for precision agriculture –A review[J]. Science of the Total Environment,2020,712:136365.
[57] Yu H L,Si P,Shao W,et al. Effects of spraying calcium fertilizer on calcium content and quality of peach[J]. Chinese Agricultural Science Bulletin,2017,33(22):63—67. [于會(huì)麗,司鵬,邵微,等. 噴施鈣肥對(duì)桃鈣養(yǎng)分吸收和品質(zhì)的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2017,33(22):63—67.]
[58] Yu H L,Si P,Qiao X S,et al. Iron absorption and quality of strawberry affected by different forms of foliar iron fertilizer[J]. Soil and Fertilizer Sciences in China,2016(5):73—78. [于會(huì)麗,司鵬,喬憲生,等. 噴施不同鐵肥對(duì)草莓鐵養(yǎng)分吸收和品質(zhì)的影響[J]. 中國(guó)土壤與肥料,2016(5):73—78.]
[59] Ding S S,Li Y T,Yuan L,et al. Effects of small molecular organics chelated calcium fertilizer on cherry tomato yield,quality and nutrients absorption[J]. Soil and Fertilizer Sciences in China,2015(5):61—66. [丁雙雙,李燕婷,袁亮,等. 小分子有機(jī)物螯合鈣肥對(duì)櫻桃番茄產(chǎn)量、品質(zhì)和養(yǎng)分吸收的影響[J]. 中國(guó)土壤與肥料,2015(5):61—66.]
[60] Li M L,Huang F,Guo Z S,et al. Effect of different zinc fertilizers on yield and quality of pepper(L.)[J]. Shaanxi Journal of Agricultural Sciences,2018,64(5):30—33. [李美玲,皇飛,郭振升,等. 不同鋅肥對(duì)朝天椒產(chǎn)量和品質(zhì)的影響[J]. 陜西農(nóng)業(yè)科學(xué),2018,64(5):30—33.]
[61] Alvarez R C F,Prado R M,Souza Júnior J P,et al. Effects of foliar spraying with new zinc sources on rice seed enrichment,nutrition,and productivity[J]. Acta Agriculturae Scandinavica,Section B - Soil & Plant Science,2019,69(6):511—515.
[62] Zhang L,Liu L C,Wang Y H,et al. Different influences of organic and inorganic boron fertilizers on citrange rootstock growth and physiology characters[J]. Acta Horticulturae Sinica,2019,46(1):135—142. [張林,劉磊超,王宇函,等. 有機(jī)態(tài)和無機(jī)態(tài)硼對(duì)柑橘枳橙砧木生長(zhǎng)及生理的影響[J]. 園藝學(xué)報(bào),2019,46(1):135—142.]
[63] Li F. Effects of sugar-alcohol chelated calcium fertilizer on potato yield,quality and calcium migration and utilization[D]. Qingdao:Qingdao University,2019. [李飛. 糖醇螯合鈣對(duì)馬鈴薯產(chǎn)量、品質(zhì)及鈣素遷移利用的影響[D]. 青島:青島大學(xué),2019.]
[64] Li Y P,Yang G,Li F,et al. Effects of sugar alcohol chelated calcium fertilizer on yield,quality and nutrient uptake of potato[J]. Soils,2020,52(4):773—780. [李玉鵬,楊光,李飛,等. 糖醇螯合鈣肥對(duì)馬鈴薯產(chǎn)量、品質(zhì)及養(yǎng)分吸收的影響[J]. 土壤,2020,52(4):773—780.]
[65] Shen X,Yuan L,Li Y T,et al. Application of small molecular organics chelated calcium fertilizer[J]. Soil and Fertilizer Sciences in China,2016(3):87—92. [沈欣,袁亮,李燕婷,等. 小分子有機(jī)物質(zhì)螯合鈣肥的應(yīng)用效果[J]. 中國(guó)土壤與肥料,2016(3):87—92.]
[66] Lin Y. Effects of spraying different calcium fertilizers on yield,quality and storage of blueberry[J]. South China Fruits,2019,48(6):103—105. [林怡. 噴施不同鈣肥對(duì)藍(lán)莓產(chǎn)量、果實(shí)品質(zhì)及貯藏性的影響[J]. 中國(guó)南方果樹,2019,48(6):103—105.]
[67] Guan X Q,Yang Y,Wang H Z,et al. Effects of spraying calcium on contents of calcium and pectin and fruit quality of Red Globe Grape (L. )[J]. Journal of Plant Nutrition and Fertilizer,2014,20(1):179—185. [管雪強(qiáng),楊陽,王恒振,等. 噴鈣對(duì)紅地球葡萄果實(shí)鈣、果膠含量和品質(zhì)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(1):179—185.]
[68] Vance A J,Jones P,Strik B C. Foliar calcium applications do not improve quality or shelf life of strawberry,raspberry,blackberry,or blueberry fruit[J]. HortScience,2017,52(3):382—387.
[69] Pei J X,Li Y Q,Cheng C G,et al. Effects of different calcium agents on fruit firmness and related cell wall metabolites in ‘Hanfu’ apple[J]. Journal of Fruit Science,2018,35(9):1059—1066. [裴健翔,李燕青,程存剛,等. 不同鈣制劑對(duì)‘寒富’蘋果果實(shí)硬度及相關(guān)細(xì)胞壁代謝物質(zhì)的影響[J]. 果樹學(xué)報(bào),2018,35(9):1059—1066.]
[70] Wang Y D. Studies on the effects of calcium on watercore and sorbitol content in ‘Yueguan’ apple fruit[D]. Shenyang:Shenyang Agricultural University,2018. [王穎達(dá). 鈣對(duì)‘岳冠’蘋果果實(shí)水心病發(fā)生及山梨醇消長(zhǎng)影響的研究[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2018.]
[71] Qi H Y,Wang D,Qi M F,et al. Regulation of different calcium forms on the photosynthesis of tomato leaves under heat stress[J]. Chinese Journal of Applied Ecology,2014,25(12):3540—3546. [齊紅巖,王丹,齊明芳,等. 不同形態(tài)鈣對(duì)高溫逆境下番茄葉片光合作用的調(diào)控作用[J]. 應(yīng)用生態(tài)學(xué)報(bào),2014,25(12):3540—3546.]
[72] Qi M F,Wang D,Qi H Y,et al. Effect of calcium regent on photosynthesis and calcium content of tomato leaves under heat stress[J]. Journal of Shenyang Agricultural University,2015,46(3):277—283. [齊明芳,王丹,齊紅巖,等. 鈣處理對(duì)高溫脅迫下番茄幼苗光合及鈣含量的影響[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,46(3):277—283.]
[73] Wang X. Study on the physiological and biochemical effects of different forms of boron on wheat seedlings[D]. Yangzhou:Yangzhou University,2008. [汪鑫. 不同形態(tài)硼對(duì)小麥幼苗的生理生化作用研究[D]. 揚(yáng)州:揚(yáng)州大學(xué),2008.]
[74] Zhao F J,Xie W Y,Wang P. Soil and human health[J]. Acta Pedologica Sinica,2020,57(1):1—11. [趙方杰,謝婉瀅,汪鵬. 土壤與人體健康[J]. 土壤學(xué)報(bào),2020,57(1):1—11.]
[75] Yan L,Jiang C C,Riaz M,et al. Mitigative effect of different forms of boron on aluminum toxicity of rape seedlings and its FTIR characteristics[J]. Acta Agronomica Sinica,2017,43(12):1817—1826. [閆磊,姜存?zhèn)},Riaz M,等. 不同形態(tài)硼對(duì)油菜幼苗鋁毒的緩解效應(yīng)及其FTIR特征分析[J]. 作物學(xué)報(bào),2017,43(12):1817—1826.]
[76] Tang Q. Effect of calcium on the characteristics of cadmium absorption in rice[D]. Harbin:Northeast Agricultural University,2019. [唐琦. 鈣離子對(duì)水稻鎘離子吸收轉(zhuǎn)運(yùn)特性的影響[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2019.]
[77] National Bureau of Statistics of China. China statistical yearbook[M]. Beijing:China Statistics Press,2019. [中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2019.]
[78] Sun C M. Application effect of chelated microelement fertilizers of zinc and manganese[D]. Nanjing:Nanjing Agricultural University,2012. [孫傳梅. 微量元素鋅、錳螯合肥的施用效果[D]. 南京:南京農(nóng)業(yè)大學(xué),2012.]
[79] Bai L Y. Study on detection technology and its application of sugar-alcohol chelating fertilizer[D]. Qingdao:Qingdao University,2019. [白利勇. 糖醇螯合肥檢測(cè)技術(shù)及其應(yīng)用[D]. 青島:青島大學(xué),2019.]
[80] Mosleh M F,Rasool I J A. Role of spraying boron and sugar alcohols on growth,yield and seeds production of pepper[J]. Iraqi Journal of Agricultural Sciences,2019,50(2):646—652.
[81] Zhu S S,Vivanco J M,Manter D K. Nitrogen fertilizer rate affects root exudation,the rhizosphere microbiome and nitrogen-use-efficiency of maize[J]. Applied Soil Ecology,2016,107:324—333.
[82] Sha X L,Liang S X,Zhuang X L,et al. Nitrogen-fixing bacteria in the phyllosphere[J]. Microbiology China,2017,44(10):2443—2451. [沙小玲,梁勝賢,莊緒亮,等. 植物葉際固氮菌研究進(jìn)展[J]. 微生物學(xué)通報(bào),2017,44(10):2443—2451.]
[83] Bai Y L. Tracing back to the origin of theoretical problems in plant nutrition[J]. Journal of Plant Nutrition and Fertilizers,2019,25(1):1—10. [白由路. 植物營(yíng)養(yǎng)中理論問題的追本溯源[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2019,25(1):1—10.]
[84] Kutus B,Ozsvár D,Varga N,et al. ML and ML2complex formation between Ca(II) and D-glucose derivatives in aqueous solutions[J]. Dalton Transactions,2017,46(4):1065—1074.
[85] Teichert J,Ruck M. Influence of common anions on the coordination of metal cations in polyalcohols[J]. European Journal of Inorganic Chemistry,2019,(17):2267—2276.
[86] He J L,Huang M L,Li L Y,et al. Stability and structural characterization of chelated fertilizers[J]. Spectroscopy and Spectral Analysis,2019,39(9):2966—2973.
[87] Bai L Y,Sun W X,Huang M L,et al. Study on the methods of separation and detection of chelates[J]. Critical Reviews in Analytical Chemistry,2020,50(1):78—89.
[88] Yan D Y,Sun W X,Bai L Y,et al. Method for determining chelation rate of sugar alcohol chelated calcium fertilizer by spectrophotometry:CN109100312B[P]. [2019–10–11]. [顏冬云,孫文軒,白利勇,等. 采用分光光度法測(cè)定糖醇螯合鈣肥螯合率的方法:CN109100312B[P]. [2019–10–11].]
[89] Yan D Y,Bai L Y,Sun W X,et al. Method for measuring chelation rate of sugar alcohol chelated calcium fertilizer based on conductivity method:CN109142450A[P]. [2019–01–04]. [顏冬云,白利勇,孫文軒,等. 基于電導(dǎo)率法測(cè)定糖醇螯合鈣肥螯合率的方法:CN109142450A[P]. [2019–01–04].]
Research Progresses on the Application of Sugar Alcohol Chelated Fertilizers in Agriculture
LI Tengsheng, WEI Qianqian, HUANG Mingli, GENG Cunzhen, LIU Kezhong, YAN Dongyun?
(College of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China)
Sugar alcohols which are products of photosynthesis of many plant species have a variety of biological effects and participate in plant life activities through different ways. Sugar alcohols-chelated fertilizers synthesized with sugar alcohol as a chelating ligand promote the migration of calcium, boron, and other nutrients in plants. Although related studies have shown that sugar alcohol chelating agent can effectively improve crop yield and quality, its development in China is still in the initial stage. One reason for this slow adoption is that researchers pay more attention to the efficiency of sugar alcohol chelated fertilizers than they do for the response mechanism of crops under different conditions. Thus, scientific research on sugar alcohol chelated fertilizers lags far behind its practical application, which has resulted in the lack of in-depth understanding of the ecological effects. Importantly, previous studies have often neglected the role of sugar alcohols in organisms, and sugar alcohol chelated fertilizers are mostly mixtures, so it was difficult to distinguish whether sugar alcohols or sugar alcohol complexes played a key role in promoting crop growth. Besides, due to the unclear chelating mechanism of sugar alcohol complexes, it was difficult to use available methods to perform qualitative and quantitative analysis. This hindered the promotion and application of sugar alcohol chelated fertilizers in China’s agriculture. Based on the above reasons, this paper briefly describes (i) sugar alcohol chelating technology, (ii) the advantages of sugar alcohol chelated fertilizers, (iii) the biological effects of sugar alcohols in plants, and (iv) the shortcomings in the research of sugar alcohol chelated fertilizers through the current application status. Thus, this review aims to provide a technical basis and development direction for the research, development, and popularization of sugar alcohol chelated fertilizers.
Sugar alcohols-chelated fertilizers; Crop; Biological effect; Chelating mechanism
S311;TQ440.2
A
10.11766/trxb202005180245
李騰升,魏倩倩,黃明麗,耿存珍,劉可忠,顏冬云. 糖醇螯合肥在農(nóng)業(yè)上的應(yīng)用研究進(jìn)展[J]. 土壤學(xué)報(bào),2021,58(6):1393–1403.
LI Tengsheng,WEI Qianqian,HUANG Mingli,GENG Cunzhen,LIU Kezhong,YAN Dongyun. Research Progresses on the Application of Sugar Alcohol Chelated Fertilizers in Agriculture[J]. Acta Pedologica Sinica,2021,58(6):1393–1403.
*國(guó)家自然科學(xué)基金項(xiàng)目(31972516)和山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017GNC11116)共同資助Supported by the National Natural Science Foundation of China(No. 31972516)and the Key R & D Project of Shandong Province of China(No. 2017GNC11116)
Corresponding author, yandongyun666@hotmail.com
李騰升(1997—),男,山東濰坊人,碩士研究生,研究方向?yàn)橥寥郎鷳B(tài)與肥料應(yīng)用。E-mail:tengsheng_li@126.com
2020–05–18;
2021–01–25;
2021–08–26
(責(zé)任編輯:陳榮府)