劉昌云,李欣羽,田紹銳,王靖,裴悅宏,馬小舟,2,樊光進,汪代斌,孫現(xiàn)超
番茄的克隆、表達與抗病毒功能
劉昌云1,李欣羽1,田紹銳1,王靖1,裴悅宏1,馬小舟1,2,樊光進1,汪代斌3*,孫現(xiàn)超1*
1西南大學(xué)植物保護學(xué)院,重慶 400715;2西南大學(xué)園藝園林學(xué)院南方山地園藝學(xué)教育部重點實驗室,重慶 400715;3重慶煙草科學(xué)研究所,重慶400715
【目的】番茄()作為重要的蔬菜作物,其生長受到包括害蟲、真菌、細菌和病毒等各種生物因素的危害。明確番茄抗性基因的抗病毒功能與機制,為番茄的抗病毒育種與抗病毒藥劑的靶向開發(fā)提供理論依據(jù)?!痉椒ā繌那芽浦参锘蚪M數(shù)據(jù)庫Solanaceae Genomics Network中獲得的全長,并將其分為4段,利用融合聚合酶鏈?zhǔn)椒磻?yīng)(fusion PCR)擴增獲得的序列全長;通過生物信息學(xué)分析SlN-like的進化關(guān)系、蛋白特征、保守結(jié)構(gòu)域、亞細胞定位以及互作關(guān)系;通過實時熒光定量PCR分析在番茄根、莖、葉、花和果實中的表達情況及其在煙草花葉病毒(tobacco mosaic virus,TMV)侵染后的葉片表達量;借助煙草脆裂病毒(tobacco rattle virus,TRV)介導(dǎo)的基因沉默技術(shù)(virus induced gene silencing,VIGS)沉默番茄內(nèi)源,摩擦接種TMV-GFP于沉默植株,明確對病毒侵染的影響。實時熒光定量PCR分析沉默植株中脫落酸(abscisic acid)、茉莉酸(jasmonic acid)和乙烯(ethylene)激素相關(guān)基因的表達量及在外施乙烯利(ethephon,ETH)3、6、12、24 h后的表達情況,最終明確SlN-like調(diào)控激素途徑響應(yīng)病毒侵染的機制?!窘Y(jié)果】通過分子克隆與融合PCR技術(shù),從番茄品種Micro-Tom中克隆獲得全長3 444 bp的,上傳至NCBI獲得序列號MW792493。通過生物信息學(xué)分析發(fā)現(xiàn)SlN-like含有TIR、NB-ARC和NACHT結(jié)構(gòu)域,并與馬鈴薯()N-like(AAP44394.1)親緣關(guān)系最近。在番茄各組織中均有表達,在莖中的表達量最高,其次是根、花,葉和果實中的表達量最低。TMV-GFP侵染番茄后第5、7天的表達顯著高于PBS處理,分別是PBS處理的1.6和2.2倍,并且TMV-GFP侵染會使的表達持續(xù)升高。TRV載體介導(dǎo)沉默番茄的,發(fā)現(xiàn)沉默78.3%的不會影響番茄生長表型,但可促進TMV-GFP侵染;實時熒光定量PCR分析發(fā)現(xiàn)沉默植株中的表達顯著降低,僅為對照組的12.5%;外施乙烯利處理番茄3 h后表達量升高,并在12 h達到最高峰,是對照組的2.71倍,24 h后恢復(fù)正常?!窘Y(jié)論】番茄SlN-like屬NBS-LRR類抗病蛋白,其表達受TMV侵染誘導(dǎo),沉默促進TMV-GFP侵染,降低乙烯相關(guān)基因的表達,而外施乙烯利導(dǎo)致的差異表達,揭示了SlN-like作為正調(diào)控因子可能影響乙烯途徑介導(dǎo)的番茄抗病毒防御。
番茄;SlN-like;煙草花葉病毒;基因表達;乙烯
【研究意義】番茄()是茄科番茄屬的一種一年生或多年生草本植物,在農(nóng)業(yè)種植方面有著重要的地位。生產(chǎn)過程中,番茄會遭受高溫、干旱等非生物脅迫或病毒、真菌等生物脅迫,造成生物組織的損傷,進而引起減產(chǎn)。其中由煙草花葉病毒(tobacco mosaic virus,TMV)引起的番茄病毒病是番茄生產(chǎn)過程的重要病害之一。挖掘并研究番茄抗病毒基因及其抗病毒機制,對番茄抗病毒育種及利用藥劑誘導(dǎo)調(diào)控抗病毒基因防控病毒病具有重要意義?!厩叭搜芯窟M展】是最早發(fā)現(xiàn)的抗TMV基因,煙草可對包括TMV、番茄花葉病毒(tomato mosaic virus,ToMV)在內(nèi)的絕大多數(shù)煙草花葉病毒組成員產(chǎn)生抗性,屬TIR-NBS-LRR類植物抗性基因家族中的一員[1-2]。早期研究發(fā)現(xiàn),TMV復(fù)制酶126 kD能夠引起介導(dǎo)的超敏反應(yīng)(hypersensitivity,HR)[3],而位于復(fù)制酶126 kD羧基端末端的約50 kD的解旋酶片段(p50)能夠?qū)е罗D(zhuǎn)錄產(chǎn)物的積累,并有效地引起介導(dǎo)的HR反應(yīng)[4-5],因此編碼p50的核苷酸序列又被稱為對應(yīng)的無毒基因(avirulence,)。TMV侵染引起心葉煙()、三生煙(var.Samsun NN)等抗病品種壞死斑的形成是植物體自身防御病原微生物侵入所形成的細胞程序性死亡(programmed cell death,PCD)[6]。目前介導(dǎo)的TMV識別過程及其對下游抗病基因的誘導(dǎo)已經(jīng)研究得非常透徹[7]。NRIP1(N receptor- interacting protein 1)是一種同時與N蛋白的TIR結(jié)構(gòu)域和p50產(chǎn)生相互作用的硫氰酸酶(硫轉(zhuǎn)移酶),NRIP1定位于葉綠體中。SPL6(squamosa promoter binding protein-like 6)是一種與N蛋白在核小體內(nèi)互作的轉(zhuǎn)錄因子。在TMV未侵染的細胞中,N蛋白處于活性被抑制的狀態(tài),其表達極低,并且分布在細胞核和細胞質(zhì)中[8]。此時核內(nèi)的N蛋白不與SPL6結(jié)合。當(dāng)TMV通過機械損傷進入植物體內(nèi)后,病毒在細胞質(zhì)中脫殼、復(fù)制、轉(zhuǎn)錄和翻譯,p50激發(fā)子引起了NRIP1的重新定位。NRIP1與p50結(jié)合后,被細胞質(zhì)中的N蛋白識別,三者形成NRIP1-p50-N復(fù)合體[9]。隨著三者的結(jié)合,p50引起了N蛋白構(gòu)象上的變化,而該變化可能需要ATP結(jié)合或水解。結(jié)合ATP的N蛋白進入細胞核,與SPL6互作進而引起SPL6的轉(zhuǎn)錄激活功能,激活了下游抗性基因的表達[10]。此外,NRIP1-p50-N形成復(fù)合體的同時,N蛋白利用其LRR結(jié)構(gòu)域與p50形成次級結(jié)合,釋放出TIR-NBS區(qū)段以提高核酸結(jié)合能力,促成N蛋白的聚合。聚合后的N蛋白進入核內(nèi),與SPL6結(jié)合,激活并引起下游抗性基因的表達[11]。【本研究切入點】是的同源基因,同樣含有TIR-NBS-LRR結(jié)構(gòu)域,其TIR-NBS保守結(jié)構(gòu)域區(qū)段同樣可與TMV p50產(chǎn)生HR反應(yīng),而LRR并不能和p50產(chǎn)生HR反應(yīng)[12],因此推測這可能與N-like與TMV的識別有關(guān)[13],并且可能行駛的第一種調(diào)控模式。但番茄中如何響應(yīng)病毒侵染,如何調(diào)控寄主免疫防御知之甚少[14-15]。【擬解決的關(guān)鍵問題】通過克隆番茄抗性基因的cDNA全長,并對核酸序列和蛋白質(zhì)序列進行生物信息學(xué)分析,利用實時熒光定量PCR技術(shù)明確的表達模式,通過病毒介導(dǎo)的基因沉默(virus-induced gene silencing,VIGS)分析對TMV-GFP侵染的影響,確定SlN-like的抗病功能,并明確SlN-like可能影響的激素通路,為解析SlN-like在番茄抗病應(yīng)答中的調(diào)控機制提供科學(xué)依據(jù),同時為番茄抗病品種的選育和抗病毒藥劑的靶向開發(fā)提供理論依據(jù)。
試驗于2020—2021年在西南大學(xué)植物保護學(xué)院植物免疫與植物病害生態(tài)防控實驗室完成。
1.1.1 供試菌株與植物 供試大腸桿菌()DH5和農(nóng)桿菌()GV3101購自上海唯地生物技術(shù)有限公司;VIGS沉默載體和煙草花葉病毒熒光標(biāo)記載體TMV-GFP(pSDK661)由清華大學(xué)劉玉樂教授課題組饋贈;供試番茄Micro-Tom品種在恒溫培養(yǎng)室中播種,培養(yǎng)至4—6葉期左右備用。
1.1.2 試劑和引物 DNA純化回收試劑盒和質(zhì)粒提取試劑盒購自擎科興業(yè)生物技術(shù)有限公司;總RNA提取劑、反轉(zhuǎn)錄試劑盒、高保真酶PrimeSTAR? GXL DNA Polymerase DNA聚合酶、T4 DNA連接酶購自大連TaKaRa公司;實時熒光定量試劑盒購自莫納生物。引物和測序由上海生工生物工程公司完成。
番茄Micro-Tom總RNA提取按照TaKaRa RNAisoPlus(Total RNA 提取試劑)試劑盒手冊進行。根據(jù)茄科植物基因組數(shù)據(jù)庫Solanaceae Genomics Network[16](https://solgenomics.net/)中預(yù)測到的番茄序列,將其分為4段分段擴增,引物詳見表1。以Micro-Tom番茄的cDNA為模板,擴增獲得4段PCR片段,并利用融合PCR將4段片段融合。將序列上傳至NCBI,獲得序列號。運用ExPASy ProtParam(https://web.expasy.org/protparam/)分析SlN-like的蛋白理化性質(zhì),TMHMM 2.0(http://www.cbs.dtu.dk/ services/)分析SlN-like的跨膜區(qū)域,Cell-PLoc 2.0(http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/)預(yù)測SlN-like的亞細胞定位[17],STRING(https://string- db.org/)分析SlN-like的互作網(wǎng)絡(luò),SMART(http:// smart.embl-heidelberg.de/)分析SlN-like的保守結(jié)構(gòu)域,NCBI Blastp比對出與番茄SlN-like同源的N-like蛋白,利用MEGA X分析并制茄科植物N-like系統(tǒng)進化樹。
表1 本研究所用到的引物
下劃線的堿基為所加酶切位點 The underlined bases were the restriction enzyme sites
TMV接種方法詳見文獻[18]。將0.1 g帶有TMV-GFP的鮮樣葉片放置研缽中,加入石英砂,并使用pH 7.2—7.4的磷酸緩沖液研磨至勻漿狀。獲得的勻漿在5 000×離心機中離心3 min,取上清進行摩擦接種。每片葉片接種100 μL,每株植株接種兩片葉。
沉默載體的構(gòu)建基于煙草脆裂病毒(tobacco rattle virus,TRV)改造的沉默體系。首先根據(jù)的全長,利用Solanaceae Genomics Network的VIGS Tool(https://vigs.solgenomics.net/)分析獲得的最佳沉默片段,設(shè)計含有H I和I的沉默片段引物,將其連接在同樣被H I和I雙酶切的pTRV2載體上,構(gòu)建pTRV2:SlN-like載體。以空載體pTRV2為對照,將pTRV1和pTRV2:SlN-like轉(zhuǎn)化至農(nóng)桿菌GV3101中,過夜培養(yǎng)至OD600=0.6,等比混合后接種六葉期番茄。14 d后利用實時熒光定量PCR檢測沉默效率。
實時熒光定量PCR利用qTOWER2.0 real-time PCR(Analytikjena,Germany)和MonAmpTMChemoHS qPCR Mix(Monad,China)分析靶基因的相對表達水平。使用Primer3web(https://bioinfo.ut.ee/primer3/)軟件根據(jù)每個基因的編碼序列設(shè)計基因特異性引物。選擇番茄作為內(nèi)參,使用2-ΔΔCt法定量計算基因轉(zhuǎn)錄水平的相對變化[19-20]。
六葉期番茄噴施100 mmol·L-1的乙烯利(Aladdin),以噴施無菌水為對照,并在3、6、12、24 h取樣,保存至-80℃冰箱用于下步試驗。
所有試驗和數(shù)據(jù)至少3個重復(fù),數(shù)據(jù)表示為平均值±標(biāo)準(zhǔn)誤(SE),統(tǒng)計分析采用SPSS軟件student’s檢驗(*0.01<<0.05,**0.001<<0.01,***<0.001)和ANOVA單因素分析(LSD檢驗,<0.05)。
首先根據(jù)本氏煙TMV,在茄科植物基因組數(shù)據(jù)庫Sol Network中比對出番茄的可能序列。根據(jù)序列結(jié)構(gòu)將預(yù)測的番茄核苷酸分為4段,命名為P1—P4,長度分別為493、1 132、1 357和529 bp。以番茄Micro-Tom品種cDNA為模板,分別擴增4段片段,長度和預(yù)測相符,總長度3 444 bp,命名為。上傳至NCBI,獲得序列號MW792493。編碼蛋白共1 147個氨基酸,ProtParam預(yù)測結(jié)果顯示其理論分子量為130.48 kD,理論等電點為8.74,分子式為C5866H9357N1575O1671S56。TMHMM 2.0分析結(jié)果顯示SlN-like不具有跨膜結(jié)構(gòu)。Cell-PLoc 2.0亞細胞定位預(yù)測結(jié)果表明SlN-like可能定位于細胞質(zhì)與細胞膜。STRING互作蛋白預(yù)測顯示SlN-like可能與線粒體小核糖體亞基蛋白(mitochondrial small ribosomal subunit protein,Solyc01g081520.2.1)、半胱氨酸蛋白酶抑制劑(cysteine proteinase inhibitor,Solyc09g097850.1.1)、五肽重復(fù)PPR超家族蛋白(pentatricopeptide repeat superfamily protein,Solyc05g047540.2.1)和EDS1(enhanced disease susceptibility 1,Solyc06g071280.2.1)等蛋白存在互作。SMART預(yù)測SlN-like保守結(jié)構(gòu)域表明SlN-like含有TIR、NB-ARC和NACHT保守結(jié)構(gòu)域,為NBS-LRR類抗病蛋白。
根據(jù)SlN-like的氨基酸序列,在NCBI對比茄科植物中的SlN-like同源蛋白。下載茄科植物中10個物種的N-like氨基酸序列,利用MEGA X構(gòu)建進化樹。由圖1可知,SlN-like與馬鈴薯()N-like(AAP44394.1)的氨基酸親緣關(guān)系最近,與野生煙草()N-like(AKN63563.1)和中華辣椒()N-like(PHU14921.1)的親緣關(guān)系較遠。
利用實時熒光定量PCR檢測在根、莖、葉、花和果實各組織中的表達量。結(jié)果顯示,在莖中的表達量最高,其次是花和根,在葉和果實中的表達量最低(圖2-A),表明表達具有組織差異性。為進一步明確在TMV侵染番茄過程中的表達,以PBS為對照,摩擦接種TMV-GFP,并于接種后第3、5、7天取樣,利用實時熒光定量PCR檢測TMV-GFP侵染番茄Micro-Tom后的表達量。結(jié)果顯示,TMV-GFP侵染后3 d,處理組中的表達是對照組的1.4倍,但差異不顯著。TMV-GFP侵染后5、7 d,處理組中的表達顯著高于對照,分別為是對照組的1.6、2.2倍。TMV-GFP侵染后呈現(xiàn)表達逐漸上升趨勢(圖2-B),說明TMV-GFP侵染會誘導(dǎo)的表達,揭示SlN-like可能參與番茄抗TMV響應(yīng)。
為進一步明確對TMV-GFP侵染的影響,利用TRV介導(dǎo)的基因沉默技術(shù)沉默番茄內(nèi)源。以TRV:00為對照,沉默14 d后,發(fā)現(xiàn)沉默植株與對照植株相比并無顯著的表型差異(圖3-A),說明沉默不會影響番茄生長;沉默效率檢測表明,TRV:SlN-like植株中的表達量僅為對照的21.7%(圖3-B),說明成功沉默。
圖1 SlN-like及其同源基因系統(tǒng)發(fā)育分析
A:SlN-like的組織表達,統(tǒng)計分析采用ANOVA(LSD檢測,P<0.05)Tissue expression of SlN-like, the statistical analyses were performed using One-way ANOVA (LSD’s test, P<0.05);B:TMV侵染后SlN-like的表達。統(tǒng)計分析采用Student’s t檢驗(**0.001<P<0.01,***P<0.001),每個處理進行3次生物學(xué)重復(fù),每次生物學(xué)重復(fù)3株番茄,數(shù)值代表3次生物學(xué)重復(fù)的平均值±標(biāo)準(zhǔn)誤SlN-like expression after TMV infection.The statistical analyses were performed using Student’s t-test (**0.001<P<0.01, ***P<0.001).The experiments were repeated three times with three plants each time.Values represent means±SE from three biological replications
A:SlN-like沉默后的番茄表型Tomato phenotype after SlN-like silenced;B:TRV:SlN-like的沉默效率檢測。統(tǒng)計分析采用Student’s t檢驗 (***P<0.001),每個處理進行3次生物學(xué)重復(fù),每次生物學(xué)重復(fù)10株番茄,數(shù)值代表3次生物學(xué)重復(fù)的平均值±標(biāo)準(zhǔn)誤silencing efficiency detection in TRV:SlN-like.The statistical analyses were performed using Student’s t-test (***P<0.001).The experiments were repeated three times with ten plants each time.Values represent means±SE from three biological replications
對成功沉默的植株進行攻毒試驗。接種TMV-GFP于沉默植株TRV:SlN-like和對照組TRV:00,于接種后第3、5、7天在手持紫外燈下觀察TMV-GFP的熒光斑點數(shù)(圖4-A),并取樣利用實時熒光定量PCR對TMV進行定量分析,明確沉默后TMV-GFP的侵染情況(圖4-B)。結(jié)果顯示,沉默后接種TMV-GFP第3、5天時,沉默植株中接種葉的熒光斑點數(shù)明顯多于對照植株,實時熒光定量PCR也顯示同樣結(jié)果。沉默后接種TMV-GFP第7天,實時熒光定量PCR表明沉默植株系統(tǒng)葉中TMV的含量顯著高于對照組,為對照的4.58倍,說明沉默會促進TMV-GFP侵染,SlN-like可能作為正調(diào)控因子抑制TMV-GFP侵染。
A:TRV:SlN-like和TRV:00接種TMV-GFP后的癥狀圖Symptoms after inoculation with TMV-GFP in TRV:SlN-like and TRV:00;B:TRV:SlN-like和TRV:00中TMV MP含量檢測。統(tǒng)計分析采用Student’s t檢驗(**0.001<P<0.01,***P<0.001),每個處理進行3次生物學(xué)重復(fù),每次生物學(xué)重復(fù)10株番茄,數(shù)值代表3次生物學(xué)重復(fù)的平均值±標(biāo)準(zhǔn)誤 Detection of TMV MP content in TRV:SlN-like and TRV:00.The statistical analyses were performed using Student’s t-test (**0.001<P<0.01, ***P<0.001).The experiments were repeated three times with ten plants each time.Values represent means±SE from three biological replications
為探討SlN-like參與抗病毒防御的機制,以TRV:00為對照,對沉默植株中乙烯(ethylene,ET)相關(guān)基因、脫落酸(abscisic acid,ABA)相關(guān)基因以及茉莉酸(jasmonic acid,JA)相關(guān)基因的表達進行實時熒光定量PCR分析。結(jié)果顯示,沉默后,乙烯途徑相關(guān)基因的表達量呈現(xiàn)極顯著下降,僅為對照的12.5%。而脫落酸相關(guān)基因與茉莉酸相關(guān)基因的表達量未出現(xiàn)明顯變化(圖5),說明沉默可能會降低乙烯含量,揭示SlN-like可能參與乙烯介導(dǎo)的抗病毒防御。
統(tǒng)計分析采用Student’s t檢驗(**0.001<P<0.01,***P<0.001),每個處理進行3次生物學(xué)重復(fù),每次生物學(xué)重復(fù)3株番茄,數(shù)值代表3次生物學(xué)重復(fù)的平均值±標(biāo)準(zhǔn)誤The statistical analyses were performed using Student’s t-test (**0.001<P<0.01, ***P<0.001).The experiments were repeated three times with three plants each time.Values represent means±SE from three biological replications。圖6同The same as Fig.6
沉默會降低乙烯相關(guān)基因的表達,揭示沉默可能影響乙烯合成。為明確乙烯對表達的影響,試驗以無菌水為對照,通過外施乙烯利(ethephon,ETH),并分別在外施后3、6、12、24 h取樣,提取總RNA,利用實時熒光定量PCR檢測的表達量。結(jié)果顯示,外施乙烯利后3 h,的表達與無菌水處理并無顯著性差異,而后開始上升;外施乙烯利后6 h,的表達持續(xù)上升,并在12 h達到最高,是對照組的2.71倍。之后的表達開始降低,24 h時恢復(fù)到與對照組相等水平(圖6),說明外施乙烯利會促進的差異表達,進一步驗證了通過介導(dǎo)乙烯通路參與抗病毒防御。
圖6 外施乙烯利后SlN-like的表達
植物病毒嚴(yán)重威脅著作物的產(chǎn)量與品質(zhì)。作物在對抗病毒過程中,演化出一系列抵御病毒侵染的機制,其中包括病原體相關(guān)分子模式觸發(fā)的免疫反應(yīng)(pathogen- associated molecular patterns-triggered immunity,PTI)和效應(yīng)因子觸發(fā)的免疫反應(yīng)(effector-triggered immunity,ETI)。PTI和ETI是植物免疫防御中不可或缺的防御機制,但ETI防御速度更快、強度更強。TMV是危害最為嚴(yán)重、寄主范圍最廣的植物病毒[21],位列十大植物病毒之首,一旦發(fā)生極難防治[22]。在與植物病毒的長期協(xié)同進化中,某些作物品種進化出一些抵御病毒侵染的抗性基因,稱為(resistance gene)基因[8]。大部分編碼核苷酸結(jié)合位點-富含亮氨酸重復(fù)結(jié)構(gòu)域(nucleotide binding site and leucine rich repeat domains,NBS-LRR)。NBS-LRR類抗病蛋白能夠特異性地識別病原組分的無毒蛋白,從而激活效應(yīng)因子觸發(fā)的植物免疫防御反應(yīng)[23]。植物NBS-LRR 蛋白具有針對細菌、病毒及真菌病原體“基因?qū)颍╣ene for gene concept)”的抗性,即植物和病原菌中的無毒基因存在一對一的關(guān)系,并共同構(gòu)成了一個全面的病原體檢測系統(tǒng)[24]。目前已從擬南芥()、水稻()、馬鈴薯等作物中鑒定出多個NBS-LRR類抗性基因,而分離自煙草野生種粘煙草()的便是NBS-LRR類抗病基因之一[25-28]。煙草編碼蛋白與TMV解旋酶蛋白p50發(fā)生互作,并通過識別p50誘發(fā)HR反應(yīng),造成PCD以限制TMV的進一步擴張侵染。是植物中鑒定的第一個TIR-NBS-LRR(toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat)類抗病基因,其包含N末端結(jié)構(gòu)域、NB-ARC結(jié)構(gòu)域(APAF-1,disease resistance proteins,CED-4,亦稱NBS結(jié)構(gòu)域)及C端的LRR結(jié)構(gòu)域。則是的同源基因,且煙草編碼蛋白含有TIR-NBS-LRR結(jié)構(gòu)域。通過克隆,并對其保守結(jié)構(gòu)域進行分析,發(fā)現(xiàn)編碼蛋白包含TIR-NBS-NACHT結(jié)構(gòu)域,這與煙草N-like存在差異[12]。研究表明,煙草N-like的TIR-NBS參與TMV p50介導(dǎo)的HR反應(yīng),而LRR并不影響p50依賴的HR反應(yīng)。SlN-like與煙草N-like僅在TIR-NBS存在相似性,表明SlN-like可能同樣能與p50存在HR反應(yīng)。同樣,本研究表明TMV侵染會促進的表達(圖2-B),而沉默則促進TMV-GFP的侵染(圖4),進一步驗證了SlN-like可能參與p50的識別并引起番茄抗病毒防御,但SlN-like與p50的直接識別證據(jù)仍需進一步探索。
乙烯是一種被人們熟知且已經(jīng)被廣泛應(yīng)用于農(nóng)業(yè)的小分子氣體植物激素,是植物三大抗逆激素之一[29-30]。ERF(ethylene-responsive factor)轉(zhuǎn)錄因子家族基因是乙烯信號傳遞調(diào)控因子EIN3/EIL1的直接作用目標(biāo),其通過GCC-box直接與乙烯誘導(dǎo)基因啟動子的順式作用元件結(jié)合,進而調(diào)控植物的生物與非生物脅迫反應(yīng)[31]。多項研究表明乙烯是植物免疫防御的正調(diào)節(jié)因子[32-34]??共〉鞍識PW8.1(resistance to powdery mildew 8.1)結(jié)合并穩(wěn)定ACC氧化酶4(acyl-CoA oxidase 4,ACO4),而ERF59能與啟動子結(jié)合并抑制其表達,從而反饋抑制RPW8.1介導(dǎo)的細胞死亡及抗病機制[35];ERF轉(zhuǎn)錄因子能與病程相關(guān)蛋白(pathogenesis-related protein,PR)啟動子結(jié)合,調(diào)控PR蛋白表達,引起抗病防御[36];外源施用乙烯會誘發(fā)擬南芥植株系統(tǒng)性積累防衛(wèi)素,并提高植物防御素的轉(zhuǎn)錄和翻譯[37]。乙烯對植物病毒侵染也存在調(diào)控,但研究相對較少。花椰菜花葉病毒(cauliflower mosaic virus,CaMV)的癥狀產(chǎn)生可能是由于P6與乙烯相關(guān)基因的互作引起[38];NbALD1通過介導(dǎo)水楊酸和乙烯途徑響應(yīng)蕪菁花葉病毒(turnip mosaic virus,TuMV)侵染[39];乙烯介導(dǎo)植株對番茄叢矮病毒(tomato bushy stunt virus,TBSV)的極端抗性[40]。本研究表明,沉默后乙烯相關(guān)基因的表達量降低(圖5),而外施乙烯利后的表達量升高(圖6),揭示可能通過影響乙烯含量引起抗病防御。
筆者研究團隊前期研究發(fā)現(xiàn),番茄IP-L(interaction
protein L)、SlHIN1(harpin-induced gene 1)以及SlSYTA(Synaptotagmin A)均可在TMV侵染后高表達,但三者對病毒侵染的影響不盡相同[20,41-42]。通過對番茄抗性基因的挖掘與機制解析,對于理解以外殼蛋白互作蛋白IP-L為起點,SlHIN1、SlN-like為核心,運動蛋白互作蛋白SlSYTA為終點的影響病毒侵染的關(guān)系鏈至關(guān)重要,可為番茄的抗性遺傳育種提供理論依據(jù)。
在番茄中克隆并得到具有NBS-LRR結(jié)構(gòu)域的抗病蛋白SlN-like,其表達受TMV侵染誘導(dǎo),并且作為植物正調(diào)控因子抑制TMV-GFP侵染。沉默降低了的表達,外施乙烯利引起的差異表達,表明SlN-like通過介導(dǎo)乙烯通路參與抗病毒防御。
[1] Marathe R, Anandalakshmi R, Liu Y, DINESH-Kumar S P.The tobacco mosaic virus resistance gene,.Molecular Plant Pathology, 2002, 3(3): 167-172.
[2] Padgett H s, Beachy R n.Analysis of a tobacco mosaic virus strain capable of overcominggene-mediated resistance.The Plant Cell, 1993, 5(5): 577-586.
[3] 王倩, 劉貫山.煙草N基因及其介導(dǎo)的抗TMV信號轉(zhuǎn)導(dǎo)分子機制.中國煙草科學(xué), 2016, 37(3): 93-99.
WANG Q, LIU G S.The tobacco N gene and the signal transduction of-mediated TMV resistance.Chinese Tobacco Science, 2016, 37(3): 93-99.(in Chinese)
[4] Whitham S, McCormick S, Baker B.The N gene tobacco confers resistance to tobacco mosaic virus in transgenic tomato.Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(16): 8776-8781.
[5] Erickson F L, Holzberg S, Calderón-Urrea A, Handley V, Axtell M, Corr C, Baker B.The helicase domain of the TMV replicase proteins induces the-mediated defence response in tobacco.The Plant Journal, 1999, 18(1): 67-75.
[6] Greenberg J t.Programmed cell death in plant-pathogen interactions.Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 525-545.
[7] DINESH-Kumar S P, Tham W H, Baker B j.Structure-function analysis of the tobacco mosaic virus resistance gene.Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(26): 14789-14794.
[8] Whitham S, DINESH-Kumar S P, Choi D, Hehl R, Corr C, Baker B.The product of the tobacco mosaic virus resistance gene: similarity to Toll and the interleukin-1 receptor.Cell, 1994, 78(6): 1101-1115.
[9] DINESH-Kumar S P, Whitham S, Choi D, Hehl R, Corr C, Baker B.Transposon tagging of tobacco mosaic virus resistance gene: its possible role in the TMV--mediated signal transduction pathway.Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4175-4180.
[10] 張恒木, 陳劍平, 程曄.煙草抗煙草花葉病毒基因的研究.浙江農(nóng)業(yè)學(xué)報, 2001, 13(2): 55-60.
ZHANG H M, CHEN J P, CHENG Y.Study on the resistant geneof tobacco to tobacco mosaic virus (TMV).Acta Agriculturae Zhejiangensis, 2001, 13(2): 55-60.(in Chinese)
[11] Padmanabhan M S, Ma S, Burch-Smith T M, Czymmek K, Huijser P, Dinesh-Kumar S P.Novel positive regulatory role for the SPL6 transcription factor in theTIR-NB-LRR receptor- mediated plant innate immunity.PLoS Pathogens, 2013, 9(3): e1003235.
[12] Gao J S, Sasaki N, Kanegae H, Konagaya K i, Takizawa K, Hayashi N, Okano Y, Kasahara M, Matsushita Y, Nyunoya H.The TIR-NBS but not LRR domains of two novel N-like proteins are functionally competent to induce the elicitor p50-dependent hypersensitive response.Physiological and Molecular Plant Pathology, 2007, 71: 78-87.
[13] Zhang G Y, Chen M, Guo J M, Xu T W, Li L C, Xu Z S, Ma Y Z, Chen X P.Isolation and characteristics of the CNgene, a tobacco mosaic virus resistance N gene homolog, from tobacco.Biochemical Genetics, 2009, 47(3/4): 301-314.
[14] 謝鵬.TMV抗性基因介導(dǎo)的煙草過敏性反應(yīng)及同源基因克隆[D].合肥: 安徽農(nóng)業(yè)大學(xué), 2013.
XIE P.Studies on hypersensitive response mediated by TMV resistance geneand cloning of homologous gene in[D].Hefei: Anhui Agricultural University, 2013.(in Chinese)
[15] 謝鵬, 胡麗, 蔡永萍, 林毅, 高俊山.TMV抗性基因介導(dǎo)的煙草過敏性反應(yīng)研究.核農(nóng)學(xué)報, 2013, 27(12): 1809-1816.
XIE P, HU L, CAI Y P, LIN Y, GAO J S.Studies on hypersensitive response mediated by TMV resistance genein.Journal of Nuclear Agricultural Sciences, 2013, 27(12): 1809-1816.(in Chinese)
[16] Fernandez-Pozo N, Menda N, Edwards J D, Saha S, Tecle I Y, Strickler S R, Bombarely A, fISHER-York T, Pujar A, Foerster H, Yan A, Mueller L A.The sol genomics network (SGN)—from genotype to phenotype to breeding.Nucleic Acids Research, 2015, 43(Database issue): D1036-D1041.
[17] Chou K C, Shen H B.Cell-PLoc 2.0: An improved package of web-servers for predicting subcellular localization of proteins in various organisms.Natural Science, 2010, 2(10): 1090-1103.
[18] Lv X, Xiang S Y, Wang X C, Wu L, Liu C Y, Yuan M T, Gong W W, Win H, Hao C, Xue Y, Ma L S, Cheng D Q, Sun X C.Synthetic chloroinconazide compound exhibits highly efficient antiviral activity against tobacco mosaic virus.Pest Management Science, 2020, 76(11): 3636-3648.
[19] Liu C Y, Pu Y D, Peng H R, Lv X, Tian S R, Wei X F, Zhang J, Zou A H, Fan G J, Sun X C.Transcriptome sequencing reveals that photoinduced geneaffects the expression ofto response to virus infection in.Physiological and Molecular Plant Pathology, 2021, 114: 101613.
[20] 潘琪, 劉旭旭, 彭浩然, 蒲運丹, 張永至, 葉思涵, 吳根土, 青玲, 孫現(xiàn)超.番茄的克隆及表達分析.中國農(nóng)業(yè)科學(xué), 2017, 50(15): 2936-2945.
PAN Q, LIU X X, PENG H R, PU Y D, ZHANG Y Z, YE S H, WU G T, QING L, SUN X C.Cloning, expression analysis of.Scientia Agricultura Sinica, 2017, 50(15): 2936-2945.(in Chinese)
[21] Knapp E, Lewandowski D J.Tobacco mosaic virus, not just a single component virus anymore.Molecular Plant Pathology, 2001, 2(3): 117-123.
[22] SCHOLTHOF K B G, ADKINS S, CZOSNEK H, PALUKAITIS P, JACQUOT E, HOHN T, HOHN B, SAUNDERS K, CANDRESSE T, AHLQUIST P, HEMENWAY C, FOSTER G D.Top 10 plant viruses in molecular plant pathology.Molecular Plant Pathology, 2011, 12(9): 938-954.
[23] Dangl J L, Jones J D.Plant pathogens and integrated defence responses to infection.Nature, 2001, 411(6839): 826-833.
[24] Van Der Biezen E A, Jones J D.Plant disease-resistance proteins and the gene-for-gene concept.Trends in Biochemical Sciences, 1998, 23(12): 454-456.
[25] Jiang G, Liu D, Yin D, Zhou Z, Shi Y, Li C, Zhu L, Zhai W.A rice NBS-ARC gene conferring quantitative resistance to bacterial blight is regulated by a pathogen effector-inducible miRNA.Molecular Plant, 2020, 13(12): 1752-1767.
[26] Hulbert S H, Webb C A, Smith S M, Sun Q.Resistance gene complexes: evolution and utilization.Annual Review of Phytopathology, 2001, 39: 285-312.
[27] Guo Y L, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D.Genome-wide comparison of nucleotide-binding site- leucine-rich repeat-encoding genes in.Plant Physiology, 2011, 157(2): 757-769.
[28] Luo S, Zhang Y, Hu Q, Chen J, Li K, Lu C, Liu H, Wang W, Kuang H.Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family.Plant Physiology, 2012, 159(1): 197-210.
[29] 黎家, 李傳友.新中國成立70年來植物激素研究進展.中國科學(xué): 生命科學(xué), 2019, 49(10): 1227-1281.
LI J, LI C Y.Seventy-year major research progress in plant hormones by Chinese scholars.Scientia Sinica Vitae, 2019, 49(10): 1227-1281.(in Chinese)
[30] 左建儒, 漆小泉, 林榮呈, 錢前, 顧紅雅, 陳凡, 楊淑華, 陳之端, 白永飛, 王雷, 王小菁, 姜里文, 蕭浪濤, 種康, 王臺.2019年中國植物科學(xué)若干領(lǐng)域重要研究進展.植物學(xué)報, 2020, 55(3): 257-269.
Zuo J R, Qi X Q, Lin R C, Qian Q, Gu H Y, Chen F, Yang S H, Chen Z D, Bai Y F, Wang L, Wang X J, Jiang L W, Xiao L T, Zhong K, Wang T.Achievements and advance in Chinese plant sciences in 2019.Chinese Bulletin of Botany, 2020, 55(3): 257-269.(in Chinese)
[31] Zhao H, Yin C, Ma B, Chen S Y, Zhang J S.Ethylene signaling in rice and: New regulators and mechanisms.Journal of Integrative Plant Biology, 2021, 63(1): 102-125.
[32] Ding Y, Murphy K M, Poretsky E, Mafu S, Yang B, Char S N, Christensen S A, Saldivar E, Wu M, Wang Q,.Multiple genes recruited from hormone pathways partition maize diterpenoid defences.Nature Plants, 2019, 5(10): 1043-1056.
[33] Yang D L, Yang Y, He Z.Roles of plant hormones and their interplay in rice immunity.Molecular Plant, 2013, 6(3): 675-685.
[34] Aerts N, Pereira Mendes M, van Wees S C.Multiple levels of crosstalk in hormone networks regulating plant defense.The Plant Journal, 2021, 105(2): 489-504.
[35] Zhao Z X, Feng Q, Liu P Q, He X R, Zhao J H, Xu Y J, Zhang L L, Huang Y Y, Zhao J Q, Fan J, Li Y, Xiao S Y, Wang W M.RPW8.1 enhances the ethylene-signaling pathway to feedback-attenuate its mediated cell death and disease resistance in.New Phytologist, 2021, 229(1): 516-531.
[36] Tang D, Christiansen K M, Innes R W.Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling inby the EDR1 protein kinase.Plant Physiology, 2005, 138(2): 1018-1026.
[37] Alazem M, Lin N S.Roles of plant hormones in the regulation of host-virus interactions.Molecular Plant Pathology, 2015, 16(5): 529-540.
[38] Geri C, Love A J, Cecchini E, Barrett S J, Laird J, Covey S N, Milner J J.mutants that suppress the phenotype induced by transgene-mediated expression of cauliflower mosaic virus (CaMV) gene VI are less susceptible to CaMV-infection and show reduced ethylene sensitivity.Plant Molecular Biology, 2004, 56(1): 111-124.
[39] WANG S, HAN K, PENG J, Zhao J, Jiang L, lu Y, Zheng H, LIN L, Chen J, Yan F.mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic acid and the ethylene pathway in.Molecular Plant Pathology, 2019, 20(7): 990-1004.
[40] Sansregret R, Dufour V, Langlois M, Daayf F, Dunoyer P, Voinnet O, Bouarab K.Extreme resistance as a host counter-counter defense against viral suppression of RNA silencing.PLoS Pathogens, 2013, 9(6): e1003435.
[41] 彭浩然, 潘琪, 魏周玲, 蒲運丹, 張永至, 吳根土, 青玲, 孫現(xiàn)超.番茄抗性相關(guān)基因的克隆、表達與抗病毒功能.中國農(nóng)業(yè)科學(xué), 2017, 50(7): 1242-1251.
PENG H R, PAN Q, WEI Z L, PU Y D, ZHANG Y Z, WU G T, QING L, SUN X C.Cloning, expression and anti-virus function analysis of tomato resistance-related gene.Scientia Agricultura Sinica, 2017, 50(7): 1242-1251.(in Chinese)
[42] 彭浩然, 蒲運丹, 張永至, 薛楊, 武改霞, 青玲, 孫現(xiàn)超.ToMV外殼蛋白互作IP-L蛋白的亞細胞定位及表達分析.中國農(nóng)業(yè)科學(xué), 2017, 50(17): 3344-3351.
PENG H R, PU Y D, ZHANG Y Z, XUE Y, WU G T, QING L, SUN X C.Subcellular localization and expression analyses of IP-L protein interacting with ToMV coat protein.Scientia Agricultura Sinica, 2017, 50(17): 3344-3351.(in Chinese)
Cloning, Expression and Anti-Virus Function Analysis of
LIU ChangYun1, LI XinYu1, TIAN ShaoRui1, WANG Jing1, PEI YueHong1, MA XiaoZhou1,2, FAN GuangJin1, WANG DaiBin3*, SUN XianChao1*
1College of Plant Protection, Southwest University, Chongqing 400715;2Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715;3Chongqing Tobacco Science Research Institute, Chongqing 400715
【Objective】As an important vegetable crop, tomato () is endangered by various biological factors including pests, fungi, bacteria and viruses.The objective of this study is to clarify the antiviral function and mechanism ofresistance gene, and to provide a theoretical basis for the genetic breeding of antiviraland the targeted development of the antiviral agents.【Method】The full length ofwas obtained from the Solanaceae Genomics Network database and was divided into four segments, fusion PCR was used to amplify the full length of sequence.Bioinformatics was used to analyze the evolutionary relationship, protein characteristics, conserved domains, subcellular location and interaction relationship of SlN-like.real-time fluorescent quantitative PCR was used to analyze theexpression inroots, stems, leaves, flowers and fruits and its response after tobacco mosaic virus (TMV) infection.endogenouswas silenced using tobacco rattle virus (TRV)-mediated gene silencing technology, and the silent plants were inoculated with TMV-GFP to clarify the influence ofon virus infection.The expressions of abscisic acid (ABA), jasmonic acid (JA) and ethylene (ET) hormone-related genes in silenced plants, and the expression ofafter application of ethephon (ETH) for 3, 6, 12 and 24 h were analyzed by real-time fluorescence quantitative PCR to investigate the mechanism of SlN-like regulatory hormone pathway in response to virus infection.【Result】Through molecular cloning and fusion PCR technology, a 3 444 bpwas cloned fromvariety Micro-Tom, and uploaded to NCBI to obtain the sequence number MW792493.Through bioinformatics analysis, it was found that SlN-like contains TIR, NB-ARC and NACHT domains, and is closely related toN-like (AAP44394.1).expressed in all tissues of, with the highest expression in stems, followed by roots, flowers, leaves and fruits.After TMV-GFP infectionat 5th and 7th day, theexpression level was higher than that of PBS treatment, and TMV-GFP infection would cause the expression ofto increase continuously.TRV vector induced silencing ofin, and it was found that silencing 78.3% ofdid not affect tomato growth phenotype, but silencingpromoted the infection of TMV-GFP.Real-time fluorescent quantitative PCR analysis found that the expression of-silent plants was significantly reduced, only 12.5% of that in the control group.The expression ofincreased after 3 h of external application of ethephon, and reached the highest peak at 12 h, which was 2.71 times that of the control group, and returned to normal at 24 h.【Conclusion】SlN-like belongs to the NBS-LRR disease-resistant protein family, its expression is induced by TMV infection.Silencingcan promote TMV-GFP infection and reduce the expression of ethylene-related gene, while external application of ethephon resulted in the differential expression of, revealing that SlN-like participates inantiviral defense through the ethylene pathway.
; SlN-like; tobacco mosaic virus (TMV); gene expression; ethylene
2021-04-02;
2021-04-24
國家自然科學(xué)基金(31870147,31670148)、西南大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃(X202010635495)、中國煙草總公司重慶公司科技項目(A20201NY02-1306,B20211-NY1315,B20202NY1338)
劉昌云,E-mail:15228920380@163.com。通信作者孫現(xiàn)超,E-mail:sunxianchao@163.com。通信作者汪代斌,E-mail:467572562@qq.com
(責(zé)任編輯 岳梅)