高鋒陽(yáng),羅引航,張凱越,王文祥,楊喬禮
(蘭州交通大學(xué) 自動(dòng)化與電氣工程學(xué)院,甘肅 蘭州 730070)
永磁同步電動(dòng)機(jī)(permanent magnet synchronous motor,PMSM)以其環(huán)保節(jié)能、可靠性高、力能指標(biāo)好、抗過(guò)載能力強(qiáng)等優(yōu)點(diǎn),已經(jīng)在混合動(dòng)力汽車、船舶電力推進(jìn)、醫(yī)療機(jī)械等領(lǐng)域得到廣泛應(yīng)用[1].目前,模型預(yù)測(cè)控制(model predictive control,MPC)以其便于約束變量、在線優(yōu)化規(guī)則靈活、易于處理多輸入多輸出之間存在交互作用問(wèn)題等優(yōu)點(diǎn),成為永磁同步電機(jī)控制新策略[2].
目前已有許多學(xué)者對(duì)基于有限集模型預(yù)測(cè)的PMSM控制策略進(jìn)行研究.為了有效減小電流脈動(dòng),增強(qiáng)系統(tǒng)的穩(wěn)態(tài)性能,文獻(xiàn)[3–4]提出了一種改進(jìn)方案,在傳統(tǒng)單矢量MPC的基礎(chǔ)上引入零矢量,解決了采樣周期內(nèi)作用電壓矢量幅值固定的問(wèn)題.文獻(xiàn)[5]將待選的第2個(gè)矢量由零矢量變?yōu)橛行щ妷菏噶?作用電壓變?yōu)榉较?、幅值均可調(diào)的電壓矢量.文獻(xiàn)[6]提出了一種三矢量模型預(yù)測(cè)電流控制策略,作用電壓可以為任意方向,幅值可調(diào)的電壓矢量.文獻(xiàn)[7–11]提出了預(yù)測(cè)控制系統(tǒng)的魯棒性問(wèn)題并對(duì)其進(jìn)行研究.文獻(xiàn)[7–8]提出了一種帶干擾觀測(cè)器的魯棒模型預(yù)測(cè)電流控制方法,并構(gòu)造龍伯格觀測(cè)器來(lái)觀察參數(shù)失配和模型不確定性對(duì)控制性能的影響.文獻(xiàn)[9–10]在速度環(huán)和電流環(huán)的設(shè)計(jì)中引入前饋補(bǔ)償,并加入擴(kuò)展?fàn)顟B(tài)觀測(cè)器估計(jì)的集總擾動(dòng),優(yōu)化了PMSM調(diào)速系統(tǒng)的控制性能.文獻(xiàn)[11]是關(guān)于無(wú)差拍電流預(yù)測(cè)控制策略的魯棒性研究,在無(wú)差拍電流預(yù)測(cè)控制策略中加入離散積分項(xiàng),有效增強(qiáng)了系統(tǒng)的魯棒性.文獻(xiàn)[12–13]對(duì)無(wú)差拍電流預(yù)測(cè)控制展開(kāi)研究,無(wú)差拍預(yù)測(cè)控制避免枚舉所有待選的電壓矢量,簡(jiǎn)化了確定最優(yōu)電壓矢量的過(guò)程.文獻(xiàn)[14–15]對(duì)無(wú)參數(shù)模型預(yù)測(cè)控制進(jìn)行了研究,以避免模型參數(shù)失配引起的系統(tǒng)性能下降問(wèn)題.預(yù)測(cè)控制雖然具有優(yōu)越的控制性能,但會(huì)帶來(lái)較大的預(yù)測(cè)計(jì)算量,限制了其應(yīng)用.文獻(xiàn)[16]提出了一種快速預(yù)測(cè)電流控制策略,降低預(yù)測(cè)計(jì)算量,但該方法是基于單矢量控制在單個(gè)周期內(nèi)選出最佳電壓矢量.與傳統(tǒng)兩步預(yù)測(cè)電流控制策略[17]不同的是,文獻(xiàn)[18–19]提出了一種多步預(yù)測(cè)控制策略,通過(guò)枚舉法計(jì)算出最優(yōu)和次優(yōu)電流預(yù)測(cè)值,在此基礎(chǔ)上預(yù)測(cè)下一個(gè)周期的電流值.上述方法均是單個(gè)采樣周期內(nèi)尋優(yōu)或是兩個(gè)采樣周期內(nèi)尋優(yōu)存在較大計(jì)算復(fù)雜度,其容易陷入局部最優(yōu)問(wèn)題或是加重控制硬件的負(fù)擔(dān).
為此,本文提出一種低計(jì)算復(fù)雜度的PMSM多步預(yù)測(cè)電流控制策略,在兩個(gè)采樣周期內(nèi)尋優(yōu),且只需計(jì)算電流預(yù)測(cè)值4次.首先,在兩步預(yù)測(cè)中同時(shí)考慮三矢量電壓控制和最優(yōu)占空比電壓控制,電壓矢量需做約束處理,在兩步預(yù)測(cè)的基礎(chǔ)上保持電壓矢量不變,再計(jì)算三步電流預(yù)測(cè)值,進(jìn)而選出最優(yōu)的控制電壓矢量;然后針對(duì)電感參數(shù)失配的問(wèn)題,給出一種dq軸電感分量雙閉環(huán)結(jié)構(gòu)的控制策略來(lái)提取電感的誤差并將其矯正.最后通過(guò)搭建MATLAB/Simulink仿真平臺(tái),對(duì)比分析了傳統(tǒng)控制策略、文獻(xiàn)[20]提出的控制策略和文中所提控制策略在不同工況下的控制效果和性能.
表貼式永磁同步電機(jī)在旋轉(zhuǎn)正交坐標(biāo)系(d-q)中的模型表達(dá)式為
式(1)中:A,B,C,i和u分別定義如下:
其中:Ld,Lq分別為定子電感的直、交軸分量,且LdLqL;id,iq,ud,uq分別為定子電流和電壓的直、交軸分量;R為定子電阻;ωe為轉(zhuǎn)子電角速度;ψf為轉(zhuǎn)子永磁體磁鏈.
三矢量電壓指3個(gè)基本空間電壓矢量,包括2個(gè)有效電壓矢量和1個(gè)零矢量,其中有效電壓矢量包括u1~u6.零矢量包括u0,u7.而有效電壓矢量將空間劃分為(I)~(VI)6個(gè)扇區(qū),如圖1所示.
圖1 基本電壓矢量選擇示意圖Fig.1 Schematic diagram of basic voltage vector selection
傳統(tǒng)PMSM兩步電流預(yù)測(cè)控制策略結(jié)構(gòu)框圖如圖2所示,主要由延時(shí)補(bǔ)償、兩步預(yù)測(cè)、代價(jià)函數(shù)等模塊組成.系統(tǒng)給定電流0,給定電流為速度環(huán)PI控制器輸出.從電機(jī)定子側(cè)采樣三相電流經(jīng)坐標(biāo)變換后作為反饋電流.
圖2 傳統(tǒng)PMSM兩步電流預(yù)測(cè)控制策略框圖Fig.2 Block diagram of traditional two-step current predictive control strategy for PMSM
對(duì)狀態(tài)方程式(1)采用歐拉法可得到離散化的dq軸電流預(yù)測(cè)表達(dá)式為
其中:i(k)為第t(k)時(shí)刻的電流采樣值;ip(k+1)為第t(k+1)時(shí)刻的電流預(yù)測(cè)值;Ts為采樣周期;u(k)為第t(k)時(shí)刻的定子電壓值;ωe(k)為第t(k)時(shí)刻轉(zhuǎn)子電角速度的采樣值.
兩步電流預(yù)測(cè)的表達(dá)式為[17]
式中:ip(k+2)為第t(k+2)時(shí)刻的電流預(yù)測(cè)值;u(k+1)為第t(k+1)時(shí)刻的待確定電壓.
為了讓定子電流直、交軸分量盡可能跟蹤上參考電流,將電流靜差的平方和作為代價(jià)函數(shù)g.
選擇使g值最小時(shí)對(duì)應(yīng)的電壓矢量作為逆變器的輸出電壓矢量.
傳統(tǒng)兩步電流預(yù)測(cè)算法中,在t(k)時(shí)刻采樣定子電流i(k),三相逆變器的開(kāi)關(guān)狀態(tài)Sopt(k)及定子電壓u(k)已在t(k ?1)時(shí)刻計(jì)算出,由預(yù)測(cè)式(2)可計(jì)算出t(k+1)時(shí)刻的電流預(yù)測(cè)值ip(k+1).在ip(k+1)的基礎(chǔ)上,調(diào)用預(yù)測(cè)式(3)計(jì)算出逆變器在N種開(kāi)關(guān)函數(shù)組合下t(k+2)時(shí)刻的電流預(yù)測(cè)值(k+2),n1,2,···,N,之后選擇使得在t(k+2)時(shí)刻g值最小的開(kāi)關(guān)狀態(tài),作為t(k+1)時(shí)刻最優(yōu)開(kāi)關(guān)狀態(tài)Sopt(k+1).該方法的本質(zhì)是在1個(gè)采樣周期內(nèi)進(jìn)行局部最優(yōu)算法,而并未考慮系統(tǒng)在2個(gè)或多個(gè)采樣周期內(nèi)的最優(yōu)性.當(dāng)系統(tǒng)處在擾動(dòng)或工況不佳等情況時(shí),局部最優(yōu)算法可能存在t(k+3)時(shí)刻的電流預(yù)測(cè)值都偏離給定值的問(wèn)題,導(dǎo)致控制系統(tǒng)振蕩加劇,甚至于發(fā)散.
為降低傳統(tǒng)預(yù)測(cè)算法的局限性,提出1種在兩步預(yù)測(cè)中同時(shí)考慮三矢量電壓控制和占空比電壓控制,并確保在2個(gè)采樣周期內(nèi)所選開(kāi)關(guān)狀態(tài)最優(yōu)的多步預(yù)測(cè)算法,該算法描述如下:
1) 在t(k)時(shí)刻采樣定子電流i(k)并已知定子電壓udq(k)(t(k ?1)時(shí)刻的計(jì)算結(jié)果),由預(yù)測(cè)式(2)計(jì)算出t(k+1)時(shí)刻的電流預(yù)測(cè)值ip(k+1).
2) 由第1步已知ip(k+1)及電流給定值i?(k+2)(假設(shè)i?(k+1)i?(k+2)i?(k+3)),由式(5)計(jì)算出t(k+1)時(shí)刻所需參考電壓矢量(k+1),調(diào)制過(guò)程中可能存在過(guò)調(diào)制現(xiàn)象,因此需要調(diào)用式(8)對(duì)電壓矢量進(jìn)行幅值調(diào)整,幅值調(diào)整后的電壓矢量記為(k+1).
5) 由第4步已知基本電壓矢量ui,由式(16)–(17)計(jì)算出最優(yōu)占空比電壓(k+1)及其作用時(shí)間,并調(diào)用式(18)計(jì)算t(k+2)時(shí)刻的電流預(yù)測(cè)值isub(k+2).將isub(k+2)作為基礎(chǔ)值,t(k+2)時(shí)刻最優(yōu)占空比電壓仍采用t(k+1)時(shí)刻的最優(yōu)占空比電壓,在調(diào)用式(19)計(jì)算出t(k+3)時(shí)刻的電流預(yù)測(cè)值isub(k+3).
6) 由第3步和第5步已知iopt(k+3)和isub(k+3),將其分別代入t(k+3)時(shí)刻的代價(jià)函數(shù)式(20),選擇使代價(jià)函數(shù)值最小的電壓矢量控制,在t(k+1)時(shí)刻作用于PMSM.
在dq旋轉(zhuǎn)坐標(biāo)系中,表貼式PMSM在t(k+1)時(shí)刻的電壓方程為
圖3 參考電壓矢量位置角示意圖Fig.3 Schematic diagram of reference voltage vector position angle
判斷復(fù)矢量所在扇區(qū)n,并計(jì)算復(fù)矢量在扇區(qū)中的位置角θp.n與θp的關(guān)系表達(dá)式為
在2個(gè)采樣周期中,三矢量電壓控制下的兩步電流預(yù)測(cè)的表達(dá)式為
以iopt(k+2)作為電流基礎(chǔ)值,保持三矢量電壓不變?cè)陬A(yù)測(cè)t(k+3)時(shí)刻的電流值,則三步電流預(yù)測(cè)的表達(dá)式為
最優(yōu)占空比電壓控制選取電壓矢量的原則是:選擇與電壓復(fù)矢量(k+1)最接近的基本電壓矢量ui進(jìn)行占空比控制.根據(jù)電壓復(fù)矢量(k+1)的相角易知其所在扇區(qū).設(shè)電壓復(fù)矢量的相角為θp,處在第n個(gè)扇區(qū),則選擇基本電壓矢量ui(k+1)的表達(dá)式為
靜止坐標(biāo)系下的基本電壓矢量uαβi(k+1)變換到旋轉(zhuǎn)坐標(biāo)系下的電壓矢量udqi(k+1).
設(shè)sq0,sqi分別為零矢量u0,基本電壓矢量ui的q軸電流斜率,其表達(dá)式可寫(xiě)為[6]
根據(jù)占空比控制的原理[3],t(k+1)時(shí)刻的基本電壓矢量的占空比D?(k+1)為
計(jì)算出占空比D?(k+1)后,須判斷其是否在0–1之間,如果不在范圍內(nèi)則對(duì)其進(jìn)行修正.修正后的占空比Dsub(k+1)為
占空比控制下的給定電壓為
同理,最優(yōu)占空比電壓控制下的兩步電流預(yù)測(cè)的表達(dá)式為
以isub(k+2)作為電流基礎(chǔ)值,保持最優(yōu)占空比電壓不變?cè)陬A(yù)測(cè)t(k+3)時(shí)刻的電流值,則三步電流預(yù)測(cè)的表達(dá)式為
將計(jì)算得到的預(yù)測(cè)值iopt(k+3),isub(k+3)分別代入代價(jià)函數(shù)gopt,gsub,選擇讓代價(jià)函數(shù)值最小的電壓矢量作為t(k+1)時(shí)刻的電機(jī)控制量:
則t(k+1)時(shí)刻的控制電壓矢量為
電壓矢量作用時(shí)間為
表1給出了采用文獻(xiàn)[18–20]控制策略的兩步預(yù)測(cè)和三步預(yù)測(cè)的預(yù)測(cè)總次數(shù).在三矢量電壓控制下(最優(yōu)占空比電壓控制是特殊的三矢量電壓控制),t(k+2)周期內(nèi)需要在(I)~(VI)6個(gè)電壓矢量扇區(qū)內(nèi)尋找最優(yōu)電壓矢量.傳統(tǒng)策略的多步預(yù)測(cè)對(duì)每個(gè)扇區(qū)計(jì)算后在t(k+2)時(shí)刻得到6種不同的電流預(yù)測(cè)值,t(k+3)時(shí)刻分別對(duì)每種電流值預(yù)測(cè)6次合計(jì)36次,總計(jì)42次.文獻(xiàn)[18]在t(k+2)時(shí)刻確定最優(yōu)和次優(yōu)電流預(yù)測(cè)值,t(k+3)時(shí)刻分別對(duì)最優(yōu)和次優(yōu)電流值預(yù)測(cè)6次合計(jì)12次,總計(jì)18次.文獻(xiàn)[19]提出在t(k+3)周期內(nèi)采用與t(k+2)周期內(nèi)相同的控制電壓矢量,t(k+3)時(shí)刻分別對(duì)6種電流值預(yù)測(cè)一次合計(jì)6次,總計(jì)12次.文獻(xiàn)[20]在t(k+2)時(shí)刻確定最優(yōu)和次優(yōu)電流預(yù)測(cè)值,t(k+3)周期內(nèi)采用上一個(gè)周期內(nèi)的電壓矢量控制,t(k+3)時(shí)刻分別對(duì)2種電流值預(yù)測(cè)一次合計(jì)2次,總計(jì)8次.而文中所提出的低復(fù)雜度多步預(yù)測(cè)在t(k+2)周期內(nèi)同時(shí)考慮三矢量電壓控制和最優(yōu)占空比電壓控制,預(yù)測(cè)次數(shù)合計(jì)2次,t(k+3)周期內(nèi)保持與上一個(gè)周期相同的電壓矢量,分別對(duì)2種電流值預(yù)測(cè)一次合計(jì)2次,總計(jì)4次.
表1 尋優(yōu)次數(shù)對(duì)比Table 1 Comparison of optimization times
文中所提多步電流預(yù)測(cè)策略框圖如圖4所示.采樣電流后預(yù)測(cè)第t(k+1)時(shí)刻的電流值作為延時(shí)補(bǔ)償,第t(k+2)時(shí)刻同時(shí)考慮三矢量電壓和最優(yōu)占空比電壓,t(k+3)周期內(nèi)保持電壓矢量不變,計(jì)算電流預(yù)測(cè)值,并由代價(jià)函數(shù)選出最優(yōu)的控制電壓矢量.兩步預(yù)測(cè)和三步預(yù)測(cè)的電流預(yù)測(cè)次數(shù)總計(jì)4次,很大程度上降低了多步預(yù)測(cè)的計(jì)算次數(shù).
圖4 多步電流預(yù)測(cè)控制策略框圖Fig.4 Multi-step current predictive control strategy block diagram
在實(shí)際工況中,定子電流上升或減小會(huì)引起定子電感值的變化.當(dāng)預(yù)測(cè)方程中的電感與電機(jī)定子電感不匹配時(shí),dq軸預(yù)測(cè)電流值會(huì)產(chǎn)生明顯的誤差.電感失配的電流預(yù)測(cè)方程可寫(xiě)為
式中:
其中L0為失配的電感參數(shù).
而實(shí)際在t(k+1)時(shí)刻定子電流為
dq軸采樣電流與預(yù)測(cè)電流之間的誤差記為Edq,其中Ed,Eq可分別寫(xiě)為
為了矯正失配電感參數(shù),采用dq軸電感雙閉環(huán)的PI控制來(lái)提取電感參數(shù).控制框圖如圖5所示,Edq作為兩個(gè)PI控制的輸入,其中d軸電流誤差Ed作為外環(huán)PI控制的輸入,q軸電流誤差Eq作為內(nèi)環(huán)PI控制的輸入,而電感誤差Δ?L作為PI控制的輸出.
圖5 多步電流預(yù)測(cè)魯棒性控制策略總框圖Fig.5 General block diagram of multi-step current predictive robust control strategy
因此,電感參數(shù)矯正后的電流預(yù)測(cè)模型可以寫(xiě)為
由式(26)和式(27),可以通過(guò)提取電感誤差來(lái)矯正模型中設(shè)置的電感參數(shù),從而消除由電感誤差引起的電流預(yù)測(cè)誤差,進(jìn)而可以獲得準(zhǔn)確的預(yù)測(cè)電流.
為驗(yàn)證文中所提多步電流預(yù)測(cè)算法的可行性與合理性,在MATLAB/Simulink上搭建仿真平臺(tái),被控表貼式永磁同步電機(jī)額定參數(shù)如表2所示.采樣時(shí)間Ts30μs.
表2 永磁同步電機(jī)參數(shù)Table 2 Parameters of PMSM
1) 電機(jī)負(fù)載轉(zhuǎn)矩保持8 N·m不變,給定轉(zhuǎn)速值在0.7~1.35 s時(shí)間段內(nèi)發(fā)生變化.采用傳統(tǒng)兩步電流預(yù)測(cè)算法的電機(jī)轉(zhuǎn)速如圖6(a)所示,采用文獻(xiàn)[20]提出的多步預(yù)測(cè)電流算法的電機(jī)轉(zhuǎn)速如圖6(b)所示,采用文中所提多步預(yù)測(cè)電流算法的電機(jī)轉(zhuǎn)速如圖6(c)所示.圖6中,給定轉(zhuǎn)速值記為傳統(tǒng)算法控制的電機(jī)轉(zhuǎn)速記為文獻(xiàn)[20]算法控制的電機(jī)轉(zhuǎn)速記為所提算法控制的電機(jī)轉(zhuǎn)速記為ωe.在0.7 s前,電機(jī)給定轉(zhuǎn)速為1700 r/min;在0.7 s時(shí)刻,給定轉(zhuǎn)速以6000(r·min?1)/s 的增長(zhǎng)率上升到2000 r/min;在1.0 s 時(shí)刻,給定轉(zhuǎn)速以?12000(r·min?1)/s負(fù)增長(zhǎng)率下降到1400 r/min;在1.3 s時(shí)刻,給定轉(zhuǎn)速以6000(r·min?1)/s的增長(zhǎng)率上升到1700 r/min.
從圖6可見(jiàn),所提算法和文獻(xiàn)[20]算法在變轉(zhuǎn)速工況中,電機(jī)轉(zhuǎn)速能快速準(zhǔn)確跟蹤上給定值,電機(jī)轉(zhuǎn)速與給定值基本吻合,而傳統(tǒng)算法因在變轉(zhuǎn)速瞬間不能提高足夠大的電壓,電機(jī)轉(zhuǎn)速難以及時(shí)跟蹤上給定值,并且調(diào)速過(guò)程電機(jī)的轉(zhuǎn)速會(huì)超出給定值一段時(shí)間.因此,在變轉(zhuǎn)速工況下,文獻(xiàn)[20]算法和所提算法具有基本相同的速度跟蹤性能,相比傳統(tǒng)算法,文獻(xiàn)[20]算法和所提算法在變轉(zhuǎn)速工況下具有更好的動(dòng)態(tài)響應(yīng)速度.
圖6 變給定轉(zhuǎn)速工況下的電機(jī)轉(zhuǎn)速Fig.6 Motor speed under the condition of variable given speed
2) 電機(jī)給定轉(zhuǎn)速值保持1700 r/min不變,負(fù)載轉(zhuǎn)矩在0.3~0.5 s時(shí)間段內(nèi)發(fā)生變化.在0.3 s前,電機(jī)負(fù)載轉(zhuǎn)矩為8 N·m;在0.4 s時(shí),負(fù)載轉(zhuǎn)矩突減到2 N·m;在0.5時(shí),負(fù)載轉(zhuǎn)矩突增到8 N·m.采用傳統(tǒng)算法、文獻(xiàn)[20]算法和所提算法的電機(jī)轉(zhuǎn)速如圖7所示,其中用黑色實(shí)線表示,用紅線實(shí)線表示,用黃色虛線表示,ωe用藍(lán)色實(shí)線表示.
圖7 變負(fù)載工況下的電機(jī)轉(zhuǎn)速Fig.7 Motor speed under variable load condition
從圖7可見(jiàn),所提算法和文獻(xiàn)[20]算法在變負(fù)載工況,電機(jī)轉(zhuǎn)速能較快得跟蹤上給定值,而傳統(tǒng)算法下的電機(jī)轉(zhuǎn)速較慢跟蹤上給定值,并且調(diào)速過(guò)程中電機(jī)轉(zhuǎn)速會(huì)產(chǎn)生超調(diào).因此,在變負(fù)載工況下,文獻(xiàn)[20]算法和所提算法具有基本相同的動(dòng)態(tài)響應(yīng)性能,而相比傳統(tǒng)算法,文獻(xiàn)[20]算法和所提算法在變負(fù)載工況下仍具有更好的動(dòng)態(tài)性能.
3) 電機(jī)給定轉(zhuǎn)速為1700 r/min,負(fù)載轉(zhuǎn)矩為8 N·m,保持其不變,讓電機(jī)處于穩(wěn)態(tài)工況.傳統(tǒng)算法、文獻(xiàn)[20]算法和所提算法控制的電機(jī)定子相電流波形及其快速傅里葉變換(fast Fourier transform,FFT)頻譜分析如圖8(a)–(c)和圖9(a)–(c)所示.
圖8 穩(wěn)態(tài)下電機(jī)定子相電流Fig.8 Stator phase current in steady state
圖9 相電流頻譜分析Fig.9 Phase current spectrum analysis
從圖9可見(jiàn),圖9(b),(c)的諧波含量要明顯低于圖(a).在穩(wěn)態(tài)工況中,傳統(tǒng)算法下相電流的總諧波失真(total harmonic distortion,THD)為5.58%,文 獻(xiàn)[20]算法的相電流THD為4.38%,所提算法相電流的THD為4.49%.因此,文獻(xiàn)[20]算法與所提算法的電流諧波含量相近,而相比傳統(tǒng)算法,文獻(xiàn)[20]和所提算法在穩(wěn)態(tài)工況中具有更好的穩(wěn)態(tài)性能.
4) 系統(tǒng)穩(wěn)態(tài)運(yùn)行過(guò)程中,圖10給出3種控制策略的電流預(yù)測(cè)計(jì)算總次數(shù)(包括延時(shí)補(bǔ)償、兩步預(yù)測(cè)和三步預(yù)測(cè)),其中,傳統(tǒng)算法、文獻(xiàn)[20]算法、所提算法的計(jì)算總次數(shù)分別記為n′,n′′,n.在1.5 s時(shí),3種算法的計(jì)算總次數(shù)分別約為3.5萬(wàn)、4.5萬(wàn)、2.5萬(wàn)次,所提算法的計(jì)算次數(shù)最少,傳統(tǒng)算法次之,文獻(xiàn)[20]計(jì)算量最多.相比文獻(xiàn)[20],所提算法的計(jì)算次數(shù)降低約44%.統(tǒng)計(jì)3種算法周期內(nèi)的電壓矢量尋優(yōu)代碼執(zhí)行時(shí)間(包括兩步預(yù)測(cè)和三步預(yù)測(cè)),分別約為26.6 ms,40.0 ms,19.6 ms,相比文獻(xiàn)[20],尋優(yōu)代碼執(zhí)行時(shí)間降低了約51%.
圖10 電流預(yù)測(cè)計(jì)算次數(shù)Fig.10 Calculation times of current prediction
圖11給出在3種控制策略中,采用五段式空間矢量脈寬調(diào)制(discontinuous space vector pulse width modulation,DSVPWM)的逆變器某一電力電子器件在短時(shí)間內(nèi)的開(kāi)關(guān)狀態(tài)(0或1),上升沿或下降沿表示開(kāi)關(guān)狀態(tài)的變化.開(kāi)關(guān)頻率較高會(huì)引起開(kāi)關(guān)損耗隨之增大,在合適的時(shí)刻開(kāi)關(guān)能適當(dāng)減小開(kāi)關(guān)損耗.從圖11易看出,采用文獻(xiàn)[20]算法的開(kāi)關(guān)頻率明顯較高.統(tǒng)計(jì)(0.5~1.5)s內(nèi)3種算法的開(kāi)關(guān)頻率,分別為21.36 kHz,26.28 kHz,21.80 kHz,相比文獻(xiàn)[20],所提算法的開(kāi)關(guān)頻率降低了約17%,從而有效減小較高開(kāi)關(guān)頻率所引起的較大開(kāi)關(guān)損耗.
圖11 短時(shí)間內(nèi)的開(kāi)關(guān)狀態(tài)Fig.11 Switch status in short time
由3),4)可整理數(shù)據(jù)得表3,從表3可看出,文獻(xiàn)[20]算法和文中算法的電流諧波含量較低,在不影響輸出電能質(zhì)量的前提下,文中算法比文獻(xiàn)[20]算法的開(kāi)關(guān)頻率要明顯低一些,而在尋優(yōu)代碼執(zhí)行時(shí)間上,文中算法的執(zhí)行時(shí)間最少.綜合動(dòng)靜態(tài)性能、開(kāi)關(guān)頻率、尋優(yōu)代碼執(zhí)行時(shí)間等方面,文中算法要優(yōu)于另外2種算法.
表3 三種控制策略對(duì)比Table 3 Comparison of three control strategies
圖12 電感參數(shù)變化的dq軸電流Fig.12 dq axis current with inductance variation
圖13 電感誤差提取Fig.13 Inductance error extraction
在傳統(tǒng)算法和文獻(xiàn)[20]算法控制下,當(dāng)算法中給定電感值為0.5L時(shí),dq軸采樣電流與參考電流有較小靜差,隨著給定電感值增長(zhǎng)到某一電感值時(shí),電流靜差明顯增大,而在電感提取策略中,dq軸電流基本不受給定電感值變化的影響,電流預(yù)測(cè)算法魯棒性較良好.
1) 所提策略采用無(wú)差拍電流控制計(jì)算參考電壓矢量,并將與其最鄰近最優(yōu)占空比電壓矢量作為次優(yōu)電壓矢量,尋優(yōu)過(guò)程簡(jiǎn)單.相比枚舉所有電壓矢量避免了不必要的計(jì)算負(fù)擔(dān),尋優(yōu)代碼執(zhí)行時(shí)間降低了約51%.為了滿足電力電子器件的高頻化需求,采用執(zhí)行時(shí)間更短的算法就很有必要.
2) 所提策略保證了較好的轉(zhuǎn)速調(diào)節(jié)性能和穩(wěn)態(tài)性能.在DSVPWM周期中,三矢量電壓控制需變換5次開(kāi)關(guān)狀態(tài),而占空比電壓控制變換3次,占空比電壓引入后開(kāi)關(guān)頻率降低了約17%,有效減小開(kāi)關(guān)損耗,兩者的結(jié)合兼顧了系統(tǒng)動(dòng)靜態(tài)性能和開(kāi)關(guān)頻率.特別是隨著逆變電源高頻化的不斷發(fā)展,器件開(kāi)關(guān)頻率越來(lái)越高,在不影響輸出電能質(zhì)量的前提下,適當(dāng)降低開(kāi)關(guān)頻率變得具有重要意義.
3) 給出一種dq軸電感雙閉環(huán)策略,能夠提取電感誤差,并對(duì)電感誤差造成的性能惡化具有抑制性,原理簡(jiǎn)單,且不需要額外考慮電感參數(shù)誤差對(duì)電機(jī)模型造成的擾動(dòng),避免了擾動(dòng)觀測(cè)器的加入.
文中提出的方法策略可拓展應(yīng)用于多電平多控制目標(biāo)的復(fù)雜系統(tǒng),區(qū)別在于逆變器的拓?fù)浣Y(jié)構(gòu)及電氣部分的等效建模.