王崇 焦春海 楊新筍 張文英 雷劍 柴沙沙 王連軍 田小海
摘要:【目的】利用葉綠體基因組(cpDNA)的間隔區(qū)序列(trnL-trnF、trnH-psbA和trnT-trnL)對甘薯種質(zhì)進(jìn)行遺傳多樣性分析,為其種質(zhì)保護(hù)及開發(fā)利用提供理論依據(jù)?!痉椒ā恳詮奈覈?2個省份收集的52份甘薯種質(zhì)為材料,從10個cpDNA間隔區(qū)序列的引物中篩選出能擴(kuò)增單一、清晰明亮且穩(wěn)定的序列引物,利用其PCR擴(kuò)增篩選出間隔區(qū)序列,并進(jìn)行測序及序列拼接。利用DnaSP 5.0進(jìn)行序列特征分析,采用MEGA X計算52份甘薯種質(zhì)材料的遺傳距離,并構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹。【結(jié)果】篩選獲得7對擴(kuò)增結(jié)果較理想的引物,其PCR擴(kuò)增產(chǎn)物經(jīng)測序分析,共獲得3個有效標(biāo)記(trnL-trnF、trnH-psbA和trnT-trnL)。三者的拼接序列長度為2239 bp,共有7個變異位點(diǎn),2個單一突變位點(diǎn),5個簡約信息位點(diǎn),11個插入/缺失位點(diǎn)。在52份甘薯種質(zhì)材料中,trnL-trnF、trnH-psbA和trnT-trnL序列的變異位點(diǎn)數(shù)量(Vs)分別為1、1和5個,單倍型數(shù)目(H)分別為2、4和5個,拼接序列的單倍型數(shù)目為10個;核苷酸多樣性(π)和單倍型多樣性(Hd)最高的序列分別為trnT-trnL(π=0.00052)和trnH-psbA(Hd=0.535)。trnL-trnF、trnH-psbA和trnT-trnL序列的Tajimas D、Fu and Lis D*和Fu and Lis F*均無顯著差異(P>0.05),符合中性進(jìn)化模式?;谄唇有蛄袠?gòu)建的系統(tǒng)發(fā)育進(jìn)化樹顯示,52份甘薯種質(zhì)材料的遺傳距離為0~1.1848,平均遺傳距離0.1018,其分為五大類,其中第Ⅰ類~Ⅳ類僅含有少量種質(zhì),其余41份種質(zhì)歸為第Ⅴ類。【結(jié)論】52份甘薯種質(zhì)材料的遺傳變異較為豐富,但種質(zhì)材料間的遺傳多樣性低,與cpDNA特性和甘薯遺傳背景狹窄有關(guān)?;趖rnL-trnF、trnH-psbA和trnT-trnL的拼接序列更能準(zhǔn)確分析甘薯種質(zhì)的遺傳多樣性,且有效劃分不同類群,為甘薯集團(tuán)育種提供候選材料。
關(guān)鍵詞: 甘薯;葉綠體基因組(cpDNA);trnL-trnF;trnH-psbA;trnT-trnL;遺傳多樣性;系統(tǒng)發(fā)育進(jìn)化樹
Abstract:【Objective】Genetic diversity of sweet potato germplasm was analyzed based on chloroplast genome DNA spacer sequences(trnL-trnF, trnH-psbA and trnT-trnL),to provide theoretical basis for the protection,development and utilization of sweet potato germplasm. 【Method】Taking 52 sweet potato materials from 12 different regions in China as the research object. From 10 primers of cpDNA spacer sequence, single, clear, bright and stable sequence primers were selected, and the selected spacer sequences were amplified by PCR, and sequenced and sequence spliced. The sequence features were analyzed by DnaSP 5.0 software. Using MEGA X software to calculate the genetic distance of 52 sweet potato germplasms and build phylogenetic tree. 【Result】Seven pairs of primers with ideal amplification results were screened. The PCR amplified products were sequenced and analyzed, and a total of three effective markers(trnL-trnF,trnH-psbA and trnT-trnL) were obtained. The splicing sequence length of the three was 2239 bp, which contained 7 mutation sites,2 singleton variable sites,5 parsimony information sites,and 11 insertion/deletion sites. Among the 52 sweet potato materials,the number of variable sites(Vs) of? trnL-trnF,trnH-psbA,and trnT-trnL sequences were 1,1 and 5,respectively. The number of haplotypes(H) for the three were 2,4 and 5,respectively. The number of haplotypes were 10 after three sequences being merged. The sequences with the highest nucleotide diversity(π) and haplotype diversity(Hd) were trnT-trnL(π=0.00052) and trnH-psbA(Hd=0.535). Tajimas D and Fu and Lis D*, Fu and Lis F* values of trnL-trnF,trnH-psbA and trnT-trnL sequences did not reached the level of significant difference(P>0.05),respectively,which indicated that variation of those chloroplast regions followed neutral theory of molecular evolution. Phylogenetic tree constructed based on combination sequences showed that genetic distance of 52 sweet potato varieties was 0-1.1848,and the average genetic distance was 0.1018. The combination sequences divided the test sweet potato varieties into 5 categories.There are only a small amount of germplasms in Type I to Type IV, and the remaining 41 germplasms were classified as Type V. 【Conclusion】The genetic variation of 52 sweet potato germplasm materials is relatively rich, but the genetic diversity among germplasm materials is low, which is related to the cpDNA characteristics and the narrow genetic background of sweet potato. The trnL-trnF,trnH-psbA and trnT-trnL combination sequences can be used for sweet potato genetic diversity analysis,and the combination of the three sequences can distinguish the test materials into different groups and provide candidate materials for the next group breeding.
Key words: Ipomoea batatas(L.)Lam.; chloroplast genome(cpDNA); trnL-trnF; trnH-psbA; trnT-trnL; genetic diversity; phylogenetic tree
0 引言
【研究意義】甘薯[Ipomoea batatas(L.) Lam.]為旋花科(Convolvulaceae)番薯屬(Ipomoea)雙子葉植物,具有極高的營養(yǎng)價值和經(jīng)濟(jì)效益,是全球第七大重要糧食作物、中國第五大重要糧食作物(Mohanraj and Sivasankar,2014;Shekhar et al.,2015;Wang et al.,2016;Drapal et al.,2019)。甘薯是同源六倍體(2n=6x=90),染色體數(shù)目多,遺傳背景復(fù)雜,給甘薯品種選育帶來了巨大挑戰(zhàn)(Yang et al.,2017a)。我國的甘薯種質(zhì)資源豐富,但遺傳背景狹窄,親緣關(guān)系近,育成品種之間的血緣關(guān)系較近,接近94%甘薯品種具有南瑞苕和勝利百號的血緣,亟需拓寬甘薯的遺傳背景及種質(zhì)資源的收集保護(hù)(李強(qiáng)等,2008;王連軍等,2018)。甘薯是無性繁殖作物,其主要育種手段是集團(tuán)雜交。植物細(xì)胞質(zhì)遺傳是集團(tuán)雜交育種的基礎(chǔ),其與葉綠體基因組(Chloroplast DNA,cpDNA)和線粒體基因組(Mitochondrial DNA,mt-DNA)密切有關(guān)(王連軍等,2015)。cpDNA大多數(shù)編碼蛋白除參與植物光合作用外,還參與其他的生化過程,如淀粉合成、色素合成和氮代謝,以及免疫反應(yīng)等(Dunn et al.,2008;Ma et al.,2013;Martin et al.,2013)。cpDNA是植物體內(nèi)的三大遺傳系統(tǒng)之一,與核基因組相比,cpDNA具有分子量小、序列保守、進(jìn)化緩慢、結(jié)構(gòu)簡單和單親遺傳等特點(diǎn),且不易受外界環(huán)境的干擾(高連明等,2012)。因此,基于cpDNA分子水平進(jìn)行甘薯品種鑒定和遺傳多樣性分析,對于甘薯的種質(zhì)資源開發(fā)、鑒定和保護(hù)具有重要意義。【前人研究進(jìn)展】基于cpDNA序列的特性,可將其用于物種的分子圖譜構(gòu)建、特定基因序列分析、物種鑒定、群體遺傳學(xué)研究以及系統(tǒng)進(jìn)化分析(王化坤等,2006)。目前已利用cpDNA序列對梨(常耀軍等,2014;齊丹等,2019)、水稻(劉莎等,2017)、李(章秋平等,2017)等作物進(jìn)行遺傳多樣性、系統(tǒng)進(jìn)化和親緣關(guān)系分析。trnL-trnF、trnH-psbA和trnT-trnL序列分別是cpDNA的非編碼區(qū),其進(jìn)化速率快,片段兩端存在保守序列,具有易于設(shè)計通用引物、穩(wěn)定性好等特點(diǎn),已在白楊(崔彬彬等,2006)、蘋果(朱元娣等,2014)、茶樹(劉振等,2018)、蒙古沙冬青(沈奇等,2019)、草莓(楊俊譽(yù)等,2020)等作物的分子鑒定和親緣關(guān)系分析中廣泛應(yīng)用。吳小培等(2016)利用trnL-trnF序列對7份青藏扁蓿豆種質(zhì)和3份內(nèi)蒙古扁蓿豆種質(zhì)進(jìn)行遺傳多樣性和群體結(jié)構(gòu)分析,結(jié)果表明群體間存在一定程度的歷史基因交流,遺傳多樣性與氣候環(huán)境密切相關(guān)。Fragoso-Martínez等(2017)使用ITS、trnL-trnF和psbA-trnH序列對鼠尾草進(jìn)行分子鑒定,共鑒定出17個鼠尾草亞類,并從側(cè)面驗(yàn)證了南美洲鼠尾草的多起源學(xué)說。Yang等(2017b)利用多個cpDNA間隔區(qū)序列對中國橡木進(jìn)行進(jìn)化分析和親緣關(guān)系鑒定,結(jié)果發(fā)現(xiàn)psbA-trnH等序列對中國橡木具有較好的鑒別能力。許子欣等(2018)利用ITS序列和psbA-trnH序列對巴戟天居群進(jìn)行分析,結(jié)果顯示巴戟天的遺傳結(jié)構(gòu)與地理分布存在相關(guān)性。Appelhans和Wen(2020)研究發(fā)現(xiàn),ITS和trnL-trnF序列結(jié)合可準(zhǔn)確分析蕓香的起源和進(jìn)化關(guān)系?!颈狙芯壳腥朦c(diǎn)】目前基于trnL-trnF、trnH-psbA和trnT-trnL序列對甘薯種質(zhì)進(jìn)行遺傳多樣性及親緣關(guān)系分析的研究鮮見報道?!緮M解決的關(guān)鍵問題】從我國12個省收集的52份甘薯種質(zhì)為材料,PCR擴(kuò)增其cpDNA間隔區(qū)序列(trnL-trnF、trnH-psbA和trnT-trnL等),雙向測序后再拼接序列,基于合并序列進(jìn)行遺傳多樣性及親緣關(guān)系分析,為甘薯種質(zhì)保護(hù)和親本選配提供理論參考。
1 材料與方法
1. 1 試驗(yàn)材料
供試甘薯種質(zhì)材料52份,包括湖北省6份,江蘇省10份,安徽省5份,山東省6份,河北省4份,河南省5份,浙江省5份,四川省3份,廣東省3份,湖南省2份,福建省2份,臺灣省1份(表1)。將上述種質(zhì)材料種植于湖北省農(nóng)業(yè)科學(xué)院糧食作物研究所,待長出新鮮葉片時進(jìn)行取樣。主要試劑:EasyTaq DNA聚合酶、10×EasyTaq Buffer for PAGE和dNTPs等均購自武漢全式金生物技術(shù)有限公司。主要儀器設(shè)備:離心機(jī)(Eppendorf,德國)、NanoDrop 2000分光光度計(Thermo,美國)、PCR儀(Bio-Rad,美國)和凝膠成像儀(Bio-Rad,美國)。
1. 2 DNA提取
采集甘薯新鮮幼嫩葉片,參照Yang等(2015)的改良CTAB方法提取甘薯葉片的基因組DNA。使用NanoDrop 2000分光光度計測定DNA濃度,用1.5%瓊脂糖凝膠電泳檢測DNA質(zhì)量。將供試樣品DNA稀釋到50~60 ng/μL,置于-20 ℃保存?zhèn)溆谩?/p>
1. 3 PCR擴(kuò)增
選擇10對在其他物種中擴(kuò)增效果良好的cpDNA間隔區(qū)序列(trnL-trnF、trnH-psbA和trnT-trnL等)通用引物(表2),由武漢天一輝遠(yuǎn)生物科技有限公司合成,利用其對供試材料進(jìn)行PCR擴(kuò)增。反應(yīng)體系:10×PAGE Buffer(Mg2+)2.5 μL,dNTPs(10 mmol/L)2.0 μL,正、反向引物(10 mmol/L)各1.0 μL,基因組DNA(50~60 ng/uL)1.0 μL,EasyTaq DNA聚合酶0.5 μL,ddH2O補(bǔ)至25.0 μL。擴(kuò)增程序:94 ℃預(yù)變性5 min;94 ℃ 30 s,54~58 ℃ 30 s,72 ℃ 1 min,共進(jìn)行35個循環(huán);72 ℃延伸5 min,4 ℃下保存5 min。PCR產(chǎn)物在1.5%瓊脂糖凝膠電泳中進(jìn)行電泳,獲得單一且清晰條帶,將檢測合格的PCR產(chǎn)物送到武漢天一輝遠(yuǎn)生物科技有限公司進(jìn)行雙向測序。
1. 4 統(tǒng)計分析
基于雙向測序結(jié)果,使用DNAStar對cpDNA間隔區(qū)序列進(jìn)行手動校對,刪除序列兩端不可靠的堿基序列,將正向序列和反向序列進(jìn)行拼接(Burland,2000)。利用MEGA X對拼接序列進(jìn)行序列長度、核苷酸構(gòu)成及變異位點(diǎn)等序列特征分析,并基于MEGA X中的Kimura-2-parameter(K2P)模型、最大簡約法(Maximum parsimony,MP)構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹(Kumar et al.,2018)。利用DnaSP 5.0計算變異位點(diǎn)數(shù)(Variable site,Vs)、單一突變位點(diǎn)數(shù)(Singleton variable site,Ss)、簡約信息位點(diǎn)數(shù)(Parsimony informative site,Ps)、插入/缺失位點(diǎn)數(shù)(Insertion/deletion gaps,Is)、核苷酸多樣性(Nucleotide diversity,π)、平均核苷酸差異(Average number of nucleotide difference,k)、單倍型數(shù)目(Number of haplotype,H)、單倍型多樣性(Haplotype diversity,Hd)、單倍型多樣性方差(Variance of haplotype diversity,Vh)和單倍型多樣性標(biāo)準(zhǔn)差(Standard deviation of haplotype diversity,Sh),最后計算Tajiams D、Fu and Lis D*及Fu and Lis F*進(jìn)行中性檢驗(yàn)(Neutrality tests)(Librado and Rozas,2009)。
2 結(jié)果分析
2. 1 cpDNA間隔區(qū)序列擴(kuò)增結(jié)果
用10對cpDNA間隔區(qū)序列引物對甘薯種質(zhì)材料進(jìn)行PCR擴(kuò)增,結(jié)果發(fā)現(xiàn)有7對引物(390F/1326R、rbcL、psbC-trnS、trnM-rbcL、trnL-trnF、trnH-psbA和trnT-trnL)能擴(kuò)增出單一、清晰明亮且穩(wěn)定的特異性條帶,其他3對引物擴(kuò)增出非特異性條帶、擴(kuò)增條帶模糊或無擴(kuò)增條帶。對擴(kuò)增結(jié)果良好的7對引物擴(kuò)增產(chǎn)物測序結(jié)果進(jìn)行分析,共獲得3個有效標(biāo)記,分別是trnL-trnF、trnH-psbA和trnT-trnL(圖1)。
2. 2 trnL-trnF、trnH-psbA和trnT-trnL序列特征分析結(jié)果
利用篩選獲得的3對通用引物對52份甘薯種質(zhì)材料進(jìn)行PCR擴(kuò)增,結(jié)果顯示trnL-trnF、trnH-psbA和trnT-trnL序列在52份甘薯種質(zhì)材料中的擴(kuò)增產(chǎn)物長度分別為843~881 bp、642~669 bp和861~883 bp,將各區(qū)域?qū)ξ慌帕泻蟮钠伍L度分別為792、604和843 bp,三者的拼接序列總長度為2239 bp。核苷酸構(gòu)成分析結(jié)果顯示,trnL-trnF、trnH-psbA和trnT-trnL序列富含AT,其含量分別為62.23%~63.09%、64.86%~65.59%和73.48%~74.15%,GC含量分別為36.91%~37.77%、34.41%~35.14%和25.85%~26.52%;三者的拼接序列GC含量32.23%~32.70%,AT含量67.30%~67.77%。多態(tài)性分析結(jié)果(表2)顯示,trnL-trnF序列含有1個簡約信息位點(diǎn),0個單一突變位點(diǎn),0個插入/缺失位點(diǎn);trnH-psbA序列多態(tài)性最高,含有1個簡約信息位點(diǎn),8個插入/缺失位點(diǎn),0個單一突變位點(diǎn);trnT-trnL序列多態(tài)性最低,含有3個簡約信息位點(diǎn)。
52份甘薯種質(zhì)材料的3個cpDNA間隔區(qū)拼接序列共含有變異位點(diǎn)7個,單一突變位點(diǎn)2個,簡約信息位點(diǎn)5個,插入/缺失位點(diǎn)11個。其中trnL-trnF、trnH-psbA和trnT-trnL序列的變異位點(diǎn)分別為1、1和5個。trnL-trnF、trnH-psbA和trnT-trnL序列的核苷酸多樣性(π)和平均核苷酸差異(k)分別為0.00022、0.00030、0.00036和0.177、0.177、0.440。三者的拼接序列核苷酸多樣性(π)和平均核苷酸差異(k)分別為0.00036和0.795(表2)。
2. 3 trnL-trnF、trnH-psbA和trnT-trnL單倍型多樣性分析結(jié)果
由表3可知,rnL-trnF、trnH-psbA和trnT-trnL序列單倍型數(shù)目(H)分別為2、4和5個,其中,trnT-trnL序列的單倍型多樣性(Hd)最高,為0.184;trnL-trnF、trnH-psbA和trnT-trnL序列的單倍型多樣性方差(Vh)和單倍型多樣性標(biāo)準(zhǔn)差(Sh)分別為0.00438、0.00505、0.00515和0.066、0.067、0.072;三者的拼接序列單倍型數(shù)目(H)、單倍型多樣性(Hd)、單倍型多樣性方差(Vh)和單倍型多樣性標(biāo)準(zhǔn)差(Sh)分別為10、0.575、0.00684和0.083。
2. 4 基于trnL-trnF、trnH-psbA和trnT-trnL序列的中性檢驗(yàn)結(jié)果
由表4可知,trnL-trnF、trnH-psbA和trnT-trnL序列的Tajimas D分別為-0.26487、-0.26487和-1.44693;Fu and Lis D*分別為0.53980、0.53980和-0.84887;Fu and Lis F*分別為0.35578、0.35578和-1.20944。trnH-psbA、trnL-trnF和trnT-trnL序列的Tajimas D、Fu and Lis D*和Fu and Lis F*間均無顯著差異(P>0.05),符合中性進(jìn)化模式。
2. 5 基于trnL-trnF、trnH-psbA和trnT-trnL序列的甘薯種質(zhì)親緣關(guān)系分析結(jié)果
采用MEGA X的最大簡約法基于trnL-trnF、trnH-psbA和trnT-trnL的拼接序列構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹。使用自展法(Bootstrap)進(jìn)行1000次檢測以確保獲得真實(shí)的系統(tǒng)發(fā)育進(jìn)化樹(自展值75%~100%表示強(qiáng)支持,50%~74%表示弱支持,小于50%表示不支持)。由圖2可知,52份甘薯種質(zhì)材料間的遺傳距離為0~1.1848,平均遺傳距離0.1018,其分為五大類:第Ⅰ類僅包括1個品種,即浙紫薯3號;第Ⅱ類包括鄂薯6號、川菜薯211、濟(jì)農(nóng)51和廣菜薯6號;第Ⅲ類包括阜甜1號和皖薯7號;第Ⅳ類包括浙薯70、煙薯18、蘇薯24和莆薯53;其余41份甘薯種質(zhì)歸為第Ⅴ類,該類中的自展值最低(小于50%),說明種質(zhì)間的序列較一致,進(jìn)化程度低。
3 討論
隨著越來越多植物的cpDNA序列測序完成,cpDNA已被廣泛用于種質(zhì)資源鑒定、物種群體分類及系統(tǒng)進(jìn)化分析等(Sabater,2018)。由于集團(tuán)雜交是甘薯育種的主要手段,基于cpDNA序列進(jìn)行甘薯遺傳多樣性分析及品種鑒定具有重要意義。本研究選取cpDNA的間隔區(qū)序列(trnL-trnF、trnH-psbA和trnT-trnL)對52份甘薯種質(zhì)材料開展遺傳多樣性研究,是因?yàn)閱我恍蛄刑峁┑男畔⒘枯^有限(辛雅儒,2018),3個序列可提供不同的信息,與所選的基因功能和位置有關(guān),trnH-psbA序列所受的選擇壓強(qiáng)較強(qiáng),相較于其他2個序列更保守,結(jié)合3個序列獲得的結(jié)果則更準(zhǔn)確。本研究發(fā)現(xiàn),3個cpDNA間隔區(qū)序列中,trnT-trnL序列的變異位點(diǎn)(Vs)和簡約信息位點(diǎn)(Ps)均高于trnL-trnF和trnH-psbA序列,表明trnT-trnL序列能提供更多的變異信息;核苷酸多樣性(π)和單倍型多樣性(Hd)最高的序列分別為trnT-trnL(π=0.00052)和trnH-psbA(Hd=0.535),與高源等(2020)采用cpDNA間隔區(qū)序列對楸子遺傳多樣性的研究結(jié)果(π=0.00949,Hd=0.854)基本一致。與蘭花科植物的研究結(jié)果(π=0.00750,Hd=0.252)(Jin et al.,2017)相比,本研究中甘薯的遺傳多樣性低,其可能原因是本研究所用甘薯品種具有相同或相似的遺傳信息,還可能與本研究所用的3個cpDNA間隔區(qū)序列的進(jìn)化速率有關(guān),研究表明trnL-trnF、trnH-psbA和trnT-trnL間隔序列相對保守,需要更加精準(zhǔn)的結(jié)果時則需要結(jié)合其他cpDNA間隔區(qū)序列(Katayama et al.,2011)。
cpDNA屬于母系遺傳,基因重組少,基因突變類型主要表現(xiàn)為點(diǎn)突變、堿基插入/缺失等(Na et al.,2014)。本研究發(fā)現(xiàn),核苷酸序列的變異中,插入/缺失位點(diǎn)總數(shù)最多,插入/缺失位點(diǎn)數(shù)(Is)和變異位點(diǎn)數(shù)(Vs)最多的序列分別為trnH-psbA(Is=8)和trnT-trnL(Vs=5)。3個cpDNA間隔區(qū)序列拼接后,單一突變位點(diǎn)(Ss)2個,簡約信息位點(diǎn)(Ps)5個,插入/缺失位點(diǎn)(Is)11個,與單一序列分析相比,拼接序列更能準(zhǔn)確反映序列的多態(tài)性信息。中性檢驗(yàn)結(jié)果顯示,trnH-psbA、trnL-trnF和trnT-trnL序列的Tajimas D、Fu and Lis D*和Fu and Lis F*間均無顯著差異,符合中性進(jìn)化模式,暗示甘薯在進(jìn)化過程中基因頻率的進(jìn)化速率不按照一定方向進(jìn)行,存在不同方向突變,并且不存在選擇壓力,而是中性地保存下來。
甘薯種質(zhì)資源遺傳多樣性分析是甘薯種質(zhì)創(chuàng)新利用及保護(hù)研究的重要環(huán)節(jié)。隨著育成品種的增多,基于形態(tài)特征來判斷種質(zhì)間的差異越來越難,近年來結(jié)合形態(tài)特征和基因序列特征等方法,如Roullier等(2011)利用cpDNA開發(fā)的SSR分子標(biāo)記對甘薯不同品種間的親緣關(guān)系和遺傳多樣性進(jìn)行分析。本研究基于trnL-trnF、trnH-psbA和trnT-trnL序列對52份甘薯種質(zhì)材料進(jìn)行遺傳多樣性分析,將這3個序列拼接后共產(chǎn)生了10個單倍型,遠(yuǎn)高于梨(常耀軍等,2014)、茶樹(劉振等,2018)、刺山柑(程波等,2019)等單倍型數(shù)目,甘薯的遺傳多樣性較低,一方面與甘薯是同源六倍體,雜交不親和有關(guān);另一方面是經(jīng)過長期的引種馴化和人類定向選擇,導(dǎo)致甘薯的遺傳多樣性程度越來越低。本研究所用的52份甘薯種質(zhì)材料的遺傳距離為0~1.1848,平均遺傳距離0.1018,表明52份甘薯種質(zhì)的整體遺傳距離較近;基于拼接序列將所有材料分為五大類,其中鄂薯6號、川菜薯211、濟(jì)農(nóng)51和廣菜薯6號均聚為第Ⅱ類,表明4個甘薯品種在trnL-trnF、trnH-psbA和trnT-trnL序列基本保持一致,經(jīng)序列比對分析發(fā)現(xiàn),鄂薯6號與川菜薯211的拼接序列一致,濟(jì)農(nóng)51和廣菜薯6號與鄂薯6號和川菜薯211相比,存在堿基缺失;第Ⅴ類的自展值小于50%,經(jīng)序列比對分析發(fā)現(xiàn),該類種質(zhì)的拼接序列一致,可能原因是該類種質(zhì)間具有相同的遺傳背景;浙紫薯3號被單獨(dú)聚類,表明與其他甘薯種質(zhì)的核苷酸序列差異較大,具有單獨(dú)的進(jìn)化路線,在選擇甘薯育種親本時,鄂薯6號、川菜薯211、濟(jì)農(nóng)51和浙紫薯3號等可優(yōu)先考慮??梢?,cpDNA間隔區(qū)序列可用于分析甘薯遺傳多樣性和系統(tǒng)進(jìn)化分析,若要更加準(zhǔn)確地分析甘薯的親緣關(guān)系和遺傳多樣性,還需要結(jié)合核基因和線粒體基因標(biāo)記等方法。
4 結(jié)論
52份甘薯種質(zhì)材料的遺傳變異較為豐富,但種質(zhì)材料間的遺傳多樣性低,與cpDNA特性和甘薯遺傳背景狹窄有關(guān)。基于trnL-trnF、trnH-psbA和trnT-trnL的拼接序列更能準(zhǔn)確分析甘薯種質(zhì)的遺傳多樣性,且有效劃分不同類群,為甘薯集團(tuán)育種提供候選材料。
參考文獻(xiàn):
常耀軍,曹玉芬,張金梅,田路明,董星光,張瑩,齊丹,鄭迎春. 2014. 基于葉綠體DNA分析的遼寧省梨屬種質(zhì)遺傳多樣性研究[J]. 園藝學(xué)報,41(7):1307-1316. doi:10. 16420/j.issn.0513-353x.2014.07.005. [Chang Y J,Cao Y F,Zhang J M,Tian L M,Dong X G,Zhang Y,Qi D,Zheng Y C. 2014. Studies on genetic diversity of pear germplasm resources in Liaoning Province of China based on chloroplast DNA analysis[J]. Acta Horticulturae Sinica,41(7):1307-1316.]
程波,楊偉俊,劉歡歡,何江. 2019. 基于葉綠體psbA-trnH基因間隔區(qū)序列鑒別維吾爾藥刺山柑[J]. 中國藥學(xué)雜志,54(12):965-970. doi:10.11669/cpj.2019.12.007. [Cheng B,Yang W J,Liu H H,He J. 2019. Identification of uygur herb Capparis spinose based on sequences of the plastid psbA-trnH[J]. Chinese Pharmaceutical Journal,54(12):965-970.]
崔彬彬,李云,金曉潔,馮慧. 2006. 白楊葉綠體和線粒體DNA的多態(tài)性及遺傳性分析[J]. 北京林業(yè)大學(xué)學(xué)報,28(6):9-14. doi:10.3321/j.issn:1000-1522.2006.06.002. [Cui B B,Li Y,Jin X J,F(xiàn)eng H. 2006. Genetic characters and polymorphism of chloroplast and mitochondrial DNA in white poplars[J]. Journal of Beijing Forestry University,28(6):9-14.]
高連明,劉杰,蔡杰,楊俊波,張挺,李德銖. 2012. 關(guān)于植物DNA條形碼研究技術(shù)規(guī)范[J]. 植物分類與資源學(xué)報,34(6):592-606. doi:10.3724/SP.J.1143.2012.12138. [Gao L M,L J,Cai J,Yang J B,Zhang T,Li D Z. 2012. A sy-nopsis of technical notes on the standards for plant DNA barcoding[J]. Plant Diversity and Resources,34(6):592-606.]
高源,王大江,王昆,叢佩華,張彩霞,李連文,樸繼成. 2020. 基于葉綠體DNA分析的楸子種質(zhì)遺傳多樣性研究[J]. 園藝學(xué)報,47(5):853-863. doi:10.16420/j.issn.0513-353x.2019-0609. [Gao Y,Wang D J,Wang K,Cong P H,Zhang C X,Li L W,Piao J C. 2020. Genetic diversity of Malus prunifolia germplasms based on chloroplast DNA analysis[J]. Acta Horticulturae Sinica,47(5):853-863.]
李強(qiáng),劉慶昌,翟紅,馬代夫,王欣,李雪琴,王玉萍. 2008. 中國甘薯主要親本遺傳多樣性的ISSR分析[J]. 作物學(xué)報,34(6):972-977. doi:10.3724/SP.J.1006.2008.00972. [Li Q,Liu Q C,Zhai H,Ma D F,Wang X,Li X Q,Wang Y P. 2008. Genetic diversity in main parents of sweetpotato in China as revealed by ISSR marker[J]. Acta Agronomica Sinica,34(6):972-977.]
劉莎,鄭曉明,馮靂,喬衛(wèi)華,王君瑞,公婷婷,蘇龍,丁膺賓,許睿,張麗芳,程云連,梁新霞,楊慶文,齊蘭. 2017. 水稻長日抑制基因PhyB的多樣性及區(qū)域適應(yīng)性初探[J]. 植物資源遺傳學(xué)報,18(2):283-289. doi:10.13430/j.cnki.jpgr.2017.02.014. [Liu S,Zheng X M,F(xiàn)eng L,Qiao W H,Wang J R,Gong T T,Su L,Ding Y B,Xu R,Zhang L F,Cheng Y L,Liang X X,Yang Q W,Qi L. 2017. Genetic diversity and regional adaptability of long-day suppression gene(PhyB) in rice[J]. Journal of Plant Genetic Resources,18(2):283-289.]
劉振,成楊,趙洋,楊培迪,楊陽. 2018. 基于葉綠體rbcL和trnH-psbA序列的湖南茶樹資源遺傳多樣性與親緣關(guān)系研究[J]. 熱帶作物學(xué)報,39(1):40-45. doi:10.3969/j.issn.1000-2561.2018.01.007. [Liu Z,Cheng Y,Zhao Y,Yang P D,Yang Y. 2018. Genetic diversity and relationship study of Hunan tea germplasm resources based on chloroplast rbcL and trnH-psbA sequence[J]. Chinese Jour-nal of Tropical Crops,39(1):40-45.]
齊丹,曹玉芬,胡紅菊,王超,常耀軍,田路明,董星光,張瑩,霍宏亮,徐家玉,劉超,詹俊宇. 2019. 基于葉綠體DNA accD-psbI序列分析的廣西梨地方品種遺傳多樣性研[J]. 中國南方果樹,48(3):91-94. doi:10.13938/j.issn.1007-1431.20190031. [Qi D,Cao Y F,Hu H J,Wang C,Chang Y J,Tian L M,Dong X G,Zhang Y,Huo H L,Xu J Y,Liu C,Zhan J Y. 2019. Genetic diversity of pear landraces in Guangxi based on DNA accD-psaI sequen-ces of chloroplast[J]. South China Fruits,48(3):91-94.]
沈奇,潘月云,臧春鑫,趙志平,關(guān)瀟,張銀東. 2019. 基于葉綠體DNA單倍型的蒙古沙冬青遺傳多樣性格局探究[J]. 分子植物育種,17(4):1378-1384. doi:10.13271/j.mpb. 017.001378. [Shen Q,Pan Y Y,Zang C X,Zhao Z P,Guan X,Zhang Y D. 2019. Study on distribution pa-ttern of genetic diversity of Ammopiptanthus mongolicus based on the haplotype of chloroplast DNA[J]. Molecular Plant Breeding,17(4):1378-1384.]
王化坤,婁曉鳴,章鎮(zhèn). 2006. 葉綠體微衛(wèi)星在植物種質(zhì)資源研究中的應(yīng)用[J]. 分子植物育種,4(3S):92-98. [Wang H K,Lou X M,Zhang Z. 2006. Application in germplasm resource research using chloroplast simple sequence repeat[J]. Molecular Plant Breeding,4(3S):92-98.]
王連軍,雷劍,蘇文瑾,柴沙沙,楊新筍. 2015. 2005─2014年甘薯品種國家鑒定情況分析[J]. 湖北農(nóng)業(yè)科學(xué),54(12):2844-2847. doi:10.14088/j.cnki.issn0439-8114.2015.12. 08. [Wang L J,Lei J,Su W J,Chai S S,Yang X S. 2015. Analysis on registered sweet potato varieties of China from 2005 to 2014[J]. Hubei Agricultural Sciences,54(12):2844-2847.]
王連軍,雷劍,蘇文瑾,柴沙沙,楊新筍. 2018. 甘薯優(yōu)良種質(zhì)徐薯18的育種價值分析[J]. 湖北農(nóng)業(yè)科學(xué),57(4):11-14. doi:10.14088/j.cnki.issn0439-8114.2018.04.003. [Wang L J,Lei J,Su W J,Chai S S,Yang X S. 2018. Breeding value of the sweetpotato germplasm collection Xushu 18[J]. Hubei Agricultural Sciences,57(4):11-14.]
吳小培,沈迎芳,王海慶. 2016. 基于trnL-trnF序列的扁蓿豆和青藏扁蓿豆遺傳多樣性及其群體遺傳結(jié)構(gòu)分析[J]. 草業(yè)科學(xué),33(6):1136-1146. doi:10.11829/j.issn.1001-0629.2015-0529. [Wu X P,Shen Y F,Wang H Q. 2016. Analysis of genetic diversity and population genetic structure of Medicago archiducis-nolai and Medicago archiducis-nolai and Medicago ruthenica populations based on cpDNA trnL-trnF sequences[J]. Pratacultural Science,33(6):1136-1146.]
辛雅儒. 2018. 基于葉綠體基因trnL-F和psbA-trnH序列對老芒麥居群的遺傳多樣性研究[D]. 雅安:四川農(nóng)業(yè)大學(xué). [Xin Y R. 2018. Genetic diversity analysis of Elymus sibiricus.L based on chloroplast trnL-F and psbA-trnH sequences[D]. Yaan:Sichuan Agricultural University.]
許子欣,冉志芳,楊小彤,郝慶秀,余意,周潔,郭蘭萍. 2018. 基于psbA-trnH和rDNA ITS序列的不同地理居群巴戟天聚類分析[J]. 南方農(nóng)業(yè)學(xué)報,49(12):2364-2370. doi:10.3969/j.issn.2095-1191.2018.12.03. [Xu Z X,Ran Z F,Yang X T,Hao Q X,Yu Y,Zhou J,Guo L P. 2018. Cluster analysis of Morinda officinalis How in different geographical populations based on psbA-trnH and rDNA ITS sequences[J]. Journal of Southern Agriculture,49(12):2364-2370.]
楊俊譽(yù),魏世杰,蘇代發(fā),陳杉艷,羅志偉,沈雪梅,Arslan J,童江云,崔曉龍. 2020. 云南黃毛草莓的nrDNA ITS和cpDNA psbA-trnH序列分子鑒定及進(jìn)化特征分析[J]. 南方農(nóng)業(yè)學(xué)報,51(4):748-757. doi:10.3969/j.issn.2095-1191. 2020.04.003. [Yang J Y,Wei S J,Su D F,Chen S Y,Luo Z W,Shen X M,Arslan J,Tong J Y,Cui X L. 2020. Molecular identification and evolutionary characteristics of Fragaria nilgerrensis in Yunnan based on nrDNA ITS and cpDNA psbA-trnH sequence analysis[J]. Journal of Southern Agriculture,51(4):748-757.]
章秋平,魏瀟,劉威生,董文軒,劉寧,張玉萍,徐銘,劉碩,張玉君,馬小雪. 2017. 基于葉綠體DNA序列trnL-F分析李亞屬植物的系統(tǒng)發(fā)育關(guān)系[J]. 果樹學(xué)報,34(10):1249-1257. doi:10.13925/j.cnki.gsxb.20170098. [Zhang Q P,Wei X,Liu W S,Dong W X,Liu N,Zhang Y P,Xu M,Liu S,Zhang Y J,Ma X X. 2017. Phylogenetic relationship in the plants of subgenus Prunophora(Rosaceae) inferred from the chloroplast DNA region,trnL-F[J]. Journal of Fruit Science,34(10):1249-1257.]
朱元娣,曹敏格,許正,王昆,張文. 2014. 基于ITS和matK序列探討新疆野蘋果與中國蘋果的系統(tǒng)演化關(guān)系[J]. 園藝學(xué)報,41(2):227-239. doi:10.3969/j.issn.0513-353X. 2014.02.003. [Zhu Y D,Cao M G,Xu Z,Wang K,Zhang W. 2014. Phylogenetic relationship between Xin-jiang wild apple(Malus sieversii Roem.) and Chinese apple(Malus×domestica subsp. chinesnsis)based on ITS and matK sequences[J]. Acta Horticulturae Sinica,41(2):227-239.]
Appelhans M S,Wen J. 2020. Phylogenetic placement of Ivodea and biogeographic affinities of Malagasy Rutaceae[J]. Plant Systematics and Evolution,306(1):1-14. doi:10.1007/s00606-020-01633-3.
Burland T G. 2000. Methods in molecular biology[M]. Totowa:Humana Press. doi:10.1385/1-59259-192-2:71.
Demesure B,Sodzi N,Petit R J. 1995. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants[J]. Molecular Ecology,41(1):129-134. doi:10.1111/j. 1365-294X.1995.tb00201.x.
Dong W P,Liu J,Yu J,Wang L,Zhou S L. 2012. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding[J]. PLoS One,7(4):e35071. doi:10.1371/journal.pone.0035071.
Drapal M,Rossel G,Heider B,F(xiàn)raser P D. 2019. Metabolic diversity in sweet potato(Ipomoea batatas,Lam.) leaves and storage roots[J]. Horticulture Research,6(2):1-9. doi:10.1038/s41438-018-0075-5.
Dunn C W,Hejnol A,Matus D Q,Pang K,Browne W E,Smith S A,Seaver E,Rouse G W,Obst M,Edgecombe G D,S?rensen M V,Haddock S H D,Schmidt-Rhaesa A,Okusu A,Kristensen R M,Wheeler W C,Martindale M Q,Giribet G. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life[J]. Nature,452(7188):745-749. doi:10.1038/nature06614.
Fragoso-Martínez I,Martínez-Gordillo M,Salazar G A,Sazatornil F,Jenks A A,García Pe?a M d R,Barrera-Aveleida G,Benitez-Vieyra S,Magallón S,Cornejo-Tenorio G,Mendoza C G. 2017. Phylogeny of the Neotropical sages(Salvia subg. Calosphace;Lamiaceae) and insights into pollinator and area shifts[J]. Plant Systematics and Evolution,304(1):43-55. doi:10.1007/s00606-017-1445-4.
Jin W T,Schuiteman A,Chase M W,Li J W,Chung S W,Hsu T C,Jin X H. 2017. Phylogenetics of subtribe Orchidinae s.l(Orchidaceae;Orchidoideae) based on seven markers(plastid matK,psaB,rbcL,trnL-F,trnH-psba,and nuclear nrITS,Xdh):Implications for generic delimitation[J]. BMC Plant Biology,17(1):1-14. doi:10.1186/s12870- 017-1160-x.
Jordan W C,Courtney M W,Neigel J E. 1996. Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in north American duckweeds(Lemnaceae)[J]. American Journal of Botany,83(4):430-439. doi:10.2307/2446212.
Katayama H,Tachibana M,Iketani H,Zhang S L,Uematsu C. 2011. Phylogenetic utility of structural alterations found in the chloroplast genome of pear:Hypervariable regions in a highly conserved genome[J]. Tree Genetics and Genomes,8(2):313-326. doi:10.1007/s11295-011-0442-y.
Kumar S,Stecher G,Li M,Knyaz C,Tamura K. 2018. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution,35(6):1547-1549. doi:10.1093/molbev/msy096.
Librado P,Rozas J. 2009. DnaSP v5:A software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics,25(11):1451-1452. doi:10.1093/bioinformatics/btp187.
Ma J,Yang B X,Zhu W,Sun L L,Tian J K,Wang X M. 2013. The complete chloroplast genome sequence of Mahonia bealei(Berberidaceae):Reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms[J]. Gene,528(3):120-131. doi:10.1016/j.gene.2013.07.037.
Martin G,Baurens F C,Cardi C,Aury J M,DHont A. 2013. The complete chloroplast genome of banana(Musa acumi-nata,Zingiberales):Insight into plastid monocotyledon evolution[J]. PLoS One,8(6):e67350. doi:10.1371/journal.pone.0067350.
Mohanraj R,Sivasankar S. 2014. Sweet potato(Ipomoea batatas[L.] Lam)─A valuable medicinal food:A rievew[J]. Journal of Medicinal Food,17(7):733-741. doi:10.1089/jmf.2013.2818.
Na Y W,Jeong H J,Lee S Y,Choi H G,Kim S H,Rho I R. 2014. Chlorophyll fluorescence as a diagnostic tool for abiotic stress tolerance in wild and cultivated strawberry species[J]. Horticulture,Environment,and Biotechnology,55(4):280-286. doi:10.1007/s13580-014-0006-9.
Parani M,Lakshmi M,Ziegenhagen B,F(xiàn)ladung M,Senthilkumar P,Parida A. 2000. Molecular phylogeny of mangroves VII. PCR-RFLP of trnS-psbC and rbcL gene regions in 24 mangrove and mangrove-associate species[J]. Theoretical and Applied Genetics,100:454-460. doi:10.1007/s001220050059.
Roullier C,Rossel G,Tay D,McKey D,Lebot V. 2011. Combining chloroplast and nuclear microsatellites to investigate origin and dispersal of New World sweet potato landraces[J]. Molecular Ecology,20(19):3963-3977. doi:10.1111/j.1365-294X.2011.05229.x.
Sabater B. 2018. Chloroplast[M]. Basel:MDPI.
Sang T,Crawford D J,Stuessy T F. 1997. Chloroplast DNA phylogeny,reticulate evolution,and biogeography of Paeo-nia(Paeoniaceae)[J]. American Journal of Botany,84(8):1120-1136. doi:10.2307/2446155.
Shaw J,Lickey E,Schilling E,Small R L. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms:The tortoise and the hare Ⅲ[J]. American Journal of Bo-tany,94(3):275-288. doi:10.3732/ajb.94.3.275.
Shekhar S,Mishra D,Buragohain A K,Chakraborty S,Chakraborty N. 2015. Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato(Ipomoea batatas L.)[J]. Food Che-mistry,173:957-965. doi:10.1016/j.foodchem.2014.09. 172.
Taberlet P,Gielly L,Pautou G,Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA[J]. Plant Molecular Biology,17:1105-1109. doi:10.1007/BF00037152.
Wang S N,Nie S P,Zhu F. 2016. Chemical constituents and health effects of sweet potato[J]. Food Research International,8989(Pt1):90-116. doi:10.1007/BF00037152.
Yang J,Moeinzadeh M H,Kuhl H,Helmuth J,Xiao P,Haas S,Liu G L,Zheng J L,Sun Z,F(xiàn)an W J,Deng G F,Wang H X,Hu F H,Zhao S S,F(xiàn)ernie A R,Boerno S,Timmermann B,Zhang P,Vingron M. 2017a. Haplotype-resolved sweet potato genome traces back its hexaploidization history[J]. Nature Plants,3(9):696-703. doi:10.1038/s41477- 017-0002-z.
Yang J,Vázquez L,Chen X D,Li H M,Zhang H,Liu Z L,Zhao G F. 2017b. Development of chloroplast and nuclear DNA markers for Chinese Oaks(Quercus Subgenus Quercus) and assessment of their utility as DNA barcodes[J]. Frontiers in Plant Science,8:1-17. doi:10.3389/fpls.2017. 00816.
Yang X S,Su W J,Wang L J,Lei J,Chai S S,Liu Q C. 2015. Molecular diversity and genetic structure of 380 sweetpotato accessions as revealed by SSR markers[J]. Journal of Integrative Agricultural,14(4):633-641. doi:10.1016/S2095-3119(14)60794-2.
(責(zé)任編輯 陳 燕)