亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一種隱式擴(kuò)散浸入邊界-格子Boltzmann方法及應(yīng)用

        2021-09-12 02:59王文全王金霖駱佳玲
        關(guān)鍵詞:國家自然科學(xué)基金流體高階

        王文全 王金霖 駱佳玲

        摘 要:結(jié)合格子Boltzmann方法和隱式擴(kuò)散浸入邊界方法,實(shí)現(xiàn)流體-固體耦合運(yùn)動的求解。預(yù)測的速度和壓力場可以通過格子Boltzmann方法快速求解,而流固耦合界面力由滿足流固界面的無滑移邊界條件隱式獲得,固體邊界節(jié)點(diǎn)與流場節(jié)點(diǎn)間的信息交換通過高階導(dǎo)數(shù)光滑函數(shù)實(shí)現(xiàn)。該方法的主要優(yōu)點(diǎn)是易于實(shí)施,效率高,并且減少了非物理振蕩和非物理流線穿透。為了確定該數(shù)值方法的有效性,通過圓柱繞流和翼型繞流基準(zhǔn)算例證實(shí)了該方法的可靠性;模擬不同雷諾數(shù)下被動旋轉(zhuǎn)轉(zhuǎn)子與流體的相互作用,進(jìn)一步驗(yàn)證了該方法的魯棒性。

        關(guān)鍵詞:格子Boltzmann方法; 隱式擴(kuò)散浸入邊界法; 高階光滑函數(shù);流體固體相互作用

        中圖分類號:O35

        文獻(xiàn)標(biāo)志碼:A

        參考文獻(xiàn):

        [1]PESKIN C S. Flow patterns around heart valves: a numerical method[J]. Journal of Computational Physics, 1972, 10(2): 252-271.

        [2]CENICEROS H D, FISHER J E, ROMA A M. Efficient solutions to robust, semi-implicit discretizations of the immersed boundary method[J]. Journal of Computational Physics, 2009, 228 (19): 7137-7158.

        [3]FADLUN E A, VERZICCO R, ORLANDI P, et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations[J]. Journal of Computational Physics, 2000, 161 (1): 35-60.

        [4]UHLMANN M. An immersed boundary method with direct forcing for the simulation of particulate flows[J]. Journal of Computational Physics, 2005, 209 (2): 448-476.

        [5]KEMPE T, FROHLICH J. An improved immersed boundary method with direct forcing for the simulation of particle laden flows[J]. Journal of Computational Physics, 2012, 231 (9): 3663-3684.

        [6]WANG S, ZHANG X. An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows[J]. Journal of Computational Physics, 2011, 230 (9) : 3479-3499.

        [7]LIU Q, VASILYEV O V. A Brinkman penalization method for compressible flows in complex geometries[J]. Journal of Computational Physics, 2007, 227 (2) : 946-966.

        [8]CHENY Y, BOTELLA O. The LS-STAG method: a new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties [J]. Journal of Computational Physics, 2010, 229 (4) : 1043-1076.

        [9]SCHNEIDERS L, GNTHER C, MEINKE M, et al. An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows[J]. Journal of Computational Physics, 2016, 311: 62-86.

        [10]SHU C, LIU N, CHEW Y T. A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder[J]. Journal of Computational Physics, 2007, 226: 1607-1622.

        [11]WU J, SHU C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications[J]. Journal of Computational Physics, 2009, 228: 1963-1979.

        [12]WU J, QIU Y L, SHU C, et al. An adaptive immersed boundary-lattice Boltzmann method for simulating a flapping foil in ground effect[J]. Computer and Fluids, 2015, 106: 171-184.

        [13]TIAN F B, LUO H, ZHU L, et al. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments[J]. Journal of Computational Physics, 2011, 230 (19):7266-7283.

        [14]ZHANG H, TAN Y, SHU S, et al. Numerical investigation on the role of discrete element method in combined LBM-IBM-DEM modeling[J]. Computer and Fluids, 2014, 94: 37-48.

        [15]ZHANG H, YUAN H Z, YU A B,et al. Particulate immersed boundary method for complex fluid-particle interaction problems with heat transfer[J]. Computers and Mathematics with Applications, 2016, 71: 391-407.

        [16]HUANG R, WU H. An immersed boundary-thermal lattice Boltzmann method for solid-liquid phase change[J]. Journal of Computational Physics, 2014, 277: 305-319.

        [17]PESKIN C S. The immersed boundary method[J]. Acta Numer, 2002, 11: 479-517.

        [18]ROMA A M, PESKIN C S, BERGER M J. An adaptive version of the immersed boundary method[J]. Journal of Computational Physics, 1999, 153 (2): 509-534.

        [19]YANG X, XING Z, LI Z, et al. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations[J]. Journal of Computational Physics, 2009, 228 (20): 7821-7836.

        [20]BAO Y, KAYE J. PESKIN C S. A gaussian-like immersed-boundary kernel with three continuous derivatives and improved translational invariance[J]. Journal of Computational Physics, 2016, 316 : 139-144.

        [21]SUN Y, SHU C, WANG Y, et al. An immersed boundary-gas kinetic flux solver for simulation of incompressible flows[J]. Computer and Fluids, 2017, 142: 45-56 .

        [22]SHUKLA R K, TATINENI M, ZHONG X. Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2007, 224: 1064-1094.

        [23]IMAMURA T, SUZUKI K, NAKAMURA T, et al. Flow simulation around an airfoil using lattice Boltzmann method on generalized coordinates[J]. AIAA Journal, 2015, 43(9): 1968-1973.

        (責(zé)任編輯:于慧梅)

        Abstract:

        The lattice Boltzmann method and the implicit diffused interface immersed boundary method are combined to solve the fluid-solid coupling motion.The predicted velocity and pressure fields can be solved quickly by lattice Boltzmann method. The fluid-structure interface forces are obtained implicitly by the no-slip boundary condition satisfying the fluid-structure interface. The information exchange between solid boundary nodes and flow field nodes is realized by the high-order derivative smooth function.The main advantage of this present method is that it is not only simple in concept and easy for implementation, but also it is of high efficiency and reduces the non-physical oscillations. In order to identify the effectiveness and validity of this numerical method, to flow around a stationary circular cylinder and airfoil NACA0012 are simulated firstly. It clarified that this method is reliable and the no-slip boundary is satisfied very well. Then, the interaction between the passively rotating rotor and the fluid under different Reynolds numbers is simulated to further verify the robustness of the proposed method.

        Key words:

        lattice Boltzmann method; implicit diffused interface immersed boundary method; high-order smooth functions; fluid-solid interaction

        王文全,男,1977年生,四川南充人,博士,教授,博士生導(dǎo)師,霍英東青年基金獲得者,云南省中青年學(xué)術(shù)與技術(shù)帶頭人,云南省萬人計劃產(chǎn)業(yè)技術(shù)領(lǐng)軍人才,云南省引進(jìn)高層次人才(二層次),四川大學(xué)“雙百人才工程A計劃”。長期潛心于多場耦合基礎(chǔ)理論以及可再生能源利用方面的研究。已出版學(xué)術(shù)專著2部,發(fā)表學(xué)術(shù)論文120余篇。申請國內(nèi)發(fā)明專利17項(xiàng),已授權(quán)9項(xiàng)。獲云南省自然科學(xué)一等獎2項(xiàng),云南省自然科學(xué)二等獎2項(xiàng)。主持/參與完成國家自然科學(xué)基金重大研究計劃項(xiàng)目、國家自然科學(xué)基金重點(diǎn)項(xiàng)目、云南省重大科技專項(xiàng)等縱向科技項(xiàng)目19項(xiàng)以及其它橫向項(xiàng)目多項(xiàng)。

        猜你喜歡
        國家自然科學(xué)基金流體高階
        高階時頻變換理論與應(yīng)用
        山雨欲來風(fēng)滿樓之流體壓強(qiáng)與流速
        喻璇流體畫
        猿與咖啡
        高階思維介入的高中英語閱讀教學(xué)
        三個高階微分方程的解法研究
        高階非線性慣性波模型的精確孤立波和周期波解
        科研管理者在自然科學(xué)基金申報中的服務(wù)成效提升策略
        午夜三级a三级三点在线观看| 精品国产成人一区二区不卡在线| 成人av一区二区亚洲精| 狠狠综合久久av一区二区蜜桃 | 精品人妻va出轨中文字幕| 国产成人无码A区在线观| 亚洲高清av一区二区| 久久久免费看少妇高潮| 亚洲精品无amm毛片| 四虎在线播放免费永久视频| 国产av区亚洲av毛片| 一区二区三区最新中文字幕| 真人新婚之夜破苞第一次视频| 国产日韩久久久精品影院首页| 玩弄丝袜美腿超短裙校花| 人妻少妇哀求别拔出来| 亚洲人成电影在线观看天堂色| 国产精品亚洲午夜不卡| 国产三级视频在线观看国产| 亚洲日韩小电影在线观看| 丰满女人又爽又紧又丰满| 国产高清天干天天视频| 国产饥渴的富婆一凶二区| 一本色道久久88精品综合| 日韩欧美第一页| 三级黄片一区二区三区| 亚洲精品无码永久中文字幕| 欧美人妻精品一区二区三区| 国产精品亚洲A∨无码遮挡| 亚洲综合在线观看一区二区三区 | 中文字幕人妻少妇伦伦| 一品二品三品中文字幕| 中文字幕一区二区三区在线不卡 | 日本中文字幕不卡在线一区二区| 中文字幕亚洲视频三区| 欧美丰满熟妇xxxx性ppx人交 | 人妻丰满熟妇AV无码片| 亚洲一区二区日韩精品| 中文字幕乱码高清完整版| 爱a久久片| 熟妇人妻丰满少妇一区|