亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一種隱式擴(kuò)散浸入邊界-格子Boltzmann方法及應(yīng)用

        2021-09-12 02:59王文全王金霖駱佳玲
        關(guān)鍵詞:國家自然科學(xué)基金流體高階

        王文全 王金霖 駱佳玲

        摘 要:結(jié)合格子Boltzmann方法和隱式擴(kuò)散浸入邊界方法,實(shí)現(xiàn)流體-固體耦合運(yùn)動的求解。預(yù)測的速度和壓力場可以通過格子Boltzmann方法快速求解,而流固耦合界面力由滿足流固界面的無滑移邊界條件隱式獲得,固體邊界節(jié)點(diǎn)與流場節(jié)點(diǎn)間的信息交換通過高階導(dǎo)數(shù)光滑函數(shù)實(shí)現(xiàn)。該方法的主要優(yōu)點(diǎn)是易于實(shí)施,效率高,并且減少了非物理振蕩和非物理流線穿透。為了確定該數(shù)值方法的有效性,通過圓柱繞流和翼型繞流基準(zhǔn)算例證實(shí)了該方法的可靠性;模擬不同雷諾數(shù)下被動旋轉(zhuǎn)轉(zhuǎn)子與流體的相互作用,進(jìn)一步驗(yàn)證了該方法的魯棒性。

        關(guān)鍵詞:格子Boltzmann方法; 隱式擴(kuò)散浸入邊界法; 高階光滑函數(shù);流體固體相互作用

        中圖分類號:O35

        文獻(xiàn)標(biāo)志碼:A

        參考文獻(xiàn):

        [1]PESKIN C S. Flow patterns around heart valves: a numerical method[J]. Journal of Computational Physics, 1972, 10(2): 252-271.

        [2]CENICEROS H D, FISHER J E, ROMA A M. Efficient solutions to robust, semi-implicit discretizations of the immersed boundary method[J]. Journal of Computational Physics, 2009, 228 (19): 7137-7158.

        [3]FADLUN E A, VERZICCO R, ORLANDI P, et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations[J]. Journal of Computational Physics, 2000, 161 (1): 35-60.

        [4]UHLMANN M. An immersed boundary method with direct forcing for the simulation of particulate flows[J]. Journal of Computational Physics, 2005, 209 (2): 448-476.

        [5]KEMPE T, FROHLICH J. An improved immersed boundary method with direct forcing for the simulation of particle laden flows[J]. Journal of Computational Physics, 2012, 231 (9): 3663-3684.

        [6]WANG S, ZHANG X. An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows[J]. Journal of Computational Physics, 2011, 230 (9) : 3479-3499.

        [7]LIU Q, VASILYEV O V. A Brinkman penalization method for compressible flows in complex geometries[J]. Journal of Computational Physics, 2007, 227 (2) : 946-966.

        [8]CHENY Y, BOTELLA O. The LS-STAG method: a new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties [J]. Journal of Computational Physics, 2010, 229 (4) : 1043-1076.

        [9]SCHNEIDERS L, GNTHER C, MEINKE M, et al. An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows[J]. Journal of Computational Physics, 2016, 311: 62-86.

        [10]SHU C, LIU N, CHEW Y T. A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder[J]. Journal of Computational Physics, 2007, 226: 1607-1622.

        [11]WU J, SHU C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications[J]. Journal of Computational Physics, 2009, 228: 1963-1979.

        [12]WU J, QIU Y L, SHU C, et al. An adaptive immersed boundary-lattice Boltzmann method for simulating a flapping foil in ground effect[J]. Computer and Fluids, 2015, 106: 171-184.

        [13]TIAN F B, LUO H, ZHU L, et al. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments[J]. Journal of Computational Physics, 2011, 230 (19):7266-7283.

        [14]ZHANG H, TAN Y, SHU S, et al. Numerical investigation on the role of discrete element method in combined LBM-IBM-DEM modeling[J]. Computer and Fluids, 2014, 94: 37-48.

        [15]ZHANG H, YUAN H Z, YU A B,et al. Particulate immersed boundary method for complex fluid-particle interaction problems with heat transfer[J]. Computers and Mathematics with Applications, 2016, 71: 391-407.

        [16]HUANG R, WU H. An immersed boundary-thermal lattice Boltzmann method for solid-liquid phase change[J]. Journal of Computational Physics, 2014, 277: 305-319.

        [17]PESKIN C S. The immersed boundary method[J]. Acta Numer, 2002, 11: 479-517.

        [18]ROMA A M, PESKIN C S, BERGER M J. An adaptive version of the immersed boundary method[J]. Journal of Computational Physics, 1999, 153 (2): 509-534.

        [19]YANG X, XING Z, LI Z, et al. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations[J]. Journal of Computational Physics, 2009, 228 (20): 7821-7836.

        [20]BAO Y, KAYE J. PESKIN C S. A gaussian-like immersed-boundary kernel with three continuous derivatives and improved translational invariance[J]. Journal of Computational Physics, 2016, 316 : 139-144.

        [21]SUN Y, SHU C, WANG Y, et al. An immersed boundary-gas kinetic flux solver for simulation of incompressible flows[J]. Computer and Fluids, 2017, 142: 45-56 .

        [22]SHUKLA R K, TATINENI M, ZHONG X. Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2007, 224: 1064-1094.

        [23]IMAMURA T, SUZUKI K, NAKAMURA T, et al. Flow simulation around an airfoil using lattice Boltzmann method on generalized coordinates[J]. AIAA Journal, 2015, 43(9): 1968-1973.

        (責(zé)任編輯:于慧梅)

        Abstract:

        The lattice Boltzmann method and the implicit diffused interface immersed boundary method are combined to solve the fluid-solid coupling motion.The predicted velocity and pressure fields can be solved quickly by lattice Boltzmann method. The fluid-structure interface forces are obtained implicitly by the no-slip boundary condition satisfying the fluid-structure interface. The information exchange between solid boundary nodes and flow field nodes is realized by the high-order derivative smooth function.The main advantage of this present method is that it is not only simple in concept and easy for implementation, but also it is of high efficiency and reduces the non-physical oscillations. In order to identify the effectiveness and validity of this numerical method, to flow around a stationary circular cylinder and airfoil NACA0012 are simulated firstly. It clarified that this method is reliable and the no-slip boundary is satisfied very well. Then, the interaction between the passively rotating rotor and the fluid under different Reynolds numbers is simulated to further verify the robustness of the proposed method.

        Key words:

        lattice Boltzmann method; implicit diffused interface immersed boundary method; high-order smooth functions; fluid-solid interaction

        王文全,男,1977年生,四川南充人,博士,教授,博士生導(dǎo)師,霍英東青年基金獲得者,云南省中青年學(xué)術(shù)與技術(shù)帶頭人,云南省萬人計劃產(chǎn)業(yè)技術(shù)領(lǐng)軍人才,云南省引進(jìn)高層次人才(二層次),四川大學(xué)“雙百人才工程A計劃”。長期潛心于多場耦合基礎(chǔ)理論以及可再生能源利用方面的研究。已出版學(xué)術(shù)專著2部,發(fā)表學(xué)術(shù)論文120余篇。申請國內(nèi)發(fā)明專利17項(xiàng),已授權(quán)9項(xiàng)。獲云南省自然科學(xué)一等獎2項(xiàng),云南省自然科學(xué)二等獎2項(xiàng)。主持/參與完成國家自然科學(xué)基金重大研究計劃項(xiàng)目、國家自然科學(xué)基金重點(diǎn)項(xiàng)目、云南省重大科技專項(xiàng)等縱向科技項(xiàng)目19項(xiàng)以及其它橫向項(xiàng)目多項(xiàng)。

        猜你喜歡
        國家自然科學(xué)基金流體高階
        高階時頻變換理論與應(yīng)用
        山雨欲來風(fēng)滿樓之流體壓強(qiáng)與流速
        喻璇流體畫
        猿與咖啡
        高階思維介入的高中英語閱讀教學(xué)
        三個高階微分方程的解法研究
        高階非線性慣性波模型的精確孤立波和周期波解
        科研管理者在自然科學(xué)基金申報中的服務(wù)成效提升策略
        狠狠色狠狠色综合网| 美女熟妇67194免费入口| 久久夜色精品国产九色| 中文字幕av永久免费在线| 国产亚洲精品精品精品| 国内露脸中年夫妇交换| 视频二区 无码中出| 男女激情视频网站免费在线| 人人妻人人澡人人爽欧美一区双| 国产成人麻豆精品午夜福利在线 | 一本一道人人妻人人妻αv| 亚洲成色在线综合网站| 精品人妻av区乱码| 一区二区三区中文字幕在线播放 | 久久99国产精品久久| 亚洲学生妹高清av| 国产综合精品久久久久成人| 在线观看免费不卡网站| 24小时日本在线视频资源| 亚洲一区二区三区偷拍女厕 | 日韩a毛片免费观看| 色窝综合网| 国产三级黄色大片在线免费看| 国产成人a在线观看视频免费| 亚洲白白色无码在线观看| 国产偷闻隔壁人妻内裤av| 国产亚洲精品色婷婷97久久久 | 无码av免费一区二区三区试看| 国产在线一区二区三区av| 手机在线国产福利av| 成人爽a毛片免费视频| 亚洲女人被黑人巨大进入| 亚洲av网一区天堂福利| 国产午夜视频在线观看.| 国产精品无圣光一区二区| 久久中国国产Av秘 入口| 亚洲永久免费中文字幕| 乱色精品无码一区二区国产盗| 国产3p视频| 成年女人午夜特黄特色毛片免| 成人艳情一二三区|