亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        抓本質悟內涵 多角度得一法

        2021-09-10 07:22:44郭明明
        初中生學習指導·中考版 2021年4期
        關鍵詞:過點表達式直角三角形

        郭明明

        原題再現

        例(2020·四川·成都·第28題)在平面直角坐標系xOy 中,已知拋物線y = ax2 + bx + c 與x 軸交于A(-1,0),B(4,0)兩點,與y 軸交于點C(0,-2).

        (1)求拋物線的函數表達式.

        (2)如圖1,點D 為第四象限拋物線上一點,連接AD,BC 交于點E,連接BD,記△BDE 的面積為S1,△ABE 的面積為S2,求S1S2的最大值.

        (3)如圖2,連接AC,BC,過點O 作直線l?BC,點P,Q 分別為直線l 和拋物線上的點. 試探究:在第一象限是否存在這樣的點P,Q,使△PQB ∽△CAB. 若存在,請求出所有符合條件的點P 的坐標;若不存在,請說明理由.

        考點剖析

        1. 涉及的知識點:待定系數法求表達式,一次函數、二次函數的圖象和性質,相似三角形的判定和性質,三角形的面積,勾股定理.

        2. 涉及的思想方法:分類討論思想、數形結合思想、轉化思想.

        3. 題目難點:考查知識點較多、代數最值問題.

        4. 基本模型:A字形和8字形相似、一線三等角、勾股定理、函數最值模型.

        學情分析

        (1)本小題考查確定二次函數表達式. 二次函數表達式有兩種通用形式,即一般式y = ax2 + bx + c(已知拋物線上任意三個點)和頂點式y = a( x - h )2 + k(已知拋物線頂點和任意一個點),還有一種特殊形式,即交點式y = a( x + x1)( x + x2)(已知拋物線與x 軸的兩個交點),需要結合題意,抓住特征選取恰當的方法求解表達式.

        解法1:從拋物線與y 軸交點C(0,-2)入手,直接得到c 的值,這樣可以利用一般式求解.∵點C(0,-2)在拋物線y = ax2 + bx + c 上,∴c = -2.

        將A(-1,0),B(4,0)代入,可得ìí?????a =12,b = -32.∴拋物線的表達式為y=12x2 -32x - 2.

        解法2:從拋物線與x 軸的兩個交點A(-1,0),B(4,0)入手,利用交點式求解.設拋物線的表達式為y=a(x + 1)(x - 4). 將C(0,-2)代入,可得a=12,∴拋物線的表達式為y=12(x + 1)(x - 4),即y=12x2 -32x - 2.

        (2)該問是考查面積比的最值問題,表示△BDE 和△ABE 的面積是解題的關鍵. 但是它們的底和高都是變量,故而表示它們的底和高就是這個問題的難點. 在平面直角坐標系中,表示一條傾斜線段的長度往往較困難,此時可以將傾斜線段轉化為與坐標軸平行(或垂直)的線段. 下面介紹四種解法(方法有變化,本質無區(qū)別)

        解法1:如圖3,過點A 作AK?y 軸,交BC 延長線于點K,過點D 作DF?y 軸,交BC 于點F,則AK?DF,∴△AKE ∽△DFE,∴DEAE = DFAK,∴S1S2 = DEAE = DFAK,可求得直線BC 的表達式為y=12x - 2,由AK?y 軸,可得AK=52,設D( ) m,12m2 -32m - 2 ,則F( ) m,12m - 2 ,∴DF=-12m2 + 2m.則可得S1S2 = DFAK= -15( m - 2 )2 +45.∵-15< 0,∴當m=2時,S1S2有最大值,最大值是45.

        解法2:如圖4,過點D 作DF?BC,交x 軸于點F,∴DEAE = BFAB . ∴S1S2 = DEAE = BFAB .∵直線BC 的表達式為y=12x - 2,∴設直線DF 表達式為y=12x + b.設D( ) m,12m2 -32m - 2 ,將點D 代入直線DF 表達式得b =12m2 - 2m - 2.∴直線DF 表達式為y=12x +12m2 - 2m - 2.

        ∴F(-m2 + 4m + 4,0),∴BF= -m2 + 4m .

        后續(xù)解題過程略,請同學們自己完成.

        解法3:如圖5,過點D 作DF?x 軸交BC 于點F,則△ABE ∽△DFE .

        ∴DEAE = DFAB,∴S1S2 = DEAE = DFAB .

        設點D 的坐標,表示DF 即可,

        后續(xù)解題過程略,請同學們自己完成.

        解法4:如圖6,過點D 作DG⊥x 軸于點G,過點E 作EF⊥x軸于點F .

        由EF?DG,得S1S2 = DEAE = GFAF,

        設點D 的坐標,聯立直線AD 和直線BC 的表達式得到方程組,解該方程組求出點E 的坐標,進而表示GF,AF 即可.

        后續(xù)解題過程略,請同學們自己完成.

        本質感悟:由于△BDE 和△ABE 同高,因此其面積比實質上就是其底的比,即線段DE 和AE 的比,接下來就是將線段DE和AE 的比利用不同的方式進行轉化,其主導思想是改“斜”歸“正”.

        (3)相似三角形的存在性問題分為兩種類型,第一種是用相似符號給出的相似三角形,具有確定性,第二種是用文字給出的相似三角形,考查分類討論思想. 本小題考查的是第一種類型. 題中指定了對應頂點,其難點為雙動點問題:有一個動點在拋物線上,另一個動點在直線上.結合已知條件可得出△ABC 是直角三角形,由點P,Q 使△PQB ∽△CAB,可知△PQB 也是直角三角形,這樣便找到了“題眼”,將相似三角形的存在性轉化為直角三角形的存在性,從而構造“一線三等角”模型解題.

        解:符合條件的點P的坐標為(68 )9 , 349 或(6 + 2 41 )5 , 3 + 415 .

        ∵l?BC,∴直線l 的解析式為y=12x,設P( ) a,12a ,

        ①當點P 在直線BQ 右側時,如圖7,過點P 作PN⊥x 軸于點N,過點Q 作QM⊥直線PN 于點M,

        可得AC= 5,AB=5,BC=2 5,

        ∴AC2 + BC2=AB2,∴∠ACB=90°.

        ∵△PQB ∽△CAB,∴PQPB = ACBC =12,∠QPB = ∠ACB=90°.

        ∵∠QMP=∠BNP=90°,

        ∴∠MQP + ∠MPQ=90°,∠MPQ + ∠BPN=90°.

        ∴∠MQP=∠BPN,∴△QPM ∽△PBN.

        ∴QMPN = PMBN = PQPB =12. ∴QM=a4,PM=12(a - 4)=12a - 2.

        ∴MN=a - 2,BN - QM=34a - 4. ∴Q( ) 34a, a - 2 .

        將點Q 的坐標代入拋物線的表達式得12× ( ) 34a2-32×34a - 2 = a - 2,

        解得a=0(舍去)或a=689 .

        ∴P(68 )9 , 349 .

        ②當點P在直線BQ左側時,由①的方法同理可得點Q的坐標為( ) 54a, 2 .

        此時點P的坐標為(6 + 2 41 )5 , 3 + 415 .

        本質感悟:直角三角形存在性問題的通解通法是一線三等角,平面直角坐標系內有直角的存在,是構造一線三等角模型的提示性條件,因此本題構造一線三等角模型的突破口就是直角三角形,構造的方法為過直角頂點作坐標軸的平行線(或垂線).

        勤于積累

        1. 模型積累:一線三等角模型,如圖8~圖10.

        模型的應用分為兩種,第一種為顯性模型應用,即在題中直接給出基本模型,并直接利用模型解決問題;第二種為隱性模型應用,即題中隱含模型,但圖形不完整,需要通過圖形特征或者題中條件補全模型,然后加以應用解決問題.

        一線三等角模型主要應用于相似三角形,解題關鍵是抓住模型特征“. 一線”是模型中確定三等角的重要條件,在平面直角坐標系中,通常以平行(或垂直)于坐標軸的直線為一線,由于坐標軸互相垂直,因此三等角為三個直角.

        2.方法歸納:

        (1)面積比問題的解決方法:

        ①用相似三角形的性質(面積之比等于相似比的平方);

        ②同高時,面積之比等于底邊之比,反之亦然,其中前者較為常見.

        (2)直角三角形存在性問題:

        ①一線三等角模型——三角形相似;

        ②勾股定理逆定理;

        ③直角→兩直線垂直→一次函數圖象→k1 ? k2 = -1.

        (作者單位:錦州市實驗學校)

        猜你喜歡
        過點表達式直角三角形
        含30°角直角三角形在生活中的應用
        一個混合核Hilbert型積分不等式及其算子范數表達式
        表達式轉換及求值探析
        一個圓錐曲線性質的推廣
        淺析C語言運算符及表達式的教學誤區(qū)
        現代計算機(2019年6期)2019-04-08 00:46:50
        5.2 圖形的相似與解直角三角形
        拼搭直角三角形
        數學(二)
        究竟幾點
        好孩子畫報(2013年5期)2013-04-29 14:14:00
        議C語言中循環(huán)語句
        商(2012年11期)2012-07-09 19:07:55
        久热爱精品视频在线观看久爱| 99国产精品自在自在久久| 国产情侣久久久久aⅴ免费| 国产精品爆乳在线播放| 国产精品亚洲精品日韩动图 | 白嫩丰满少妇av一区二区| 丰满人妻熟妇乱又伦精品软件| 亚洲夜夜骑| 日日噜噜夜夜久久密挑| 真实夫妻露脸自拍视频在线播放| 国产顶级熟妇高潮xxxxx| 日韩中文字幕不卡网站| 伊人久久综合狼伊人久久| 人人妻人人澡人人爽欧美一区| 香蕉视频在线精品视频| 熟女人妻丰满熟妇啪啪| 91快射视频在线观看| 少妇被粗大的猛进出69影院| 亚洲欧美日韩在线一区| 久久久www成人免费无遮挡大片| 福利视频偷拍一区二区| 高潮内射双龙视频| 五十路熟妇亲子交尾| 人成视频在线观看免费播放| 国产精品一区二区av麻豆日韩| 日本乱偷人妻中文字幕在线| 亚洲AV综合A∨一区二区| 美利坚亚洲天堂日韩精品| 熟妇人妻无乱码中文字幕真矢织江 | 色妞ww精品视频7777| 亚洲av无码片在线播放| 五十路一区二区中文字幕| 国产精品高清一区二区三区不卡| 国产精品永久免费视频| 国产极品视觉盛宴在线观看| 日本va中文字幕亚洲久伊人| 中文 在线 日韩 亚洲 欧美| 综合无码一区二区三区四区五区 | 人妻少妇一区二区三区| av在线不卡一区二区| 欧美怡春院一区二区三区|