張 佳,楊椏楠,姜建雙,馮子明,苑 祥,張 旭,張培成
?化學(xué)成分 ?
仙鶴草中木脂素類化學(xué)成分的研究
張 佳,楊椏楠,姜建雙,馮子明,苑 祥,張 旭,張培成*
中國醫(yī)學(xué)科學(xué)院&北京協(xié)和醫(yī)學(xué)院藥物研究所,天然藥物活性物質(zhì)與功能國家重點實驗室,北京 100050
對仙鶴草的化學(xué)成分進行分離和鑒定,并利用去血清損傷的PC12細胞模型篩選化合物的神經(jīng)保護活性。利用80%乙醇對仙鶴草進行提取,再通過大孔吸附樹脂、ODS、硅膠、Sephadex LH-20凝膠以及半制備型高效液相等柱色譜方法進行分離,然后根據(jù)質(zhì)譜、核磁、圓二色譜等波譜學(xué)數(shù)據(jù)鑒定化合物的結(jié)構(gòu)。從仙鶴草中分離并鑒定了10個木脂素類化合物,分別命名為仙鶴草酸酯(1)、仙鶴草苷A(2)、苦樹苷C(3)、長花馬先蒿苷B(4)、(7,8)-4,7,9,9′-四羥基-3,3′-二甲氧基-8--4′-新木脂素-7--β--葡萄糖苷(5)、(7,8)-3-甲氧基-8,4′-氧代新木脂素-3′,4,7,9,9′-五醇(6)、紅葉藤苷(7)、(7,8)-1-[4--(β--吡喃葡糖糖基)-3-甲氧基苯基]-2-[4-(3-羥丙基)-2,6-二甲氧基苯氧基]-1,3-丙二醇(8)、密穗馬先蒿苷(9)、淫羊藿醇A2(10)?;衔?和2為新化合物,其余化合物均為首次從仙鶴草中分離得到。化合物1a和1b為1對互變的葡萄糖端基手性相反的8--4′型木脂素酸酯;化合物1在10 μmol/L對去血清損傷的PC12神經(jīng)細胞表現(xiàn)出一定的保護作用。
仙鶴草;8--4′型木脂素;結(jié)構(gòu)互變;仙鶴草酸酯;仙鶴草苷A;神經(jīng)保護;PC12神經(jīng)細胞
仙鶴草Ledeb. 又名龍芽草、脫力草、狼牙草,為薔薇科多年生草本植物,廣泛分布于我國南北各省[1]。仙鶴草始載于《滇南本草》,性苦、澀,味平,歸心、肝經(jīng),以全草入藥,具有收斂止血、截瘧、止痢、解毒、補虛等功效[2]?,F(xiàn)代藥理學(xué)研究表明,仙鶴草具有降糖、抗炎、抗腫瘤以及止血等作用[3-6]。同時,化學(xué)研究顯示仙鶴草具有黃酮、間苯三酚、異香豆素、三萜等多種類型的化學(xué)成分[5,7-9]。前期,本課題組從仙鶴草中發(fā)現(xiàn)了一系列間苯三酚衍生物[10],為了進一步闡明仙鶴草的物質(zhì)基礎(chǔ),尋找具有生物活性的小分子化合物,本實驗繼續(xù)對仙鶴草乙醇提取物中的化學(xué)成分進行研究,采取多種色譜手段分離到了10個木脂素類化合物,分別鑒定為仙鶴草酸酯(pilosaneolignan ester,1)、仙鶴草苷A(pilosaneolignanside A,2)、苦樹苷C(picraquassioside C,3)、長花馬先蒿苷B (longifloroside B,4)、(7,8)-4,7,9,9′-四羥基-3,3′-二甲氧基-8--4′-新木脂素-7--β--葡萄糖苷[(7,8)-4,7,9,9′-tetrahydroxy-3,3′-dimethoxy-8,4′- oxyneolignan-7--β--glucoside,5]、(7,8)-3-甲氧基-8,4′-氧代新木脂素-3′,4,7,9,9′-五醇[(7,8)-3- methoxy-8,4′-oxyneoligna-3′,4,7,9,9′-pentol,6]、紅葉藤苷(rourinoside,7)、(7,8)-1-[4--(β--吡喃葡糖糖基)-3-甲氧基苯基]-2-[4-(3-羥丙基)-2,6-二甲氧基苯氧基]-1,3-丙二醇((7,8)-1-[4--(β-- glucopyranosyl)-3-methoxyphenyl]-2-[4-(3-hydroxy- propyl)-2,6-imethoxyphenoxy]-1,3-propanediol,8)、密穗馬先蒿苷(densispicoside,9)、淫羊藿A2(icariol A2,10),結(jié)構(gòu)見圖1。其中,化合物1和2為新化合物,其余化合物均為首次從仙鶴草中分離得到。值得注意的是,化合物1a和1b為1對互變的糖端基手性相反的8--4′型木脂素葡萄糖酸酯;化合物1在10 μmol/L濃度下對去血清損傷的PC12神經(jīng)細胞表現(xiàn)出一定的保護作用。
布魯克AVANCE III-500型核磁共振儀(瑞士Bruker公司);P-2000型旋光儀、Jasco J-815型圓二色譜儀、Jasco V-650型紫外光譜儀(日本Jasco公司);Nicolet 5700傅里葉變換紅外光譜儀(美國Thermo Electron公司);Agilent 6520 seriesQ-TOF LC/MS型高分辨質(zhì)譜儀(美國Agilent公司);Agilent 1260型高效液相色譜儀(美國Agilent公司);島津LC-6AR制備型高效液相色譜儀,配備SPD-20A型檢測器(日本島津公司);YMC-Pack ODS-A半制備型高效液相色譜柱(250 mm×10 mm,5 μm,日本YMC公司);Agilent 7890A型氣相色譜儀(美國Agilent公司);HP-5毛細管柱(30 m×0.32 mm,迪馬科技);EYELA FDU-1110型冷凍干燥機(日本東京理化株式會社);柱色譜硅膠(200~300目,青島海洋化工廠);HP-20型大孔吸附樹脂(日本三菱公司);Sephadex LH-20型凝膠(瑞士Pharmacia公司);ODS填料(30~50 μm,日本YMC公司)。
圖1 化合物1~10的結(jié)構(gòu)
仙鶴草于2018年11月購自安徽亳州,經(jīng)中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院藥物研究所馬林副研究員鑒定為薔薇科龍牙草屬植物仙鶴草Ledeb. 的全草,標(biāo)本(ID-S-2981)現(xiàn)存放于中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院藥物研究所標(biāo)本室。
取100 kg干燥的仙鶴草,粉碎,用80%乙醇水浸泡過夜,80 ℃回流提取3次(750、600、600 L),分別提取1.5、1.5、1 h。合并提取液經(jīng)減壓濃縮,得粗提物11 kg。用30 L蒸餾水分散總浸膏,依次用50 L的石油醚、醋酸乙酯和正丁醇系統(tǒng)萃取,各萃取3~5次,減壓濃縮,分別得石油醚萃取部位100 g、醋酸乙酯萃取部位470 g、正丁醇萃取部位2.0 kg和殘留水溶性部位4.7 kg。
取正丁醇部位2.0 kg,用水溶解,經(jīng)HP-20大孔吸附樹脂柱色譜進行梯度洗脫,洗脫體系為乙醇和水,梯度依次為純水和15%、30%、50%、95%乙醇。選擇30%乙醇洗脫部位經(jīng)Sephadex LH-20凝膠柱色譜分離,乙醇-水(0∶100~100∶0)梯度洗脫,經(jīng)HPLC分析,得到6個亞流分(Fra. A~F)。取Fra. A(9.0 g)經(jīng)ODS中壓柱色譜分離,甲醇-水(2∶98~100∶0)洗脫。合并流分Fra. A-32~33,經(jīng)Sephadex LH-20柱色譜和半制備型高效液相純化得化合物3(10.4 mg)和8(6.5 mg)。取Fra. B(10.0 g)經(jīng)ODS中壓柱色譜分離,甲醇-水(2∶98~100∶0)洗脫,合并流分Fra. B-27~29,經(jīng)2次半制備型高效液相純化得化合物4(4.3 mg)和5(9.5 mg)。流分Fra. B-47經(jīng)Sephadex LH-20 柱色譜(甲醇)分離,流分Fra. B-47-7~10合并,通過半制備液相進行純化得化合物7(12.4 mg)。取Fra. D(10.33 g)經(jīng)ODS中壓柱色譜分離,甲醇-水(2∶98~100∶0)洗脫。流分Fra. D-20通過Sephadex LH-20(甲醇)和半制備型高效液相色譜純化得化合物2(10.3 mg)。合并流分Fra. D-21~26,經(jīng)Sephadex LH-20柱色譜(甲醇)分離,再次經(jīng)Sephadex LH-20柱色譜(甲醇)和半制備液相純化,得化合物1(7.2 mg)。合并Fra. D-32~37,經(jīng)Sephadex LH-20柱色譜(甲醇)和半制備液相色譜反復(fù)純化,得化合物6(4.0 mg)、9(8.1 mg)和10(14.4 mg)。
化合物1由1對互變體1a和1b組成,由于不能穩(wěn)定地單獨存在,因此混合測試核磁信號。1H-NMR譜(表1)顯示有2對反式雙鍵的氫信號H7.57 (2H, d,= 16.0 Hz, H-7′), 6.33 (2H, dd,= 1.7, 16.0 Hz, H-8′);2組ABX自旋偶合系統(tǒng)的氫信號H7.01 (2H, d,= 1.7 Hz, H-2), 6.74 (2H, d,= 8.1 Hz, H-5) 和6.84 (2H, dd,=1.7, 8.1 Hz, H-6);6個芳香氫信號H7.07 (2H, brs, H-2′), 6.98 (2H, overlapped, H-5′), 6.97 (2H, overlapped, H-6′);2個葡萄糖端基氫信號H4.51 (1H, d,= 7.8 Hz, H-1′′1a) 和5.11 (1H, d,= 3.6 Hz, H-1′′1b);2個甲氧基氫信號H3.80 (6H, s, -OCH3)。13C-NMR譜(表1)共顯示有34個碳信號,結(jié)合HSQC譜分析可知1a和1b的結(jié)構(gòu)屬于8--4′型木脂素糖苷,碳信號分別歸屬為2個羰基碳信號C169.1和169.0;4個烯碳信號C146.7, 146.6, 116.6, 116.6;2組芳香碳信號150.5, 149.4, 149.1, 147.4, 134.1, 130.2, 122.3, 120.7, 117.5, 116.1, 115.9, 111.5,其中包括4個與氧原子直接相連的碳信號C150.5, 149.4, 149.1, 147.4;2個甲氧基碳信號C56.4;2組葡萄糖基碳信號C98.4, 94.2, 78.1, 76.3, 75.6, 74.9, 73.9, 72.2, 71.9, 70.9, 65.1, 65.0。
在HMBC譜(圖2)中,H-6與C-2 (C111.5), C-4 (C147.4), C-5 (C116.1);H-2′與C-3′ (C149.4), C-4′ (C150.5), C-6′ (C122.3) 的相關(guān)信號確證2個苯環(huán)(A和B環(huán))的存在,-OCH3和C-3的HMBC相關(guān)信號提示甲氧基取代在C-3位。另外,H-7與C-1 (C134.1), C-2 (C111.5), C-6 (C120.7);H-8與C-1 (C134.1), C-4′ (C150.5);以及H2-9與C-7 (C74.0), C-8 (C86.4) 的相關(guān)信號進一步確證了8--4′型木脂素的結(jié)構(gòu)片段。而H-7′與C-1′ (C130.2), C-2′ (C115.9), C-6′ (C122.3), C-9′ (C116.6);H-8′與C-1′ (C130.2), C-7′ (C146.7), C-9′ (C169.1) 的HMBC遠程相關(guān)提示在B環(huán)存在1個苯丙烯酸的片段。分析2個糖基信號,發(fā)現(xiàn)端基碳 (C-1′′) 化學(xué)位移值 (C98.4和94.2) 較正常值偏小,C-6′′ (C65.1和65.0) 化學(xué)位移值較正常值偏大[11],由此推測糖基和木脂素是通過6′′位的羥基和9′位的苯丙烯酸形成了酯鍵,而H2-6′′與C-9′ (C169.1) 的HMBC相關(guān)信號則正好驗證了這點。由于葡萄糖基C-1′′半縮醛的結(jié)構(gòu)不穩(wěn)定,因此C-1′′存在α(1a)和β(1b)2種構(gòu)型,能夠自發(fā)地互相轉(zhuǎn)變。而1a和1b的C-7′ (C146.67和146.62)、C-8′ (C116.63和116.57) 和C-9′ (C169.06和168.96) 的化學(xué)位移由于糖基影響也出現(xiàn)較小的差別(表1)。
表1 化合物1的1H-NMR和13C-NMR數(shù)據(jù)(500/125 MHz, CD3OD)
圖2 化合物1和2主要的HMBC、1H-1H COSY和ROESY相關(guān)
由于化合物1的C-9位亞甲基氫化學(xué)位移差值(?H-9a–H-9b)為0.22,根據(jù)文獻報道[12]判斷化合物1的C-7位和C-8位的相對構(gòu)型應(yīng)為蘇式 ()?;衔?的實驗圓二色譜(ECD)譜圖顯示在251.5 nm處有1個正的Cotton效應(yīng),提示其8位碳的絕對構(gòu)型為[13]。因此,化合物1的結(jié)構(gòu)鑒定為(7,8,7′)-4,7,9,3′,9′-pentahydroxy-3-methoxy-8,4′- oxyneolign-7′-ene-(9′→6′′)--glucopyranose ester。經(jīng)檢索,該化合物為1個新的木脂素葡萄糖酸酯,并命名為仙鶴草酸酯。
1H-NMR譜(表2)顯示有1個典型的ABX偶合系統(tǒng)H7.02 (1H, brs, H-2), 6.89 (1H, brd,= 8.1 Hz, H-6), 6.78 (1H, d,= 8.1 Hz, H-5);1個AX偶合系統(tǒng)H6.86 (1H, brs, H-2′), 6.67 (1H, brs, H-6′);1對反式雙鍵氫信號H6.47 (1H, d,= 15.8 Hz, H-7′), 6.26 (1H, dt,= 5.6, 15.8 Hz, H-8′);1個甲氧基氫信號H3.86 (3H, s, -OCH3);2個與氧原子直接相連的亞甲基氫信號H4.20 (2H, d,= 5.6 Hz, H2-9′), 3.66 (1H, dd,= 3.0, 12.3 Hz, H-9a) 和3.29 (1H, overlapped, H-9b);2個與氧原子直接相連的次甲基氫信號H4.98 (1H, d,= 8.6 Hz, H-7), 4.05 (1H, m, H-8);1個β型葡萄糖端基氫信號H4.95 (1H, d,= 7.7 Hz, H-1′′),結(jié)合位于低場的一系列氫信號H3.40~3.95說明含有1個葡萄糖基。13C-NMR譜(表2)顯示有25個碳信號,結(jié)合HSQC譜可知含有2個苯環(huán)C152.6, 152.5, 149.2, 147.7, 137.0, 135.2, 133.6, 131.4, 129.9, 121.3, 116.2, 111.8, 110.2, 107.7,1對雙鍵碳信號C131.4和129.9,2個與氧原子直接相連的次甲基碳信號C89.9和75.1,2個與氧原子直接相連的亞甲基碳信號C63.8和61.5,以及1個甲氧基碳信號C56.6。
表2 化合物2的1H-NMR和13C-NMR 數(shù)據(jù) (600/150 MHz, CD3OD)
對比已知化合物(?)-(7,8,7′)-4,7,9,3′,9′- pentahydroxy-3,5′-dimethoxy-8-4′-oxyneolign-7′-ene-3′--β--glucoside[14]的核磁數(shù)據(jù)可知它們的結(jié)構(gòu)非常相似,都屬于8--4′型木脂素,區(qū)別僅在于C-5′位的甲氧基。在二維核磁譜中(圖2),H-7與C-1 (C133.6), C-2 (C111.8), C-6 (C121.3);H-7′與C-1′ (C135.2), C-2′ (C110.2), C-6′ (C107.7), C-9′ (C63.8);H-8′與C-1′ (C135.2), C-7′ (C131.4), C-9′ (C63.8) 的HMBC相關(guān)信號,結(jié)合H-7-H-8-H2-9和H-7′-H-8′-H2-9′的1H-1H COSY相關(guān)信號分別證明了2個苯丙素的結(jié)構(gòu)片段的存在。另外,H-8與C-4′ (C137.0) 的HMBC相關(guān)信號則確證了8--4′型木脂素的骨架類型,-OCH3與C-3 (C149.2) 的HMBC相關(guān)信號說明C-3位被1個甲氧基所取代,H-1′′與C-3′的HMBC相關(guān)信號,結(jié)合H-3′和H-1′′的ROESY相關(guān)信號說明糖基取代在C-3′位羥基上。由文獻報道[15]可知,C-7 (C75.1) 和C-8 (C89.9) 的化學(xué)位移說明相對構(gòu)型為蘇式()。利用蝸牛酶水解化合物2,得到苷元2a和葡萄糖。對葡萄糖進行衍生化[10],并通過氣相色譜儀分析(進樣口溫度為300 ℃,氮氣體積流量1.0 mL/min,起始溫度為200 ℃,10 ℃/min升至280 ℃,保持35 min,檢測器溫度為300 ℃),結(jié)果驗證了-葡萄糖基的存在。苷元2a不溶于氯仿,對比2和2a的實驗ECD譜圖(圖3),在220和250 nm左右具有負的Cotton效應(yīng),提示8位碳的絕對構(gòu)型為[13]。因此,化合物2的結(jié)構(gòu)鑒定為(7,8,7′)-4,7,9,3′,9′-pentahydroxy- 3-methoxy-8,4′-oxyneolign-7′-ene-3′--β--gluco- pyranoside。經(jīng)檢索,該化合物為1個新的木脂素葡萄糖苷,命名為仙鶴草苷A。
圖3 化合物2和2a的實驗ECD譜圖
化合物3:白色無定形粉末,1H-NMR (500 MHz, CD3OD): 6.74 (2H, s, H-2, 6), 6.73 (2H, s, H-2′, 6′), 6.55 (1H, dd,= 4.8, 15.8 Hz, H-7′), 6.32 (1H, dt,= 5.6, 15.8 Hz, H-8′), 4.93 (1H, overlapped, H-7), 4.81 (1H, d,= 7.5 Hz, H-1′′), 4.27 (1H, m, H-8), 4.23 (2H, dd,= 1.4, 5.6 Hz, H2-9′), 3.91 (1H, dd,= 5.1, 12.1 Hz, H-6′′a), 3.83 (6H, s, 3, 5-OCH3), 3.40~3.85 (7H, overlapped, H2-9, 2′′~6′′b), 3.81 (6H, s, 3′, 5′-OCH3);13C-NMR (125 MHz, CD3OD): 139.7 (C-1), 106.0 (C-2, 6), 154.0 (C-3, 5), 135.5 (C-4), 74.1 (C-7), 87.2 (C-8), 61.7 (C-9), 134.9 (C-1′), 154.6 (C-2′, 6′), 104.9 (C-3′, 5′), 136.4 (C-4′), 130.0 (C-7′), 131.5 (C-8′), 62.7 (C-9′), 105.7 (C-1′′), 75.8 (C-2′′), 78.5 (C-3′′), 71.4 (C-4′′), 77.9 (C-5′′), 63.7 (C-6′′), 57.1 (3, 5-OCH3), 56.8 (3′, 5′-OCH3)。以上數(shù)據(jù)和文獻報道一致[16],根據(jù)C-7 (C74.1) 和C-8 (C87.2)的化學(xué)位移可知相對構(gòu)型為蘇式()[15],結(jié)合ECD譜圖在237 nm處有1個負的Cotton效應(yīng),提示絕對構(gòu)型為7,8,故鑒定化合物3為苦樹苷C。
化合物4:白色無定形粉末。1H-NMR (500 MHz, CD3OD): 7.12 (1H, m, H-2′), 7.08 (1H, m, H-5′), 6.91 (1H, m, H-6′), 6.73 (2H, s, H-2, 6), 6.54 (1H, d,= 15.8 Hz, H-7′), 6.32 (1H, dt,= 5.1, 15.8 Hz, H-8′), 4.95 (1H, d,= 5.2 Hz, H-7), 4.86 (1H, overlapped, H-1′′), 4.22 (3H, overlapped, H-8, H2-9′), 3.89 (1H, m, H-9a), 3.87 (1H, overlapped, H-6′′a), 3.85 (3H, s, 3-OCH3), 3.82 (6H, s, 3′, 5′-OCH3), 3.68 (1H, d,= 11.9 Hz, H-6′′b), 3.56 (1H, dd,= 3.0, 12.0 Hz, H-9b), 3.36~3.50 (4H, overlapped, H-2′′~5′′);13C-NMR (125 MHz, CD3OD): 134.9 (C-1), 104.9 (C-2, 6), 154.7 (C-3), 137.6 (C-4), 154.7 (C-5), 73.9 (C-7), 87.4 (C-8), 61.6 (C-9), 136.4 (C-1′), 112.4 (C-2′), 150.6 (C-3′), 147.3 (C-4′), 117.7 (C-5′), 120.9 (C-6′), 131.5 (C-7′), 130.0 (C-8′), 63.7 (C-9′), 103.1 (C-1′′), 75.0 (C-2′′), 77.9 (C-3′′), 71.5 (C-4′′), 78.3 (C-5′′), 62.6 (C-6′′), 56.8 (3, 3′, 5′-OCH3)。以上數(shù)據(jù)和文獻報道一致[17],根據(jù)C-7 (C73.9) 和C-8 (C87.2) 的化學(xué)位移,以及H2-9的化學(xué)位移差值(?H-9a–H-9b=0.33)可知相對構(gòu)型為蘇式()[12],結(jié)合ECD譜圖在228 nm有1個負的Cotton效應(yīng),提示絕對構(gòu)型為7,8,故鑒定化合物4為長花馬先蒿苷B。
化合物5:白色無定形粉末。1H-NMR (500 MHz, CD3OD): 7.10 (1H, d,= 1.6 Hz, H-2), 6.86 (1H, dd,= 1.7, 8.1 Hz, H-6), 6.73 (1H, d,= 1.7 Hz, H-2′), 6.71 (1H, d,= 8.1 Hz, H-5), 6.69 (1H, d,= 8.2 Hz, H-5′), 6.60 (1H, dd,= 1.7, 8.2 Hz, H-6′), 5.05 (1H, d,= 7.1 Hz, H-7), 4.36 (1H, m, H-8), 4.13 (1H, d,= 7.4 Hz, H-1′′), 3.82~3.92 (3H, overlapped, H2-9, H-6′′a), 3.67 (1H, dd,= 5.9, 12.0 Hz, H-6′′b), 3.78 (3H, s, 3-OCH3), 3.72 (3H, s, 3′-OCH3), 3.53 (2H, t,= 6.5 Hz, H2-9′), 3.30~3.08 (4H, m, H-2′′~5′′), 2.57 (2H, t,= 7.9 Hz, H2-7′), 1.77 (2H, m, H2-8′);13C-NMR (125 MHz, CD3OD): 130.3 (C-1), 113.2 (C-2), 149.0 (C-3), 147.6 (C-4), 115.5 (C-5), 123.3 (C-6), 78.3 (C-7), 85.5 (C-8), 62.3 (C-9), 138.1 (C-1′), 114.1 (C-2′), 151.8 (C-3′), 147.4 (C-4′), 119.8 (C-5′), 121.8 (C-6′), 32.8 (C-7′), 35.7 (C-8′), 62.3 (C-9′), 100.6 (C-1′′), 75.2 (C-2′′), 78.0 (C-3′′), 71.8 (C-4′′), 78.0 (C-5′′), 62.9 (C-6′′), 56.6 (3-OCH3), 56.4 (3′-OCH3)。以上數(shù)據(jù)和文獻報道一致[11],根據(jù)9位亞甲基氫化學(xué)位移差值(?H-9a–H-9b<0.1)可知相對構(gòu)型為赤式()[12],又由于在230 nm有1個負的Cotton效應(yīng),故鑒定化合物5為(7,8)-4,7,9,9′-四羥基-3,3′-二甲氧基-8--4′-新木脂素-7--β--葡萄糖苷。
化合物6:白色無定形粉末。1H-NMR (500 MHz, CD3OD): 7.10 (1H, d,= 1.7 Hz, H-2), 6.84 (1H, dd,= 1.7, 8.2 Hz, H-6), 6.75 (1H, d,= 8.1 Hz, H-5′), 6.71 (1H, d,= 8.2 Hz, H-5), 6.66 (1H, d,= 2.0 Hz, H-2′), 6.53 (1H, dd,= 2.0, 8.2 Hz, H-6′), 4.86 (1H, d,= 5.2 Hz, H-7), 4.13 (1H, m, H-8), 3.84 (1H, dd,= 6.7, 11.8 Hz, H-9a), 3.73 (1H, dd,= 3.5, 11.7 Hz, H-9b), 3.82 (3H, s, -OCH3), 3.54 (2H, t,= 6.6 Hz, H2-9′), 2.54 (2H, t,= 7.5 Hz, H2-7′), 1.77 (2H, m, H2-8′);13C-NMR (125 MHz, CD3OD): 133.9 (C-1), 111.7 (C-2), 148.9 (C-3), 147.2 (C-4), 115.9 (C-5), 120.3 (C-6), 74.2 (C-7), 87.9 (C-8), 62.4 (C-9), 138.9 (C-1′), 117.4 (C-2′), 149.6 (C-3′), 145.8 (C-4′), 120.7 (C-5′), 120.9 (C-6′), 32.7 (C-7′), 35.7 (C-8′), 62.1 (C-9′), 56.5 (-OCH3)。以上數(shù)據(jù)和文獻報道一致[18-19],根據(jù)9位亞甲基氫化學(xué)位移差值(?H-9a–H-9b)為0.11,可知相對構(gòu)型為赤式()[12],結(jié)合ECD譜圖在240 nm處有1個正的Cotton效應(yīng),提示絕對構(gòu)型為7,8,故鑒定化合物6為(7,8)- 3-甲氧基-8,4′-氧代新木脂素-3′,4,7,9,9′-五醇。
化合物7:白色無定形粉末。1H-NMR (500 MHz, CD3OD): 7.04 (1H, d,= 1.7 Hz, H-2), 6.72 (1H, d,= 8.1 Hz, H-5), 6.88 (1H, dd,= 1.8, 8.2 Hz, H-6), 6.54 (2H, s, H-2′, 6′), 5.10 (1H, d,= 6.7 Hz, H-7), 4.56 (1H, d,= 7.7 Hz, H-1′′), 4.21 (1H, m, H-8), 3.82 (6H, s, 3′, 5′-OCH3), 3.82 (3H, s, 5-OCH3), 3.71 (1H, dd,= 2.2, 12.0 Hz, H-6′′a), 3.57 (1H, dd,= 5.2, 12.0 Hz, H-6′′b), 3.53 (2H, overlapped, H2-9′), 3.25~3.34 (4H, overlapped, H-2′′~5′′), 3.15 (2H, m, H2-9), 2.61 (2H, t,= 1.5 Hz, H2-7′), 1.79 (2H, m, H2-8′);13C-NMR (125 MHz, CD3OD): 132.0 (C-1), 112.6 (C-2), 148.7 (C-3), 147.3 (C-4), 115.8 (C-5), 121.4 (C-6), 82.4 (C-7), 87.1 (C-8), 61.2 (C-9), 134.5 (C-1′), 106.9 (C-2′), 154.4 (C-3′), 140.4 (C-4′), 154.4 (C-5′), 106.9 (C-6′), 33.6 (C-7′), 35.6 (C-8′), 62.2 (C-9′), 105.4 (C-1′′), 75.7 (C-2′′), 78.2 (C-3′′), 71.5 (C-4′′), 77.9 (C-5′′), 62.6 (C-6′′), 56.8 (3′, 5′-OCH3), 56.5 (5-OCH3)。以上數(shù)據(jù)和文獻報道一致[20],可知相對構(gòu)型為蘇式(),結(jié)合ECD譜圖在229 nm有1個正的Cotton效應(yīng),提示絕對構(gòu)型為7,8,故鑒定化合物7為紅葉藤苷。
化合物8:白色無定形粉末。1H-NMR (500 MHz, CD3OD): 7.08 (1H, dd,= 1.8, 5.1 Hz, H-2), 7.13 (1H, dd,= 5.9, 8.4 Hz, H-5), 6.91 (1H, ddd,= 1.8, 6.8, 8.4 Hz, H-6), 6.54 (2H, brs, H-2′, 6′), 4.95 (1H, d,= 5.2 Hz, H-7), 4.88 (1H, dd,= 2.6, 7.3 Hz, H-1′′), 4.18 (1H, m, H-8), 3.88 (1H, m, H-6′′a), 3.87 (1H, overlapped, H-9a), 3.85 (3H, s, 3-OCH3), 3.80 (6H, s, 3′, 5′-OCH3), 3.69 (1H, m, H-6′′b), 3.57 (2H, t,= 6.0 Hz, H2-9′), 3.37~3.54 (5H, overlapped, H-9b, H-2′′~5′′), 2.64 (2H, t,= 7.5 Hz, H2-7′), 1.83 (2H, m, H2-8′);13C-NMR (125 MHz, CD3OD): 137.6 (C-1), 112.4 (C-2), 150.6 (C-3), 147.3 (C-4), 117.6 (C-5), 120.8 (C-6), 73.9 (C-7), 87.4 (C-8), 61.5 (C-9), 140.1 (C-1′), 106.9 (C-2′, 6′), 154.5 (C-3′, 5′), 134.7 (C-4′), 33.6 (C-7′), 35.6 (C-8′), 62.6 (C-9′), 103.0 (C-1′′), 75.0 (C-2′′), 78.3 (C-3′′), 71.4 (C-4′′), 77.9 (C-5′′), 62.3 (C-6′′), 56.8 (3-OCH3), 56.7 (3′, 5′-OCH3)。以上數(shù)據(jù)和文獻報道一致[21],可知相對構(gòu)型為赤式(),結(jié)合ECD譜圖在227 nm和273 nm處各有1個負的Cotton效應(yīng),提示絕對構(gòu)型為7,8,故鑒定化合物8為(7,8)-1-[4--(β--吡喃葡糖糖基)-3-甲氧基苯基]-2-[4-(3-羥丙基)-2,6-二甲氧基苯氧基]-1,3-丙二醇。
化合物9:白色無定形粉末。1H-NMR (500 MHz, CD3OD): 6.79 (1H, d,= 1.8 Hz, H-2′), 6.62 (1H, d,= 8.2 Hz, H-5′), 6.40 (1H, dd,= 1.8, 8.2 Hz, H-6′), 6.70 (1H, s, H-8), 6.34 (1H, s, H-5), 4.28 (1H, overlapped, H-1′′), 4.26 (1H, overlapped, H-4), 3.87 (1H, d,= 11.3 Hz, H-6′′a), 3.83 (3H, s, 7-OCH3), 3.80 (1H, overlapped, H-3a1), 3.78 (3H, s, 3′-OCH3), 3.66 (1H, dd,= 5.3, 11.9 Hz, H-6′′b), 3.58 (2H, m, H2-2a), 3.46 (1H, dd,= 6.7, 9.9 Hz, H-3a2), 3.25~3.35 (4H, overlapped, H-2′′~5′′), 2.92 (1H, dd,= 5.6, 16.9 Hz, H-1a), 2.68 (1H, dd,= 10.7, 16.8 Hz, H-1b), 2.25 (1H, m, H-3), 2.03 (1H, m, H-2);13C-NMR (125 MHz, CD3OD): 33.4 (C-1), 35.5 (C-2), 65.3 (C-2a), 42.2 (C-3), 71.7 (C-3a), 46.7 (C-4), 117.2 (C-5), 145.9 (C-6), 147.9 (C-7), 112.4 (C-8), 128.7 (C-9), 133.2 (C-10), 135.9 (C-1′), 115.5 (C-2′), 148.2 (C-3′), 145.6 (C-4′), 115.7 (C-5′), 124.4 (C-6′), 104.7 (C-1′′), 75.6 (C-2′′), 78.3 (C-3′′), 71.7 (C-4′′), 78.2 (C-5′′), 63.1 (C-6′′), 56.4 (3′-OCH3), 56.6 (7-OCH3)。以上數(shù)據(jù)和文獻報道一致[22],故鑒定化合物9為密穗馬先蒿苷。
化合物10:白色無定形粉末。1H-NMR (500 MHz, CD3OD): 6.74 (1H, s, H-2, 2′, 6, 6′), 4.97 (1H, d,= 8.4 Hz, H-7, 7′), 3.87 (12H, s, 3, 3′, 5, 5′-OCH3), 3.72 (2H, dd,= 3.6, 11.4 Hz, H-9a, 9′a), 3.63 (2H, dd,= 4.8, 11.4 Hz, H-9b, 9′b), 2.31 (1H, m, H-8, 8′);13C-NMR (125 MHz, CD3OD): 134.4 (C-1, 1′), 104.9 (C-2, 2′, 6, 6′), 149.4 (C-3, 3′, 5, 5′), 136.3 (C-4, 4′), 84.7 (C-7, 7′), 55.3 (C-8, 8′), 61.7 (C-9, 9′), 56.9 (3, 3′, 5, 5′-OCH3)。以上數(shù)據(jù)和文獻報道一致[23],故鑒定化合物10為淫羊藿醇A2。
取處于對數(shù)生長期的PC12細胞,用含有10%血清的培養(yǎng)基稀釋成1×105個/mL的細胞混懸液,每孔100 μL加入到96孔板中,置于37 ℃、5% CO2孵箱中培養(yǎng)。24 h后取出96孔板,棄培養(yǎng)基,藥物組向每孔加入100 μL含有10 μmol/L化合物1~10的DMEM培養(yǎng)基、模型組加入DMEM培養(yǎng)基,空白組加入含血清的DMEM培養(yǎng)基,繼續(xù)在孵箱中培養(yǎng)48 h之后,每孔加入10 μL MTT,并避光保存4 h。隨后,加入三聯(lián)溶解液 [由10 g 十二烷基硫酸鈉、0.1 mL鹽酸(10 mol/L)和5 mL異丙醇定容至100mL配制] 100 μL。6~8 h后,在570 nm下測定吸光度()值。每組設(shè)置3個復(fù)孔,重復(fù)3次,計算細胞存活率。結(jié)果表明,相對于模型組的PC12細胞存活率62.28%,化合物1(10 μmol/L)能將細胞存活率提升至68.22%(<0.05),表現(xiàn)出一定的神經(jīng)細胞保護活性。
利益沖突 所有作者均聲明不存在利益沖突
[1] 中國科學(xué)院中國植物志編輯委員會. 中國植物志 [M]. 北京: 科學(xué)出版社, 1985, 37: 457.
[2] 中國藥典. [S]. 一部. 2015: 102-103.
[3] Bing T Z, Hung Nguyen D, Mi Lee B,. PTP1B inhibitory and cytotoxic activities of triterpenoids from the aerial parts of[J]., 2017, 26(11): 2870-2878.
[4] Li J, Li M, Ye K,. Chemical profile of Xian-He-Cao-Chang-formula and its effects on ulcerative colitis [J]., 2021, 267: 113517.
[5] 封亮, 賈曉斌, 陳彥, 等. 仙鶴草化學(xué)成分及抗腫瘤活性研究進展 [J]. 中國藥房, 2009, 20(6): 465-467.
[6] Fei X M, Yuan W F, Jiang L,. Opposite effects ofLedeb aqueous extracts on blood coagulation function [J]., 2017, 5(7): 157.
[7] Kim H W, Park J, Kang K B,. Acylphloroglucinolated catechin and phenylethyl isocoumarin derivatives from[J]., 2016, 79(9): 2376-2383.
[8] Kato H, Li W, Koike M,. Phenolic glycosides from[J]., 2010, 71(16): 1925-1929.
[9] Tang L, Fu L, Lu C,. New cytotoxic phloroglucinol derivatives from[J]., 2017, 118: 69-72.
[10] Zhang J, Yang Y N, Jiang J S,. The discovery of new phloroglucinol glycosides fromand the mechanism of oxidative dearomatization of the methyl-substituted phloroglucinol derivatives [J]., 2021, 11(36): 22273-22277.
[11] Cai W H, Matsunami K, Otsuka H,. Lignan and neolignan glucosides, and tachioside 2'--4''-- methylgallate from the leaves of[J]., 2009, 63(4): 408-414.
[12] Yang Y N, Han B, Yang P F,. A concise approach for determining the relative configuration of H-7 and H-8 in 8, 4'-oxyneolignans by 1H NMR spectroscopy [J]., 2019, 6(7): 886-891.
[13] Xiong L, Zhu C, Li Y,. Lignans and neolignans fromaffinis and their absolute configurations [J]., 2011, 74(5): 1188-1200.
[14] Gan M L, Zhang Y L, Lin S,. Glycosides from the root of[J]., 2008, 71(4): 647-654.
[15] 石建功. 木脂素化學(xué) [M]. 北京: 化學(xué)工業(yè)出版社, 2010: 345.
[16] Yoshikawa K, Sugawara S, Arihara S. Phenylpropanoids and other secondary metabolites from fresh fruits of[J]., 1995, 40(1): 253-256.
[17] Li Q W, You X Z, Lu Z,. Lignans fromMarkgr. f.[J]., 2009, 45(3): 424-426.
[18] Huang X X, Zhou C C, Li L Z,. The cytotoxicity of 8--4' neolignans from the seeds of[J]., 2013, 23(20): 5599-5604.
[19] Jim-Min F, Ching-Kuo L, Yu-Shia C. Lignans from leaves of[J]., 1992, 31(10): 3659-3661.
[20] He Z D, Ma C Y, Tan G T,. Rourinoside and rouremin, antimalarial constituents from[J]., 2006, 67(13): 1378-1384.
[21] Tang W Z, Liu Y B, Yu S S,. New sesquiterpene lactone and neolignan glycosides with antioxidant and anti-inflammatory activities from the fruits of[J]., 2007, 73(5): 484-490.
[22] Chu H B, Zeng G Z, Zhu M J,. Chemical constituents offranch [J]., 2011, 66b: 641-646.
[23] Kim K H, Kim H K, Choi S U,. Bioactive lignans from the rhizomes of[J]., 2011, 74(10): 2187-2192.
Studies on lignans from
ZHANG Jia, YANG Ya-nan, JIANG Jian-shuang, FENG Zi-ming, YUAN Xiang, ZHANG Xu, ZHANG Pei-cheng
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
To investigate the chemical constituents ofand evaluate their neuroprotective activities by PC12 cell model.Firstly, the dried plant ofwere extracted by 80% ethanol aqueous. Then, the compounds were isolated and purified by a variety of chromatographic techniques including HP-20 macroporous resin, ODS, silica gel, Sephadex LH-20, and semi-preparative HPLC. The structures of the isolates were determined by a combination of HR-ESI-MS, NMR, and ECD spectra. Finally, the neuroprotective activities of isolates were tested.Ten lignans were isolated and identified as pilosaneolignan ester (1), pilosaneolignanside A (2), picraquassioside C (3), longifloroside B (4), (7,8)-4,7,9,9′-tetrahydroxy-3,3′- dimethoxy-8,4′-oxyneolignan-7--β--glucoside (5), (7,8)-3-methoxy-8,4′-oxyneoligna-3′,4,7,9,9′-pentol (6), rourinoside (7), (7,8)-1-[4--(β--glucopyranosyl)-3-methoxyphenyl]-2-[4-(3-hydroxy-propyl)-2,6-dimethoxyphenoxy]-1,3-propanediol (8), densispicoside (9), and icariol A2(10).The structures of 1 and 2 are new compounds, compounds 3–10 are isolated fromfor the first time. Notably, compounds 1a and 1b represent a pair of interchangeable 8,4′-oxyneolignan glucose ester with the opposite hemiacetal hydroxy. Compound 1 exhibits the moderate protective effect on injury induced by serum deprivation in PC12 cells at 10 μmol/L.
Ledeb.; 8,4′-oxyneolignan; structural interconversion; pilosaneolignan ester; pilosaneolignanside A; neuroprotective activity; PC12 cells
R284.1
A
0253 - 2670(2021)17 - 5176 - 09
10.7501/j.issn.0253-2670.2021.17.007
2021-07-26
中國醫(yī)學(xué)科學(xué)院醫(yī)學(xué)與健康科技創(chuàng)新工程(2019-I2M-1-005)
張 佳,男,沈陽藥科大學(xué)78期中藥學(xué)專業(yè)校友,主要從事天然藥物化學(xué)研究。E-mail: zhangsir0726@163.com
張培成,男,沈陽藥科大學(xué)1996級博士藥物化學(xué)專業(yè)校友,二級教授,研究方向為天然藥物化學(xué)。Tel/Fax: (010)63165231 E-mail: pczhang@imm.ac.cn
[責(zé)任編輯 王文倩]