喬 喬,李曉秀,周江偉,金福藝
(中國(guó)人民解放軍第4723 工廠,河北 邯鄲 057150)
實(shí)踐表明,在正常服役條件下,機(jī)械部件或結(jié)構(gòu)的破壞絕大多數(shù)是由疲勞引起的,特別是復(fù)雜機(jī)械的連接結(jié)構(gòu),在保證結(jié)構(gòu)完整性的同時(shí),惡劣的工作環(huán)境也降低連接結(jié)構(gòu)的穩(wěn)健性,而完整性與穩(wěn)健性之間的平衡設(shè)計(jì)一直是阻礙工業(yè)發(fā)展的重要因素[1]。航空發(fā)動(dòng)機(jī)是典型的高溫、高壓、高負(fù)荷的復(fù)雜機(jī)械動(dòng)力裝置,隨著現(xiàn)代航空工程技術(shù)的飛速發(fā)展,對(duì)航空發(fā)動(dòng)機(jī)連接結(jié)構(gòu)穩(wěn)健性提出了更為嚴(yán)格的要求。螺栓連接結(jié)構(gòu)作為一類重要的緊固連接方式,引起結(jié)構(gòu)簡(jiǎn)單、拆裝方便等特點(diǎn)已在發(fā)動(dòng)機(jī)結(jié)構(gòu)設(shè)計(jì)中大量采用。但是由于技術(shù)儲(chǔ)備的缺乏,在航空發(fā)動(dòng)機(jī)結(jié)構(gòu)布局設(shè)計(jì)[2]中很多時(shí)候依然依靠工程經(jīng)驗(yàn),缺乏必要的理論依據(jù)。
文沛等[3]針對(duì)螺栓在不同使用環(huán)境(摩擦因數(shù)、工作溫度和被連接件剛度等)下,不同外界因素對(duì)螺栓連接預(yù)緊力的影響展開研究,對(duì)于結(jié)構(gòu)關(guān)鍵部位的螺栓連接,在修理及裝配過程中應(yīng)注意采用合理的預(yù)緊力加載,已獲得較優(yōu)的力學(xué)特征。黃積澤[4]分析研究擰緊技術(shù)在汽車裝配上對(duì)裝配質(zhì)量影響的關(guān)系,通過對(duì)擰緊技術(shù)的常用方法及擰緊工具的選擇,可達(dá)到提升裝配質(zhì)量的目的。Croccolo 等[5]提供一種試驗(yàn)方法將螺栓連接中的摩擦系數(shù)與預(yù)緊力準(zhǔn)確地關(guān)聯(lián)起來,通過對(duì)夾具的拉伸狀態(tài)試驗(yàn)和數(shù)值評(píng)估,從而揭示結(jié)構(gòu)疲勞在擰緊過程中的發(fā)生過程。周紅磊[6]應(yīng)用有限元及試驗(yàn)的方法,針對(duì)航空發(fā)動(dòng)機(jī)渦輪部件螺紋連接副強(qiáng)度、高溫蠕變損傷及壽命等進(jìn)行詳細(xì)研究,探索預(yù)緊螺栓連接的蠕變損傷與疲勞壽命的分析方法。洪杰等[7]基于航空發(fā)動(dòng)機(jī)動(dòng)力渦輪轉(zhuǎn)子結(jié)構(gòu)的非連續(xù)特征,指出不可恢復(fù)滑移、疲勞、摩擦等連接界面接觸損傷是轉(zhuǎn)子結(jié)構(gòu)力學(xué)特征產(chǎn)生分散性的主要原因,提出對(duì)轉(zhuǎn)子支承剛度低敏感區(qū)擇優(yōu)的動(dòng)力特性穩(wěn)健設(shè)計(jì)方法。
雖然國(guó)內(nèi)外在對(duì)于螺栓預(yù)緊對(duì)機(jī)械結(jié)構(gòu)的力學(xué)特征有所研究,但是針對(duì)螺栓連接預(yù)緊力對(duì)疲勞壽命的影響,乃至其在航空發(fā)動(dòng)機(jī)部件結(jié)構(gòu)疲勞損傷計(jì)算上少有涉及。伴隨著結(jié)構(gòu)損傷失效分析理論體系的不斷發(fā)展與完善,航空發(fā)動(dòng)機(jī)的結(jié)構(gòu)穩(wěn)健性設(shè)計(jì)逐漸演化為單個(gè)部件疲勞損傷優(yōu)化設(shè)計(jì),目前還沒有形成比較完善的設(shè)計(jì)理論方法和工程應(yīng)用技術(shù)體系。
鑒于以上研究背景,本研究首先基于有限元法,分析結(jié)構(gòu)的承載能力和抗變形能力,然后提取結(jié)構(gòu)的單元節(jié)點(diǎn)應(yīng)力張量,經(jīng)過應(yīng)力組合轉(zhuǎn)換,并通過Goodman、FKM 的2 種傳統(tǒng)應(yīng)力修正方法進(jìn)行對(duì)比計(jì)算,最后基于雨流分析法和Miner 累計(jì)損傷準(zhǔn)則,對(duì)在復(fù)雜外載荷作用下的某型航空發(fā)動(dòng)機(jī)冷端螺栓連接結(jié)構(gòu)進(jìn)行疲勞壽命預(yù)測(cè),分析螺栓連接預(yù)緊力對(duì)疲勞壽命的影響,為先進(jìn)航空發(fā)動(dòng)機(jī)連接結(jié)構(gòu)的穩(wěn)健設(shè)計(jì)提供理論指導(dǎo)。
螺栓連接結(jié)構(gòu)在航空發(fā)動(dòng)機(jī)連接結(jié)構(gòu)設(shè)計(jì)中大量存在,本研究采用的計(jì)算模型為某型航空發(fā)動(dòng)機(jī)冷端部件螺栓連接結(jié)構(gòu),左右部分通過24 個(gè)螺栓(規(guī)格為M36 mm×340 mm)固緊連接,以保證結(jié)構(gòu)的完整性(圖1)。需要說明的是,鑒于墊片的作用主要是減少應(yīng)力集中對(duì)結(jié)構(gòu)造成的損傷,對(duì)整體部件結(jié)構(gòu)疲勞影響較小,此處已做適當(dāng)簡(jiǎn)化處理。
圖1 航空發(fā)動(dòng)機(jī)冷端局部結(jié)構(gòu)簡(jiǎn)圖Fig.1 Local structure diagram of a certain aeroengine cold end
由于結(jié)構(gòu)為循環(huán)周期對(duì)稱結(jié)構(gòu),基于商業(yè)軟件ANSYS Workbench 平臺(tái)Static Structural-Mechanical 模塊建立該結(jié)構(gòu)的1/24 的有限元模型(圖2),該有限元模型左、右側(cè)面為循環(huán)對(duì)稱邊界面。為了提高計(jì)算精度,單元類型均設(shè)置為自適應(yīng)高階三維高階實(shí)體單元,有關(guān)三維實(shí)體單元的幾何特征及節(jié)點(diǎn)配置可參考文獻(xiàn)[8],該單元由于其適應(yīng)性較強(qiáng)且計(jì)算精度高,在工程上被廣泛采用。其中,螺栓連接處(螺帽和螺桿)采用高階6 面體單元,且網(wǎng)格已進(jìn)行加密處理,其余部分為高階4 面體單元,由此產(chǎn)生16 242 個(gè)結(jié)點(diǎn)和7921 個(gè)單元。在2 部件及與螺栓連接之間的接觸部分附加接觸單元[9],該接觸單元的幾何特征,坐標(biāo)系布置和單元節(jié)點(diǎn)的位置如圖3 所示。該單元存在2 個(gè)節(jié)點(diǎn)(i,j),接觸面垂直于單元節(jié)點(diǎn)連線方向,同時(shí)存在初始裝配間隙滲透(GAP),圖3 中α、β為單元方向角,該單元可以表示任何2 種類型單元的任何2 個(gè)節(jié)點(diǎn)時(shí)間的接觸與滑移,有關(guān)接觸單元的詳細(xì)力學(xué)特征可參考文獻(xiàn)[10]。該螺栓連接結(jié)構(gòu)共存在3 處接觸,即左右軸段的接觸、左軸段與螺栓的接觸、右軸段與螺栓的接觸,全部定義為摩擦接觸,摩擦系數(shù)為0.2。
圖2 結(jié)構(gòu)有限元模型(單扇區(qū))Fig.2 Structural finite element model (single sector)
圖3 接觸單元幾何特征Fig.3 Geometrical characteristics of contact elements
螺栓螺母材料為40MnVB,其余材料為Ti-6Al-4V,具體材料參數(shù)如表1 所示。
表1 材料力學(xué)參數(shù)Table 1 Mechanical parameters of materials
為了分析螺栓連接預(yù)緊力對(duì)結(jié)構(gòu)力學(xué)特征的影響,對(duì)結(jié)構(gòu)依次施加2、4、6、8 kN 的預(yù)緊載荷,并對(duì)結(jié)構(gòu)整體施加8500 r/min 的旋轉(zhuǎn)速度載荷,該轉(zhuǎn)速是為了模擬航空發(fā)動(dòng)機(jī)轉(zhuǎn)子連接結(jié)構(gòu)在穩(wěn)態(tài)工作時(shí)的旋轉(zhuǎn)速度。在分析預(yù)緊力對(duì)結(jié)構(gòu)疲勞性能影響研究前,分析預(yù)緊力對(duì)結(jié)構(gòu)靜力學(xué)特征的影響,即進(jìn)行結(jié)構(gòu)系統(tǒng)對(duì)環(huán)境載荷的靜響應(yīng)計(jì)算,從結(jié)構(gòu)的靜強(qiáng)度和靜剛度等方面先確定螺栓連接結(jié)構(gòu)的危險(xiǎn)截面位置,這樣有助于對(duì)靜應(yīng)力對(duì)疲勞的影響展開研究。
本研究主要考慮的靜力學(xué)參數(shù)主要有Von-Mises 等效應(yīng)力和結(jié)構(gòu)整體的最大變形量。Von-Mises 等效應(yīng)力計(jì)算公式為:
式中:σx、σy、σz、τxy、τyz、τzx分別代表單元體在x、y、z方向上所受的正應(yīng)力和相應(yīng)方向的剪應(yīng)力。
一般情況下,每一個(gè)計(jì)算節(jié)點(diǎn)的應(yīng)力應(yīng)有9 個(gè)應(yīng)力分量。對(duì)結(jié)構(gòu)進(jìn)行疲勞性能分析時(shí),由于需要將有限元計(jì)算結(jié)果的應(yīng)力與材料S-N曲線應(yīng)力進(jìn)行等效轉(zhuǎn)換,因此需要找到一個(gè)客觀評(píng)價(jià)量。本研究采用危險(xiǎn)平面(CriticalPlan)法[11],該方法首先通過雨流計(jì)數(shù)在多個(gè)平面進(jìn)行掃描計(jì)算,確定最大的臨界面應(yīng)力σφ:
式中:σx、σy、τxy分別為掃描得到危險(xiǎn)平面下的正應(yīng)力x、y相應(yīng)方向下的正應(yīng)力、剪應(yīng)力,φ為危險(xiǎn)截面的位置角度。危險(xiǎn)面應(yīng)力組合方法,是疲勞計(jì)算中最常用的方法。
雖然應(yīng)力循環(huán)中的主要特征是應(yīng)力范圍影響其材料壽命,但是模型在載荷譜作用下的平均應(yīng)力也對(duì)壽命有著重要的影響,而實(shí)際大多情況下受到條件限制,無法得到多條不同平均應(yīng)力和應(yīng)力幅的曲線,因此就需要進(jìn)行修正。鑒于試驗(yàn)數(shù)據(jù)與真實(shí)應(yīng)力幅-壽命曲線總會(huì)存在偏差,故采用2 種應(yīng)力修正方法,即Goodman、FKM 方法進(jìn)行對(duì)比計(jì)算與分析,通過比較2 種方法的計(jì)算結(jié)果進(jìn)行擇優(yōu)選取以確保有足夠的安全裕度。
由Goodman[12]提出的一種最常用的方法是半應(yīng)力幅Sr/2 對(duì)平均應(yīng)力Sm所繪制的圖形。在圖4中,點(diǎn)A表示在交變應(yīng)力循環(huán)下的疲勞強(qiáng)度,而穿過原點(diǎn)O與2 個(gè)軸成45°的各條線上的點(diǎn),則表示脈沖拉應(yīng)力T和脈沖壓應(yīng)力作用下的疲勞強(qiáng)度。這種圖形就是Goodman 試圖用平均應(yīng)力分析表示疲勞強(qiáng)度變動(dòng)的直接結(jié)果的圖形。其方程是:
圖4 平均應(yīng)力對(duì)疲勞強(qiáng)度影響的Goodman 曲線Fig.4 Goodman curve of the effect of mean stress on fatigue strength
式中:Sr(-1)是在交變載荷(Smin/Smax=-1)下的疲勞強(qiáng)度幅;U是極限抗拉強(qiáng)度,即表1 材料力學(xué)參數(shù)中的強(qiáng)度極限。
FKM 方法[13]使用的是德國(guó)機(jī)械工程學(xué)會(huì)的標(biāo)準(zhǔn)來定義平均應(yīng)力的敏感度,同時(shí)采用名義應(yīng)力法和局部應(yīng)力法2 種評(píng)估方式來對(duì)零部件進(jìn)行壽命評(píng)估,名義應(yīng)力法適用于低維(一維、二維)結(jié)構(gòu),而局部應(yīng)力法適用于多維結(jié)構(gòu)。通過計(jì)算出結(jié)構(gòu)的靜強(qiáng)度及疲勞強(qiáng)度的安全系數(shù),保證了產(chǎn)品的可靠性和穩(wěn)健性。該過程的實(shí)現(xiàn)已經(jīng)固定化,可通過ANSYS nCode 疲勞分析與計(jì)算模塊直接調(diào)用,分析流程見圖5。由于FKM 規(guī)范比較全面的考慮材料或者機(jī)械結(jié)構(gòu)破壞的影響因素,已經(jīng)得到廣泛使用。
圖5 基于FKM 方法的疲勞強(qiáng)度評(píng)估流程Fig.5 Fatigue strength assessment process based on FKM method
在此,Ti-6Al-4V、40MnVB 材料的S-N試驗(yàn)數(shù)據(jù)如圖6 所示。
圖6 材料Ti-6Al-4V 和40MnVB 的S-N 曲線Fig.6 S-N curve of Ti-6Al-4V and 40MnVB
結(jié)構(gòu)疲勞性能分析出組合應(yīng)力轉(zhuǎn)換及應(yīng)力修正方法以外,還應(yīng)包括結(jié)構(gòu)疲勞壽命與損傷計(jì)算。雨流計(jì)數(shù)法最初是由Matsuiski、Endo 提出,如今在疲勞壽命計(jì)算中得到廣泛采用。雨流計(jì)數(shù)法除了計(jì)取幅值的變化外,還可同時(shí)計(jì)取均值的變化,以幅值和均值2 個(gè)參數(shù)來描述載荷歷程,這樣比單參數(shù)更能反映載荷變化的本質(zhì)?;诿總€(gè)節(jié)點(diǎn)的載荷參數(shù)統(tǒng)計(jì)循環(huán)周次,累加計(jì)算,雨流法在程序中的實(shí)現(xiàn)可參考文獻(xiàn)[14]。
基于Miner 損傷累計(jì)準(zhǔn)則[15],一個(gè)應(yīng)力幅為Δs的應(yīng)力循環(huán)所引起的疲勞損傷為1/Ni,ni個(gè)應(yīng)力幅為 Δs的循環(huán)周所引起的損傷為ni/Ni,總損傷記為∑ni/Ni。
綜上,試驗(yàn)流程應(yīng)包括結(jié)構(gòu)的靜力學(xué)分析、組合應(yīng)力轉(zhuǎn)換及應(yīng)力修正計(jì)算、疲勞壽命與損傷3 部分。
圖7 給出結(jié)構(gòu)Von-Mises 等效應(yīng)力和最大變形量隨螺栓預(yù)緊力大小的變化關(guān)系。從圖中可以看出,隨著螺栓預(yù)緊力的增加,結(jié)構(gòu)的最大變形量幾乎近線性下降,特別在施加預(yù)緊力為5 kN 時(shí),結(jié)構(gòu)的最大變形量顯著降低。結(jié)構(gòu)的Von-Mises等效應(yīng)力隨著螺栓預(yù)緊力的增加先急劇下降,當(dāng)預(yù)緊力達(dá)到6 kN 時(shí),Von-Mises 等效應(yīng)力近乎不變,存在極小值767.91 MPa??梢?,較大的預(yù)緊力雖然可以優(yōu)先抑制連接結(jié)構(gòu)的變形量,但是過大的預(yù)緊力容易使連接結(jié)構(gòu)發(fā)生屈服松脫等現(xiàn)象,嚴(yán)重影響疲勞性能和使用壽命。圖8 為螺栓預(yù)緊力為6 kN 時(shí)的結(jié)構(gòu)受力最大變形和Von-Mises 等效應(yīng)力的計(jì)算結(jié)果,結(jié)構(gòu)的最大變形量和等效應(yīng)力的極值均發(fā)生在螺栓連接位置,可見該處是危險(xiǎn)位置,螺栓連接的穩(wěn)健性設(shè)計(jì)是需要重點(diǎn)考慮。
圖7 結(jié)構(gòu)等效應(yīng)力和最大變形量隨螺栓預(yù)緊力大小的變化關(guān)系Fig.7 Relationship between equivalent stress and maximum deformation of structure with bolt preload
圖8 6 kN 預(yù)緊力作用下結(jié)構(gòu)的最大變形量和等效應(yīng)力Fig.8 Maximum deformation and equivalent stress of structure under 6 kN preload
不同螺栓預(yù)緊力下、使用不同方法計(jì)算所得結(jié)果見表2。螺栓預(yù)緊力為8 kN 時(shí),基于FKM 方法得到的疲勞壽命與結(jié)構(gòu)損傷云圖如圖9 所示,基于FKM 方法得到的損傷云圖與此類似。由此可知,損傷最大的位置發(fā)生在螺栓連接接觸位置。可見,無論是從靜力學(xué)(等效應(yīng)力)方面,還是從結(jié)構(gòu)疲勞角度分析,該處都是最危險(xiǎn)位置,設(shè)計(jì)時(shí)需要特別注意。
圖9 8 kN 預(yù)緊力作用下基于FKM 方法的疲勞壽命與結(jié)構(gòu)損傷Fig.9 Fatigue life and structural damage of structure under 8 kN preload by FKM method
表2 基于Goodman、FKM 計(jì)算得到的疲勞壽命與損傷Table 2 Fatigue life and damage calculated by Goodman method
圖10 為螺栓預(yù)緊力隨疲勞壽命的變化關(guān)系,可以看出,隨著結(jié)構(gòu)預(yù)緊力的增加,無論是FKM方法還是Goodman 方法,結(jié)構(gòu)疲勞壽命曲線先增加后減小,存在最大的疲勞壽命。算例表明,結(jié)構(gòu)疲勞壽命在螺栓預(yù)緊載荷約為5.6 kN 時(shí)達(dá)到最大,基于Goodman 方法算得的循環(huán)周次為8.328×105,基于FKM 方法算得的循環(huán)周次為8.262×105,基于FKM 方法得到的疲勞壽命比Goodman 方法得到的疲勞壽命下降0.8%。結(jié)構(gòu)單元最大損傷曲線走勢(shì)與疲勞壽命相反,即隨著螺栓預(yù)緊載荷的提高,損傷先降低后增加,在預(yù)緊載荷約為5.6 kN時(shí)存在雖小損傷點(diǎn),基于Goodman 方法算得的單元最大損傷為1.206×10-6,基于FKM 方法算得的單元最大損傷為1.211×10-6次,基于FKM 方法得到的結(jié)構(gòu)損傷比Goodman 方法到的結(jié)構(gòu)損傷增加0.4%,安全裕度更高。
圖10 單元最小壽命與最大損傷隨螺栓預(yù)緊力變化關(guān)系Fig.10 Relationship between minimum life and maximum damage of element with bolt preload
1)螺栓連接結(jié)構(gòu)預(yù)緊力對(duì)結(jié)構(gòu)的抗變形能力和結(jié)構(gòu)本身承載能力有著至關(guān)重要的影響,過小的預(yù)緊力無法保證結(jié)構(gòu)的連續(xù)性,過大的預(yù)緊力又會(huì)影響結(jié)構(gòu)的疲勞壽命,連接結(jié)構(gòu)預(yù)緊力的選取對(duì)結(jié)構(gòu)力學(xué)性能產(chǎn)生直接影響。
2)對(duì)于旋轉(zhuǎn)連接結(jié)構(gòu),隨著預(yù)緊力的增加,在結(jié)構(gòu)材料屈服強(qiáng)度范圍內(nèi),其抗變形能力迅速增強(qiáng),而Von-Mises 等效應(yīng)力先迅速降低,后趨于不變,存在較低的穩(wěn)定數(shù)值,這也是航空發(fā)動(dòng)機(jī)螺栓連接結(jié)構(gòu)預(yù)緊力數(shù)值需要考慮的初始迭代解。算例結(jié)構(gòu)的Von-Mises 等效應(yīng)力隨著螺栓預(yù)緊力的增加,先急劇下降,當(dāng)螺栓預(yù)緊力達(dá)到6 kN 時(shí),Von-Mises 等效應(yīng)力近乎不變,存在極小值767.91 MPa,該值即為預(yù)緊力靜力學(xué)環(huán)境下的最優(yōu)解。
3)隨著螺栓連接結(jié)構(gòu)預(yù)緊力的增加,結(jié)構(gòu)單元的最大損傷呈現(xiàn)先增加后降低,對(duì)應(yīng)單元最小壽命則先降低后增加。通過螺栓預(yù)緊載荷的合理選取,相對(duì)于原始設(shè)計(jì)(螺栓預(yù)緊力為8 kN),可將材料的疲勞壽命提高近5.8%,壽命提高4.5×105(循環(huán)周次),即預(yù)緊載荷存在最優(yōu)值,可為航空發(fā)動(dòng)機(jī)最佳螺栓連接預(yù)緊力的確定提供有效手段。
4)FKM 方法與Goodman 方法相比,Goodman方法相對(duì)保守,所得疲勞壽命循環(huán)周次較大,結(jié)構(gòu)單元最大損傷較小。若采用FKM 方法,其相對(duì)最大安全壽命降低0.8%,統(tǒng)計(jì)的疲勞壽命循環(huán)周次下降6.6×103,對(duì)于安全性要求較高的航空發(fā)動(dòng)機(jī)連接結(jié)構(gòu)而言,選用FKM 方法有著更高的安全裕度。