亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        二次分式函數(shù)的n次迭代問題*

        2021-07-21 01:24:30
        關(guān)鍵詞:共軛不動(dòng)點(diǎn)分式

        魏 小 琴

        (重慶師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,重慶 401331)

        0 前 言

        離散動(dòng)力系統(tǒng)是對(duì)常微分方程解族進(jìn)行離散化之后得到的系統(tǒng)。因其形式簡潔并易于反映問題的本質(zhì),從20世紀(jì)60年代開始在Smale等著名數(shù)學(xué)家的倡導(dǎo)下蓬勃發(fā)展起來。對(duì)函數(shù)n次迭代的研究有助于了解離散動(dòng)力系統(tǒng)軌道的長期行為。具體地說, 函數(shù)f(x)的迭代[1]是指對(duì)同一函數(shù)f(x)的多次復(fù)合。f(x)的n次迭代記為

        對(duì)于函數(shù)的迭代,人們比較關(guān)心它的n次迭代式。如何求得函數(shù)的n次迭代式,就成為人們不斷研究的課題。

        目前,已有的方法有不動(dòng)點(diǎn)法[1]、矩陣法[2-3]、共軛相似法[1,4]。根據(jù)函數(shù)的不同,可以選擇更為適合它的方法去求解n次迭代式。文獻(xiàn)[1]用不動(dòng)點(diǎn)法求解一次函數(shù)f(x)=ax+b的n次迭代式, 得到

        不動(dòng)點(diǎn)法的原理是通過設(shè)置待定系數(shù),利用函數(shù)f(x)的不動(dòng)點(diǎn)計(jì)算出待定系數(shù),進(jìn)而求得函數(shù)f(x)的n次迭代式[1]。方法針對(duì)求解一次函數(shù)的n次迭代式非常適合,當(dāng)然,不動(dòng)點(diǎn)法還可以用于二次函數(shù)、線性分式函數(shù),但卻不是唯一最優(yōu)的方法,對(duì)于線性分式函數(shù):

        文獻(xiàn)[3]利用矩陣法討論它的n次迭代。文獻(xiàn)[4]則利用矩陣的特征多項(xiàng)式的理論,推廣了前人已有的結(jié)論,并得到了計(jì)算線性分式函數(shù)n次迭代式的一般公式。矩陣法的原理是首先定義線性分式函數(shù)的系數(shù)矩陣,再根據(jù)數(shù)學(xué)歸納知,可以將求解線性分式函數(shù)的n次迭代問題轉(zhuǎn)化為計(jì)算系數(shù)矩陣的n次冪問題[3]。利用此方法,文獻(xiàn)[5]用共軛相似法求解二次函數(shù)f(x)=ax2+bx+c的n次迭代式, 得到

        共軛相似法的原理是通過可逆橋函數(shù)h(x),使函數(shù)f與g滿足f=h-1°g°h,把一個(gè)復(fù)雜函數(shù)轉(zhuǎn)化成一個(gè)易求迭代式的較為簡單的函數(shù)。再求出簡單函數(shù)的n次迭代式,并利用fn=h-1°gn°h這一性質(zhì),進(jìn)而求解出原函數(shù)的n次迭代式[1-2]。共軛相似法的關(guān)鍵是橋函數(shù), 但這沒有一個(gè)固定的方法。

        關(guān)于二次分式函數(shù):

        (1)

        已有若干的研究成果。如文獻(xiàn)[6]給出二次分式函數(shù)在兩種情形b1=c1=b2=0且a1∶a2∶c2=1∶2∶-1以及a1=c1=b2=0且b1∶a2∶c2=2∶-1∶1下的n次迭代式結(jié)論,文獻(xiàn)[7]給出二次分式函數(shù)在兩種情形a2=b1=0且a1∶b2=1∶2以及c1=b2=0且b1∶c2=2∶1下的n次迭代式結(jié)論。這些都是二次分式函數(shù)的一些特殊情形,如何擴(kuò)大更多特殊情形的二次分式函數(shù)的n次迭代式,得到更多的結(jié)果,就成為探究的重點(diǎn)。二次分式函數(shù)有很多的特殊情形,主要關(guān)注a2b2c2≠0的情形,并針對(duì)未解決的3種的情形進(jìn)行研究,即:

        (i) 若b1=0且a1c1=0時(shí);

        (ii) 若b1≠0且a1c1=0時(shí);

        (iii) 若a1b1c1≠0且滿足:

        a1=a2+1,b2=b1+2,c1=c2+1

        將通過對(duì)不同特殊情形下的二次分式函數(shù)選取不同的橋函數(shù), 利用共軛相似法求解得出結(jié)論。

        1 主要結(jié)果及證明

        定理1 若b1=0且a1c1=0時(shí),二次分式函數(shù)如式(1)所示可轉(zhuǎn)化為

        其中式(2)的n次迭代式為

        式(3)的n次迭代式為

        證明先證式(2)的n次迭代式, 取橋函數(shù)h(x)=1/x, 則h-1(x)=1/x, 于是由共軛相似f(x)=h-1°g°h(x)可得

        最后由fn(x)=h-1°g°h(x)可得fn(x)。

        式(3)的證明與式(1)的證明類似。同樣取橋函數(shù)h(x)=1/x,則h-1(x)=1/x,通過共軛相似可得到:

        再根據(jù)二次函數(shù)已有的n次迭代式知:

        最后由fn(x)=h-1°gn°h(x)可得fn(x)。

        定理2 若b1≠0且a1c1=0時(shí), 二次分式函數(shù)如式(1)所示可轉(zhuǎn)化為

        若式(4)滿足a2=1,b1=b2+2,c2=c1+1,也即是形如

        (6)

        其中B≠-2,C≠0。它的n次迭代式為

        其中

        η2(α(B,C),β(B,C))=

        且α(B,C)=B+C+2,β(B,C)=B+2。

        若式(5)滿足c2=-1,a1=a2+1,b2=b1+2, 也即是形如

        (7)

        其中,A≠-1,B≠0。它的n次迭代式為

        其中

        η4(μ(A,B),ν(A,B))=

        且μ(A,B)=A+B+1,ν(A,B)=2A+B+2。

        證明先證式(6)的n次迭代式,取橋函數(shù)h(x)=1/(x-1),則h-1(x)=1/x+1。由共軛相似f(x)=h-1°g°h(x)得

        g(x)=h°f°h-1(x)=-(B+C+2)x2-(B+2)x-1

        根據(jù)二次函數(shù)已有的n次迭代式知:

        其中

        且α(B,C)=B+C+2,β(B,C)=B+2。

        最后由fn(x)=h-1°gn°h(x)可求得fn(x)。

        式(7)的n次迭代的證明與式(6)類似。首先取橋函數(shù)h(x)=1/(x-1),則h-1(x)=1/x+1,由共軛相似得

        g(x)=h°f°h-1(x)=(A+B+1)x2+(2A+B+2)x+A

        再根據(jù)二次函數(shù)已有的結(jié)論知:

        其中

        且μ(A,B)=A+B+1,ν(A,B)=2A+B+2。

        最后由fn(x)=h-1°gn°h(x)可得fn(x)。

        定理3 若a1b1c1≠0且滿足a1=a2+1,b2=b1+2,c1=c2+1時(shí), 二次分式函數(shù)如式(1)所示可轉(zhuǎn)化為

        其中A+B+C≠-2, 它的n次迭代式為

        其中

        η5(φ(A,B,C),φ(A,B,C))=

        η6(φ(A,B,C),φ(A,B,C))=

        且φ(A,B,C)=A+B+C+2,φ(A,B,C)=2A+B+2。

        證明取橋函數(shù)h(x)=1/(x-1), 則h-1(x)=1/x+1, 由共軛相似得

        g(x)=h-1°f°h(x)=(A+B+2)x2+(2A+B+2)x+A

        再根據(jù)二次函數(shù)已有的n次迭代式的結(jié)論知:

        其中

        且φ(A,B,C)=A+B+C+2,φ(A,B,C)=2A+B+2。

        最后由fn(x)=h-1°gn°h(x)可得fn(x)。

        2 結(jié)束語

        猜你喜歡
        共軛不動(dòng)點(diǎn)分式
        一個(gè)帶重啟步的改進(jìn)PRP型譜共軛梯度法
        一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
        一類抽象二元非線性算子的不動(dòng)點(diǎn)的存在性與唯一性
        巧用共軛妙解題
        一種自適應(yīng)Dai-Liao共軛梯度法
        活用“不動(dòng)點(diǎn)”解決幾類數(shù)學(xué)問題
        如何認(rèn)識(shí)分式
        1.3 分式
        拆分在分式題中的應(yīng)用
        例談分式應(yīng)用中的大小比較
        在线看不卡的国产视频| 国内精品久久久久久中文字幕| 色爱区综合激情五月综合小说 | 亚洲红杏AV无码专区首页| 精品人妻一区二区三区狼人| 久久精品国产99国产精品亚洲 | 精品人妻一区二区三区四区| 日韩精品国产自在欧美| 亚洲精品国产第一区三区| 在线视频观看国产色网| 亚洲免费网站观看视频| 激情五月天伊人久久| 亚洲精品中文字幕乱码人妻| 日韩精品专区在线观看| 欧美人与物videos另类| 国产精品无码专区综合网| 在线亚洲国产一区二区三区| 欧美黑人巨大videos精品| 日韩人妻无码一区二区三区| 野外三级国产在线观看| 午夜一区二区三区福利视频| 久久久亚洲欧洲日产国码aⅴ| 人人妻人人澡人人爽曰本| 超清无码AV丝袜片在线观看| 亚洲欧美日韩国产一区二区精品| 少妇隔壁人妻中文字幕| 精品人妻伦一二三区久久| 波多野结衣乳巨码无在线| 99久久久精品免费| 91精品人妻一区二区三区水蜜桃| 国产人妻熟女高跟丝袜图片| 久久网视频中文字幕综合| 精品一区二区亚洲一二三区| 日本妇人成熟免费2020| 麻豆一区二区99久久久久| 国产一区二区三区国产精品| 亚洲国产一区二区网站| 亚洲乱亚洲乱妇50p| 国产成人精选在线不卡| 亚洲一区二区三区精品久久| 亚洲人精品午夜射精日韩|