王繼光,馮琪卿,齊 凱
(山西大學(xué) 經(jīng)濟(jì)與管理學(xué)院,山西 太原 030006)
隨著經(jīng)濟(jì)全球化的深入,供應(yīng)鏈網(wǎng)絡(luò)雖然具備高效率、低成本等優(yōu)勢,但其潛在的中斷風(fēng)險(xiǎn)也可能對企業(yè)造成極大破壞。如,2013年孟加拉國服裝廠火災(zāi)事件引發(fā)國際服裝供應(yīng)中斷,導(dǎo)致訂貨方無法為市場及時(shí)供貨而損失慘重;2008年汶川大地震,整個(gè)西南地區(qū)對生活必需品的需求突發(fā)性上升,同時(shí)交通癱瘓使得必需品供應(yīng)中斷,短期內(nèi)引發(fā)社會恐慌。相關(guān)研究表明,供應(yīng)鏈固有的脆弱性使其極易受到各類擾動因素與中斷事件的影響[1-6]。因此,對于現(xiàn)代企業(yè),特別是其所在供應(yīng)鏈網(wǎng)絡(luò),尤其需要考慮供應(yīng)中斷及需求擾動的潛在風(fēng)險(xiǎn)。
Clausen等[7]首次提出“擾動管理”,此后該研究得到很快的發(fā)展。已有學(xué)者研究企業(yè)面臨供應(yīng)中斷時(shí)選擇多個(gè)供應(yīng)商來減少。其中,Elmaghraby[8]、Minner[9]提供了關(guān)于采購策略和供應(yīng)商最佳數(shù)量的文獻(xiàn)綜述。Silbermayr等[10]和Pochard[11]分析雙重采購的價(jià)值和收益,同時(shí)考慮中斷頻率和市場份額的損失。Berger等[12]的研究表明,所有企業(yè)面臨概率極低的災(zāi)難性事件和單個(gè)企業(yè)面臨自身突發(fā)事件影響時(shí),備用供應(yīng)商可以降低供應(yīng)中斷的風(fēng)險(xiǎn)。Yu等[13]研究供應(yīng)中斷風(fēng)險(xiǎn)對兩級供應(yīng)鏈采購方式的影響,得到2種預(yù)期利潤函數(shù),最終確定影響選擇的關(guān)鍵因素。
需求不確定性風(fēng)險(xiǎn)會產(chǎn)生“牛鞭效應(yīng)”的危害。Qi等[14]研究需求擾動下雙邊壟斷供應(yīng)鏈的協(xié)調(diào)機(jī)制。Hua等[15]研究兩級供應(yīng)鏈面對市場需求的不確定,提出一種能夠提高供應(yīng)鏈總利潤的合作機(jī)制,同時(shí)能夠使供應(yīng)鏈成員的利潤均有所增加。Xiao等[16]的研究表明,需求不穩(wěn)定會使最優(yōu)訂貨期提前和訂貨數(shù)量增加,而單位批發(fā)價(jià)格降低。但斌等[17]研究在需求不確定下,供應(yīng)鏈主體如何通過風(fēng)險(xiǎn)共擔(dān)機(jī)制實(shí)現(xiàn)供應(yīng)鏈的協(xié)調(diào)。彭紅軍等[18]和朱寶琳等[19]將風(fēng)險(xiǎn)共擔(dān)協(xié)調(diào)契約分別用于兩級與三級需求不確定下的供應(yīng)鏈,可以減少不確定性帶來的負(fù)面影響,從而達(dá)到供應(yīng)鏈協(xié)調(diào)的目的。
然而,現(xiàn)實(shí)中越來越多企業(yè)同時(shí)受到供應(yīng)中斷風(fēng)險(xiǎn)和需求擾動,僅有少量學(xué)者研究供應(yīng)中斷和需求擾動同時(shí)干擾企業(yè)。Zhu[20]研究在面對供需不確定的情況下制造商補(bǔ)貨、生產(chǎn)和定價(jià)策略的聯(lián)合決策問題。何波等[21]研究2條供應(yīng)鏈之間的競爭問題,得到零售商的最優(yōu)訂貨量、供應(yīng)可靠性參數(shù)和批發(fā)價(jià)格對最優(yōu)訂貨量的影響。
現(xiàn)有文獻(xiàn)中大多數(shù)僅研究零售商或供應(yīng)商的策略,沒有考慮與供應(yīng)商的合作情形。不同于現(xiàn)有文獻(xiàn),本文同時(shí)分析零售商的采購策略和供應(yīng)商的定價(jià)策略,并將合作博弈與非合作博弈應(yīng)用到供應(yīng)鏈管理中,考慮供應(yīng)商的競合關(guān)系,主要解決2個(gè)關(guān)鍵問題。1) 面對供應(yīng)中斷和需求擾動時(shí),供應(yīng)商對產(chǎn)品應(yīng)該如何定價(jià)?2) 零售商在訂購時(shí),如何權(quán)衡供應(yīng)商的批發(fā)價(jià)格與供應(yīng)穩(wěn)定性?針對該問題建立2個(gè)供應(yīng)商和1個(gè)零售商的二級供應(yīng)鏈,分別考慮集中式供應(yīng)鏈和2種情形下的分散式供應(yīng)鏈。在供需同時(shí)擾動時(shí),將未滿足的需求轉(zhuǎn)移到現(xiàn)貨市場,最終得到零售商最優(yōu)訂貨策略以及競爭或合作2種情景下供應(yīng)商間的定價(jià)策略。
本文研究2個(gè)供應(yīng)商和1個(gè)零售商組成的供應(yīng)鏈。假設(shè)供應(yīng)商和零售商均風(fēng)險(xiǎn)中立,追求期望利潤最大化,且存在穩(wěn)定的現(xiàn)貨市場。產(chǎn)品為一般易逝品。供應(yīng)的不確定性來自供應(yīng)商是否發(fā)生中斷,需求的不確定性來自顧客需求的隨機(jī)性。供應(yīng)商面臨2種類型中斷:隨機(jī)中斷,非隨機(jī)中斷[22]。隨機(jī)中斷是指由意外和不可預(yù)測的事件觸發(fā)的中斷,如臺風(fēng)、地震、洪水等自然災(zāi)害等;非隨機(jī)中斷是指故意行為造成的干擾,如,恐怖襲擊、勞資沖突、惡意競爭等。不失一般性,假設(shè)供應(yīng)商2只受到隨機(jī)中斷影響,供應(yīng)商1受到2種中斷的影響。供應(yīng)商中斷時(shí)沒有訂單,反之有訂單。首先,供應(yīng)商1和供應(yīng)商2決定各自的批發(fā)價(jià)格。在供應(yīng)商發(fā)生中斷之前由零售商分配訂單,中斷發(fā)生后,零售商可以從現(xiàn)貨市場下緊急訂單,假設(shè)可以無限補(bǔ)貨且補(bǔ)貨時(shí)間為0。
模型具體參數(shù)如表1所示。其中,w1、w2、Q1、Q2、Q3是決策變量,其他變量為供應(yīng)鏈成員已知的外生變量。本文重點(diǎn)關(guān)注供應(yīng)商和零售商的收益,由于現(xiàn)貨市場不是供應(yīng)鏈中的決策者,因此不考慮現(xiàn)貨市場及其交貨成本。
表1 模型參數(shù)Table 1 The parameters in the model
本文認(rèn)為在供應(yīng)中斷前,零售商和供應(yīng)商已經(jīng)產(chǎn)生一些可變成本。因此,假設(shè)可變成本與交付成本和訂單數(shù)量成比例,且發(fā)生中斷時(shí)的邊際成本γci由中斷的供應(yīng)商和零售商共同承擔(dān),中斷的供應(yīng)商承擔(dān)邊際成本ηγci,零售商承擔(dān)邊際成本(1-η)×γci。與現(xiàn)有文獻(xiàn)假定零售商承擔(dān)邊際成本不同,本文通過此成本結(jié)構(gòu),突出供應(yīng)商和零售商之間的競合關(guān)系。
根據(jù)供應(yīng)商的穩(wěn)定性、節(jié)點(diǎn)企業(yè)利潤非負(fù)性,假設(shè)0≤s≤c1≤c2≤w3≤p,其中殘值s≤c1,以保證產(chǎn)品不會無限生產(chǎn)??紤]集中式供應(yīng)鏈,所有決策均為實(shí)現(xiàn)供應(yīng)鏈整體利潤最大化,并得到2個(gè)供應(yīng)商獲得非負(fù)訂單的條件和最優(yōu)訂單數(shù)量。分散式供應(yīng)鏈中考慮供應(yīng)商競爭與合作2種情況,假設(shè)每個(gè)節(jié)點(diǎn)的需求函數(shù)、成本結(jié)構(gòu)、決策規(guī)則都是共同知識。
集中式供應(yīng)鏈批發(fā)價(jià)格僅用于分配供應(yīng)商和零售商的利潤,即w1和w2不再是決策變量,決策變量只有Q1、Q2和Q3。當(dāng)季節(jié)性產(chǎn)品供應(yīng)不確定時(shí),尋求渠道最優(yōu)訂單分配決策。集中式供應(yīng)鏈博弈順序如下。
階段1在供應(yīng)中斷和需求擾動預(yù)期下,零售商分別向供應(yīng)商1、2訂購Q1和Q2。
階段2在供應(yīng)中斷和需求擾動發(fā)生后,零售商向現(xiàn)貨市場下緊急訂單。
階段3當(dāng)銷售季節(jié)來臨時(shí),零售商以固定的價(jià)格將產(chǎn)品賣向市場。
z和Q3c分別表示下緊急訂單之前和之后的庫存水平。表示第2階段的渠道隨機(jī)利潤,即下緊急訂單Q3c-z后的隨機(jī)利潤。顧客的實(shí)際需求D=D0+ε。下標(biāo)“c”表示集中式供應(yīng)鏈;“··”表示第2階段。(a)+=max(0,a),a∨b=max(a,b),a∧b=min(a,b)。
第2階段渠道期望利潤為
其中,E(x)為隨機(jī)需求D的均值。
第2階段的供應(yīng)鏈訂單問題是在任意給定初始庫存z的情況下,選擇緊急訂單量Q(3c-z以最)大化期望利潤??傻脦齑媾R界值因此在零售商下緊急訂單后,最優(yōu)的庫存水平為。
在任意給定初始庫存z的情況下,第2階段渠道的最大期望利潤為
第1階段的渠道期望利潤為
定理1供應(yīng)中斷和需求擾動同時(shí)發(fā)生后,零售商的最優(yōu)訂貨策略如下。
由1)~4)可得,至少有1個(gè)供應(yīng)商不被選擇。其原因?yàn)楣?yīng)商的穩(wěn)定性太低、配送成本太高、現(xiàn)貨市場批發(fā)價(jià)格較低或零售商承擔(dān)中斷時(shí)的損失太多。
5) 若0≤β[αw3-(α-αγ+γ)c2]≤αβw3-(αβ-αβγ+γ)c1≤αw3-(α-αγ+γ)c2,則供應(yīng)商1和供應(yīng)商2的訂單量分別為
當(dāng)供應(yīng)鏈中2個(gè)供應(yīng)商獲得訂單時(shí),需求擾動僅對穩(wěn)定供應(yīng)商有影響,不影響其他供應(yīng)商;當(dāng)穩(wěn)定供應(yīng)商沒有獲得訂單時(shí),需求擾動才會影響其他供應(yīng)商。因此,穩(wěn)定性較高的供應(yīng)商更易受到需求擾動的影響。
推論1集中式供應(yīng)鏈中,當(dāng)且僅當(dāng)以下條件成立時(shí),供應(yīng)商將得到非負(fù)的訂單量。
由定理1可知,集中式供應(yīng)鏈中零售商訂貨策略主要受3個(gè)因素影響,即αβw3-(αβ-αβγ+γ)c1、αw3-(α-αγ+γ)c2和ε。這3個(gè)因素可視為集中式供應(yīng)鏈中供應(yīng)商的競爭力。前2個(gè)因素的值越大,對應(yīng)供應(yīng)商的競爭力越大,即供應(yīng)商有更大概率得到非負(fù)的訂單;需求的波動量 ε對供應(yīng)商的訂單量造成干擾,對應(yīng)供應(yīng)商競爭力也越大,即分配給供應(yīng)商的訂單量越大,受到需求波動的概率就越大。此外,其他因素也影響供應(yīng)商的競爭力,包括現(xiàn)貨市場固定的批發(fā)價(jià)格、供應(yīng)商單位產(chǎn)品的配送成本、配送訂單準(zhǔn)時(shí)的概率、中斷發(fā)生后邊際配送成本的總比例。供應(yīng)商可以通過減小配送成本和提高配送訂單準(zhǔn)時(shí)的概率來提高競爭力。然而,穩(wěn)定的配送通常會提高邊際配送成本。因此,如何權(quán)衡訂單準(zhǔn)時(shí)配送和邊際配送成本是提升供應(yīng)鏈績效的關(guān)鍵之一。
分散式供應(yīng)鏈中,2個(gè)供應(yīng)商獨(dú)立決策,博弈順序如下。
階段0無論供應(yīng)商之間是否合作,供應(yīng)商制定自己的批發(fā)價(jià)格。
階段1在供應(yīng)中斷和需求擾動預(yù)期下,零售商分別向供應(yīng)商1、2訂購Q1和Q2。
階段2在供應(yīng)中斷和需求擾動發(fā)生后,零售商向現(xiàn)貨市場下緊急訂單。
階段3當(dāng)銷售季節(jié)來臨時(shí),零售商以固定的價(jià)格將產(chǎn)品賣向市場。未滿足的需求會給零售商帶來商譽(yù)損失。銷售季結(jié)束后,剩余產(chǎn)品有殘值。
競爭的供應(yīng)商可以被看作2個(gè)靜態(tài)嵌套博弈。第1個(gè)是供應(yīng)商1和供應(yīng)商2之間的靜態(tài)非合作博弈,同時(shí)制定批發(fā)價(jià)格,互不串通。第2個(gè)是Stackelberg博弈,嵌套在靜態(tài)非合作博弈中。Stackelberg博弈中,領(lǐng)導(dǎo)者(供應(yīng)商1和供應(yīng)商2)制定批發(fā)價(jià)格,追隨者(零售商面臨隨機(jī)收益)根據(jù)其價(jià)格選擇訂單數(shù)量。首先研究零售商在任一給定的批發(fā)價(jià)格情況下的反應(yīng)函數(shù)?;谧顑?yōu)的反應(yīng)函數(shù),得到供應(yīng)商在競爭情況下最優(yōu)批發(fā)價(jià)格決策。最后,引入一個(gè)協(xié)調(diào)機(jī)制,在合作情形下最大限度地提高供應(yīng)商的利潤。
本小節(jié)旨在確定零售商的最優(yōu)訂單分配決策,以在分散式供應(yīng)鏈中,為任一給定的批發(fā)價(jià)格情況下最大化第1階段的期望利潤??梢灾苯拥贸隽闶凵滩捎门c集中式供應(yīng)鏈中第2階段同樣的策略。同樣的臨界值Q?3d=Q?3c=F-1((p+b-w3)/(p+b-s))。因此,第2階段零售商的期望利潤最大值可以表示為Π¨r*(z),與集中式供應(yīng)鏈中第2階段的期望利潤最大值一樣,并且有相同的初始庫存z,即
零售商的期望利潤為
定理2供應(yīng)中斷和需求擾動同時(shí)發(fā)生后,零售商的最優(yōu)訂貨策略如下。
推論2分散式供應(yīng)鏈中,當(dāng)且僅當(dāng)以下條件成立時(shí),供應(yīng)商將得到非負(fù)的訂單量。
假設(shè)供應(yīng)商1和供應(yīng)商2是競爭關(guān)系,即在零售商下訂單之前,供應(yīng)商1和供應(yīng)商2分別設(shè)置自己的批發(fā)價(jià)格以最大化各自的期望利潤。推論2中,供應(yīng)商非負(fù)訂單量的條件,可得到供應(yīng)商獲得非負(fù)利潤的可行策略空間存在的條件。
定理3若β(α-αγ+γ)c2>(αβ-αβγ+γ)c1,則供應(yīng)商1可行批發(fā)價(jià)格區(qū)間為[((αβ-αβηγ+ηγ)c1/αβ),((α-αγ+γ)/α)c2-((1-αβ)(1-η)γ/αβ)c1],批發(fā)價(jià)格w1在此區(qū)間內(nèi),則獲得非負(fù)的利潤。
若αw3-(α-αγ+γ)c2>αβw3-(αβ-αβγ+γ)c1,則供應(yīng)商2的可行批發(fā)價(jià)格區(qū)間為[((α-αηγ+ηγ)/α)c2,(1-β)w3-((1-α)(1-η)γ/α)c2+(αβ-αβγ+γ/α)c1],當(dāng)批發(fā)價(jià)格w2在此區(qū)間內(nèi),則獲得非負(fù)的利潤。
定理3中的2個(gè)條件由推論1中的2)、3)得到,即如果集中式供應(yīng)鏈中供應(yīng)商得到非負(fù)的訂單,則分散式供應(yīng)鏈中,2個(gè)競爭的供應(yīng)商在可行價(jià)格區(qū)間內(nèi)都獲得正的利潤。因此,得到以下命題。
命題1若2個(gè)供應(yīng)商在集中式供應(yīng)鏈中得到非負(fù)的訂單量,則分散式供應(yīng)鏈中2個(gè)競爭的供應(yīng)商可以獲得正的利潤。
對于給定任一批發(fā)價(jià)格,供應(yīng)商1和供應(yīng)商2可以正確預(yù)測零售商的需求曲線,即由式(2)得到的Q1(w1,w2)和Q2(w1,w2)。因此,供應(yīng)商的逆需求函數(shù)為
因F(x)連續(xù)遞增,若w1和w2的價(jià)格區(qū)間是閉區(qū)間,則相對應(yīng)的Q1和Q2可行區(qū)間也是閉區(qū)間,則供應(yīng)商的利潤函數(shù)為
推論3若需求服從均勻分布,則存在純策略納什均衡。
假設(shè)需求D在區(qū)間[0,1]服從均勻分布,需求波動量ε=0。因此得到定理4。
定理4假設(shè)需求D在區(qū)間[0,1]服從均勻分布。若β(α-αγ+γ)c2>(αβ-αβγ+γ)c1和αw3-(α-αγ+γ)c2>αβw3-(αβ-αβγ+γ)c1,則供應(yīng)商之間的唯一納什均衡策略(右下角“n”表示分散式供應(yīng)鏈中的競爭供應(yīng)商)為
假設(shè)2個(gè)供應(yīng)商合作并各自設(shè)置其批發(fā)價(jià)格來最大化總體期望利潤,并假定其批發(fā)價(jià)格不能太低。為實(shí)現(xiàn)供應(yīng)鏈的協(xié)調(diào),設(shè)置合作情形下的統(tǒng)一批發(fā)價(jià)格以確保2個(gè)供應(yīng)商可以獲得非負(fù)的訂單量,并實(shí)現(xiàn)2個(gè)供應(yīng)商總利潤最大化。因此,首先得到2個(gè)合作的供應(yīng)商最優(yōu)的批發(fā)價(jià)格。然后2個(gè)供應(yīng)商成功執(zhí)行合作的批發(fā)價(jià)格時(shí),如何分配利潤和平均成本。最后實(shí)現(xiàn)整個(gè)供應(yīng)鏈的協(xié)調(diào)。
從3.1節(jié)的分析可知,當(dāng)且僅當(dāng)推論2的條件成立時(shí),2個(gè)供應(yīng)商才能得到非負(fù)的訂單量,則總利潤函數(shù)(右下角“dc”表示分散式供應(yīng)鏈中合作的供應(yīng)商)為Πdc(w1,w2)=[αβw1-(αβ-αβηγ+ηγ)c1]Q1+[αw2-(α-αγη+γη)c2]Q2。
合作供應(yīng)商的定價(jià)決策問題可描述為
總收益的不確定性源自零售商的隨機(jī)需求,供應(yīng)商利潤的不確定性源自自身穩(wěn)定性。因此,供應(yīng)商1和2根據(jù)比例θ1、θ2和θ3分配隨機(jī)利潤。
1)若供應(yīng)商均不發(fā)生中斷,則總利潤為(w1-c1)Q1+(w2-c2)Q2。供應(yīng)商1的利潤為θ1[(w1-c1)Q1+(w2-c2)Q2],供應(yīng)商2的利潤為(1-θ1)[(w1-c1)Q1+(w2-c2)Q2]。該情況發(fā)生的概率為 αβ。
2)若供應(yīng)商1發(fā)生中斷,供應(yīng)商2不發(fā)生中斷,則總利潤為(w2-c2)Q2-ηγc1Q1。供應(yīng)商1利潤為θ2[(w2-c2)Q2-ηγc1Q1],供應(yīng)商2利潤為(1-θ2)[(w2-c2)Q2-ηγc1Q1]。這種情況發(fā)生的概率為α(1-β)。
3)若供應(yīng)商均發(fā)生中斷,則總利潤為-ηγ(c1Q1+c2Q2)。供應(yīng)商1的利潤為θ3[-ηγ(c1Q1+c2Q2)],供應(yīng)商2的利潤為(1-θ3)[-ηγ(c1Q1+c2Q2)]。這種情況發(fā)生的概率為1-α。
供應(yīng)商1的期望利潤為
供應(yīng)商2的期望利潤為
為得到結(jié)果,供應(yīng)商1和2的談判參數(shù) θ1、θ2和θ3服從等式(3)
式(3)有3個(gè)未知數(shù)和2個(gè)線性等式,有無窮個(gè)解。因此,供應(yīng)商1和供應(yīng)商2可以選擇服從式(3)的任意(θ1,θ2,θ3)的組合來分配他們的隨機(jī)利潤。
合作的供應(yīng)商通過以下條件獲得更多的利潤。
1) 合作的2個(gè)供應(yīng)商決定各自的批發(fā)價(jià)格以最大化總的期望利潤。
2) 所有參數(shù)組合(θ1,θ2,θ3)必須滿足式(3),并通過談判來分配隨機(jī)利潤。
實(shí)踐中,具體的利潤分配組合(θ1,θ2,θ3)是由供應(yīng)商1和供應(yīng)商2協(xié)商所得,受其談判力、市場占有率及其在供應(yīng)鏈中地位等因素的影響。該結(jié)論可作為實(shí)踐中,上述3種中斷情境下,供應(yīng)鏈成員間最優(yōu)利潤分配方案的理論依據(jù),為供應(yīng)鏈各成員訂貨和定價(jià)決策提供一定參考。
最后,考慮整個(gè)供應(yīng)鏈的協(xié)調(diào),在供應(yīng)中斷和需求擾動發(fā)生后,分散式供應(yīng)鏈零售商采用和集中式一樣的訂貨策略。若分散式供應(yīng)鏈中零售商選擇和集中式供應(yīng)鏈中相同的庫存,即Q1c=Q1d,Q2c=Q2d,整個(gè)供應(yīng)鏈渠道是協(xié)調(diào)的。此時(shí),批發(fā)價(jià)格為
分析供應(yīng)中斷和需求擾動情形下,供應(yīng)鏈利潤的變化及 α 和β對供應(yīng)商2訂單量的影響。為更清晰地反映供應(yīng)鏈在供應(yīng)中斷和需求擾動下決策的變化,對以上模型進(jìn)行數(shù)值分析。
基于上文參數(shù)取值范圍約束,某供應(yīng)鏈參數(shù)設(shè)置如下。w3=16,c1=10.5,c2=12,p=18,b=5,s=3,γ=0.2,η=0.2,α={0.7,0.9},β={0.7,0.9}。其中,需求在區(qū)間[300,700]服從均勻分布,均值為500。為更好地觀察需求擾動對供應(yīng)鏈利潤的影響,假設(shè)ε={-100,100}。當(dāng)β=0.9時(shí),供應(yīng)商1的穩(wěn)定性提高,價(jià)格與成本優(yōu)勢得以體現(xiàn),供應(yīng)鏈出現(xiàn)壟斷現(xiàn)象,因此,不考慮β=0.9。根據(jù)參數(shù)的取值,可得α、β、ε對供應(yīng)鏈利潤的影響以及對供應(yīng)商2訂單量的影響,如圖1~4所示 (其中,圖3和圖4中,α 接近0和β接近1時(shí)的無波動處出現(xiàn)壟斷,因此不予考慮)。
由圖1和圖2可得供應(yīng)鏈利潤在α=0.7和α=0.9 2種情況下隨需求波動量ε 的變化。對比可知,供應(yīng)商的隨機(jī)中斷不發(fā)生的概率越高,即供應(yīng)商越穩(wěn)定,供應(yīng)鏈整體利潤越大。在集中式供應(yīng)鏈和供應(yīng)商相互競爭的分散式供應(yīng)鏈中,需求波動越小,供應(yīng)鏈利潤越高;而在供應(yīng)商合作的分散式供應(yīng)鏈中,存在需求擾動時(shí),其整體利潤普遍小于競爭時(shí)的利潤。這就說明,2個(gè)供應(yīng)商合作不一定會提高供應(yīng)鏈的利潤。
圖1 在α=0.7時(shí)隨ε的變化Figure 1 The changing of with ε when α=0.7
圖2 在α=0.9時(shí)隨ε的變化Figure 2 The changing of withεwhen α=0.9
從圖3可知,分配給供應(yīng)商2的訂單量隨著α的增大而增大,同時(shí)隨著需求波動量ε的增大而增大。由此可見,零售商在權(quán)衡批發(fā)價(jià)格與供應(yīng)穩(wěn)定性時(shí),更傾向選擇供應(yīng)穩(wěn)定性,進(jìn)一步驗(yàn)證了推論1。
圖3 集中式供應(yīng)鏈中α 和ε 對Q2c的影響Figure 3 The effect of α and ε on Q2c
由圖4可得,當(dāng)β增大時(shí),供應(yīng)商2所獲訂單量減少;當(dāng)需求波動量ε增大時(shí),供應(yīng)商2所獲訂單增加。這是由于供應(yīng)商1越來越穩(wěn)定,成本優(yōu)勢得以體現(xiàn),導(dǎo)致供應(yīng)商2訂單流失。此時(shí),需求仍然對供應(yīng)商2產(chǎn)生擾動,表明供應(yīng)商2更具有競爭力,與推論1一致。
圖4 集中式供應(yīng)鏈β 和ε對Q2c的影響Figure 4 The effect of β andε onQ2c
本文同時(shí)考慮供應(yīng)中斷和需求擾動,針對2個(gè)供應(yīng)商和1個(gè)零售商組成的兩級供應(yīng)鏈,構(gòu)建了合作、靜態(tài)非合作、嵌套式靜態(tài)非合作3個(gè)博弈模型,并進(jìn)行優(yōu)化求解,得到不同情況下的零售商最優(yōu)采購策略及供應(yīng)商的定價(jià)策略,最后設(shè)計(jì)了一個(gè)協(xié)調(diào)機(jī)制以實(shí)現(xiàn)供應(yīng)商利潤最大化。通過數(shù)值分析進(jìn)一步驗(yàn)證了模型的有效性。結(jié)論如下。
1) 當(dāng)需求下降時(shí),2個(gè)供應(yīng)商選擇合作并不會提高供應(yīng)鏈整體利潤;當(dāng)需求擾動達(dá)到某種程度時(shí),相較于集中式和供應(yīng)商競爭的分散式供應(yīng)鏈結(jié)構(gòu),供應(yīng)商合作下的供應(yīng)鏈整體利潤最高。
2) 零售商面臨需求擾動時(shí),僅會影響相對穩(wěn)定的供應(yīng)商。這是由于零售商更愿意通過穩(wěn)定的供應(yīng)獲取利潤,而不是通過低成本購買獲得利潤。因此在權(quán)衡產(chǎn)品準(zhǔn)時(shí)交付和邊際采購成本時(shí),更偏向于前者。
3) 當(dāng)零售商面臨上游供應(yīng)不確定和下游需求擾動時(shí),零售商更愿意向供應(yīng)商下訂單,而不是去現(xiàn)貨市場臨時(shí)補(bǔ)貨。原因是盡管供應(yīng)商存在中斷的可能,但對于現(xiàn)貨市場而言仍具有明顯的成本優(yōu)勢。
基于以上研究結(jié)論,可得到如下管理啟示。在當(dāng)前激烈的競爭環(huán)境中,供應(yīng)鏈下游節(jié)點(diǎn)在權(quán)衡訂貨成本與產(chǎn)品供應(yīng)穩(wěn)定性時(shí),更傾向于和相對穩(wěn)定的供應(yīng)商合作,即便選擇穩(wěn)定性較差的供應(yīng)商可能會獲取更多的利潤,但對于企業(yè)來說,中斷風(fēng)險(xiǎn)可能帶來更大的損失,如企業(yè)商譽(yù)損失,市場份額流失等。此外,當(dāng)市場需求增大時(shí),同一水平的上游企業(yè)間選擇橫向合作可提高供應(yīng)鏈整體利潤;當(dāng)市場需求萎縮時(shí),上下游企業(yè)間縱向合作可提高供應(yīng)鏈整體利潤。這將為供應(yīng)鏈上決策主體提供有益的借鑒。
管理實(shí)踐中,供應(yīng)鏈中普遍存在多個(gè)供應(yīng)商和多個(gè)零售商合作和競爭的情形,本文并未對此展開研究,未來可進(jìn)一步深入探討。