蔣國俊
(惠州市仲愷中學(xué),廣東 惠州 516029)
(1) 問題提出.
圖1
如圖1,柔軟輕繩ON的一端O固定,其中間某點(diǎn)M拴一重物,用手拉住繩的另一端N,初始時(shí),OM豎直且MN被拉直,OM與MN之間的夾角為α(α>90°).現(xiàn)將重物向右上方緩慢拉起,并保持夾角α不變.在OM由豎直被拉到水平的過程中[1]
(A)MN上的張力逐漸增大.
(B)MN上的張力先增大后減小.
(C)OM上的張力逐漸增大.
(D)OM上的張力先增大后減小.
(2) 兩種經(jīng)典解法.
圖2
解法1(正交分解).受力分析如圖2所示.設(shè)OM與豎直方向夾角為θ,M點(diǎn)繞O點(diǎn)做圓周運(yùn)動(dòng),沿切線方向:[1]FMNcos(α-90°)=mgsinθ.
沿半徑方向:FOM=FMNsin(α-90°)+mgcosθ.
當(dāng)θ=α-90°時(shí)存在極大值,故FOM先增大再減小,(D)項(xiàng)正確.
圖3
解法2.利用矢量圓,如圖3所示.[1]重力保持不變,是矢量圓的一條弦,FOM與FMN夾角即圓心角保持不變,由圖知FMN一直增大到最大,FOM先增大再減小,當(dāng)OM與豎直夾角為α-90°時(shí)FOM最大.[1]
(1) 正弦定理內(nèi)容: 在任意△ABC中,角A、B、C所對的邊長分別為a、b、c,三角形外接圓的半徑為R,直徑為D.則有[2]
圖4
解法3.遷移知識,解決問題.設(shè)將OM拉到與豎直方向的夾角為θ,M點(diǎn)受力如圖4所示,則有
β=π-θ-(π-α)=α-θ.
FOM=F合1.
圖5
因此,我們可以得到一個(gè)力的三角形如圖5所示.由正弦定理我們可以得
利用數(shù)學(xué)的三角函數(shù)規(guī)律可知
sin(π-α)=sinα.
將變量FMN和FOM都表達(dá)為不變量mg解析式,可得
因?yàn)棣敛蛔?所以sinα保持不變.θ從0°增大到90°過程中,sinθ一直在增大,故FMN增大,所以選項(xiàng)(A)正確.
因?yàn)棣?90°,在θ從0°增大到90°過程中,(α-θ)先從一個(gè)鈍角減小到90°,再從90°減小為銳角,而sin90°=1,是最大的,所以sin(α-θ)先增大后減小,故FMN先增大后減小,選項(xiàng)(D)正確.
第1種解法(正交分解法)是學(xué)生平時(shí)常用的方法,但在本題中使用此法有兩個(gè)關(guān)鍵點(diǎn): ① 巧選沿切線方向?yàn)閤軸,沿半徑方向?yàn)閥軸; ② 熟練運(yùn)用數(shù)學(xué)三角函數(shù)模塊的積化和差公式.這兩個(gè)
關(guān)鍵點(diǎn)也是兩個(gè)難點(diǎn),兩個(gè)難點(diǎn)疊加在一起,學(xué)生要順利的得出結(jié)果就比較困難
第2種解法是將mg對應(yīng)的有向線段放在一個(gè)圓中,從而確保變化過程中α不變.這個(gè)方法通過M點(diǎn)在圓中的動(dòng)態(tài)變化很容易就得出兩個(gè)力的變化情況.然而,將有向線段放在一個(gè)圓中這個(gè)關(guān)鍵點(diǎn)學(xué)生很難想到.
第3種解法利用學(xué)生熟悉的平行四邊形法則構(gòu)建一個(gè)力的三角形,運(yùn)用正弦定理建立方程,進(jìn)而得出兩個(gè)待求力的解析式,最終得出兩個(gè)力的變化規(guī)律.平行四邊形法則是學(xué)生很熟悉的,三角形中的正弦定理也是高中數(shù)學(xué)重點(diǎn)學(xué)習(xí)的內(nèi)容,因此學(xué)生很容易將正弦定理遷移到力的三角形中解決物理問題.