亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類雙圈圖的匹配能量和Hosoya指標(biāo)排序

        2021-06-22 09:07:22馬海成李丹陽解承玲
        關(guān)鍵詞:偏序啞鈴偶數(shù)

        馬海成,李丹陽,解承玲

        (青海民族大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,青海 西寧 810007)

        1 預(yù)備知識

        本文僅考慮有限無向的簡單圖.設(shè)G是有n個點(diǎn)的圖,G的一個匹配是指G的一個生成子圖,它的每個連通分支是孤立點(diǎn)或者孤立邊.恰有k條邊的匹配稱為k-匹配.在文獻(xiàn)[1]中圖G的匹配多項式定義為:

        這里m(G,k)是G中k-匹配的數(shù)目,且約定m(G,0)=1.為了方便,本文中將μ(G,x)簡記為μ(G).

        定義1設(shè)λ1,λ2,…,λn是圖G的匹配多項式的所有根,定義它的匹配能量為

        設(shè)G是一個圖,以V(G)和E(G)分別表示圖G的點(diǎn)集和邊集.如果e∈E(G),以Ge表示從圖G中刪去邊e后得到的圖.如果V1?V(G),以GV1表示從圖G中刪去V1中的所有點(diǎn)以及和這些點(diǎn)關(guān)聯(lián)的所有邊后得到的圖.如果V1={u},將G(〗u}簡記為Gu.以G∪H表示兩個圖G和H的并圖.以Pn,Cn,Kn分別表示n個點(diǎn)的路、圈和完全圖.路Ps+2的兩個端點(diǎn)分別與圈Ca+1和Cb+1上的一個點(diǎn)黏結(jié)后得到的連通圖稱為啞鈴圖(見圖1),記為∞(a,s,b),這里的s≥0,a≥2,b≥2.路Ps+1的一個端點(diǎn)與圈Ca+1上的一個點(diǎn)黏結(jié)后得到的a+s+1個點(diǎn)的連通圖稱為Q-圖,記為Q(a,s),這里的s≥0,a≥2.以P(s,t)表示Ps∪Pt.文中沒有說明的記號和術(shù)語參見文獻(xiàn)[1].

        圖1 啞鈴圖∞(a,s,b)Fig.1 The dumbbell shape graph ∞(a,s,b)

        2 若干引理

        引理1[1]設(shè)圖G有k個連通分支G1,G2,…,Gk,則

        μ(G,x)=μ(G1,x)μ(G2,x)…μ(Gk,x).

        引理2[1]設(shè)G是一個圖,u∈V(G),e=uv∈E(G),則

        EM(G)=2π∫+∞01x2ln[∑k≥0m(G,k)x2k]dx,

        這里m(G,k)是G中k-匹配的數(shù)目.

        由引理5,規(guī)定一種偏序關(guān)系“?”.設(shè)G1和G2是兩個n階圖,對所有的非負(fù)整數(shù)k,若滿足m(G1,k)≤m(G2,k),則定義G1?G2.若不等式m(G1,k)≤m(G2,k)對某個非負(fù)整數(shù)k是嚴(yán)格的,則定義G1G2.于是,由引理5可以得到下面的結(jié)果:

        G1?G2?EM(G1)≤EM(G2),Z(G1)≤Z(G2);

        G1G2?EM(G1)

        引理6[13]設(shè)G1和G2是兩個n階圖,如果存在一個m階圖H,滿足

        μ(G1)-μ(G2)=μ(H),

        則:

        (i)n-m是一個偶數(shù);

        (ii) 如果n-m≡0(mod 4),則G1?G2;

        (iii) 如果n-m≡2(mod 4),則G1G2.

        設(shè)H是一個m階的圖,f(x)是一個多項式(它未必是一個圖的匹配多項式),如果f(x)與μ(H)有相同的形式,即

        這里的ak≥0,且至少有一個ak>0,記f(x)≈μ(H).

        眾所周知,對于圖G1和G2,多項式μ(G1)-μ(G2)一般不是一個圖的匹配多項式,但若存在一個m階的圖H,使得μ(G1)-μ(G2)≈μ(H),則引理6的結(jié)論也成立,這就是下面的引理7.

        引理7設(shè)G1和G2是兩個n階圖,且μ(G1)-μ(G2)≠0,如果存在一個m階圖H,滿足

        μ(G1)-μ(G2)≈μ(H),

        則:

        (i)n-m是一個偶數(shù);

        (ii) 如果n-m≡0(mod 4),則G1?G2;

        (iii) 如果n-m≡2(mod 4),則G1G2.

        (ii) 不妨設(shè)n=m+4k,

        μ(G1)=xn-m(G1,1)xn-2+…+m(G1,2k)xm-

        m(G1,2k+1)xm-2+…,

        μ(G2)=xn-m(G2,1)xn-2+…+m(G2,2k)xm-

        m(G2,2k+1)xm-2+…,

        f(x)=a0xm-a1xm-2+….

        由于μ(G1)=μ(G2)+f(x),比較系數(shù)得

        所以G1?G2.

        (iii) 不妨設(shè)n=m+4k+2,

        μ(G1)=xn-m(G1,1)xn-2+…-m(G1,2k+

        1)xm+m(G1,2k+2)xm-2-…,

        μ(G2)=xn-m(G2,1)xn-2+…-m(G2,2k+

        1)xm+m(G2,2k+2)xm-2-…,

        f(x)=a0xm-a1xm-2+….

        由于μ(G1)=μ(G2)+f(x),比較系數(shù)得

        所以G1G2.

        3 主要定理及證明

        引理8(i) 設(shè)a≤b,則μ(Pa∪Q(b,s))-μ(Pa-2∪Q(b+2,s))=μ(P1∪Q(b-a+1,s));

        (ii) 設(shè)4≤a≤b,則μ(∞(a,s,b))-μ(∞(a-2,s,b+2))≈-μ(P1∪Q(b-a+2,s)).

        證明(i) 由引理2(ii),

        μ(Q(b,s))=μ(Pb+s+1)-μ(Pb-1∪Ps),

        由引理4,

        μ(Pa∪Q(b,s))-μ(Pa-2∪Q(b+2,s))=

        [μ(P(a,b+s+1))-μ(P(a-2,b+s+3))]-

        [μ(P(a,b-1))-μ(P(a-2,b+1))]μ(Ps)=

        μ(P(1,b+s-a+2))-μ(P(1,b-a))μ(Ps)=

        μ(P1∪Q(b-a+1,s)).

        (ii) 由引理2(i),

        μ(∞(a,s,b))=xμ(Pa∪Q(b,s))-

        2μ(Pa-1∪Q(b,s))-μ(Pa∪Q(b,s-1)),

        μ(∞(a-2,s,b+2))=xμ(Pa-2∪Q(b+2,

        s))-2μ(Pa-3∪Q(b+2,s))-

        μ(Pa-2∪Q(b+2,s-1)),

        由(i)和引理2知,

        μ(∞(a,s,b))-μ(∞(a-2,s,b+2))=

        x[μ(Pa∪Q(b,s))-μ(Pa-2∪Q(b+2,s))]-

        2[μ(Pa-1∪Q(b,s))-μ(Pa-3∪Q(b+2,s))]-

        [μ(Pa∪Q(b,s-1))-μ(Pa-2∪Q(b+2,

        s-1))]=xμ(P1∪Q(b-a+1,s))-

        2μ(P1∪Q(b-a+2,s))-μ(P1∪Q(b-a+

        1,s-1))=μ(P1∪Q(b-a+1,s+1))-

        2μ(P1∪Q(b-a+2,s))=μ(P1)[μ(Q(b-

        a+1,s+1))-μ(Q(b-a+2,s))]-

        μ(P1∪Q(b-a+2,s))=μ(P1)[(μ(Pb+s-a+3)-

        μ(Pb-a∪Ps+1))-(μ(Pb+s-a+3)-

        μ(Pb-a+1∪Ps))]-μ(P1∪Q(b-a+2,s))=

        μ(P1)[μ(P(b-a+1,s))-μ(P(b-a,s+1))]-

        μ(P1∪Q(b-a+2,s)).

        1) 若s≥b-a+1,由引理4知,μ(P(b-a+1,s))-μ(P(b-a,s+1))=μ(Ps-b+a-1),則

        μ(∞(a,s,b))-μ(∞(a-2,s,b+2))=

        μ(P1)[μ(Ps-b+a-1)-μ(Q(b-a+2,s)].

        圖Q(b-a+2,s)的點(diǎn)數(shù)N=b-a+s+3,路Ps-b+a-1的點(diǎn)數(shù)N1=s-b+a-1,N-N1=2(b-a)+4,即從圖Q(b-a+2,s)中刪去一條路P2(b-a)+4后便得到路Ps-b+a-1.路P2(b-a)+4上有一個完美匹配(即飽和了所有點(diǎn)的匹配),于是路Ps-b+a-1上的任何一個k匹配,并上路P2(b-a)+4的完美匹配后便得到圖Q(b-a+2,s)上的一個k+b-a+2匹配,故m(Ps-b+a-1,k)≤m(Q(b-a+2,s),k+b-a+2).

        由于

        b-a+2)xN1-2k,

        (1)

        所以

        μ(Q(b-a+2,s))-μ(Ps-b+a-1)=

        a+2)-m(Ps-b+a-1,k)]xN1-2k.

        (2)

        結(jié)合不等式m(Ps-b+a-1,k)≤m(Q(b-a+2,s),k+b-a+2)),比較多項式μ(Q(b-a+2,s))-μ(Ps-b+a-1) 和多項式μ(Q(b-a+2,s)),即式(1)和式(2),發(fā)現(xiàn)它們有完全一樣的形式.只是當(dāng)b-a+2為偶數(shù)時,多項式μ(Q(b-a+2,s))-μ(Ps-b+a-1)中項xN1-2k的系數(shù)比多項式μ(Q(b-a+2,s))中項xN1-2k的系數(shù)的絕對值會減少,符號仍然與多項式μ(Q(b-a+2,s))的項xN1-2k符號相同;當(dāng)b-a+2為奇數(shù)時,多項式μ(Q(b-a+2,s))-μ(Ps-b+a-1)中項xN1-2k的系數(shù)比多項式μ(Q(b-a+2,s))中項xN1-2k的系數(shù)的絕對值會增加,符號仍然與多項式μ(Q(b-a+2,s))的項xN1-2k符號相同.也就是說,μ(Q(b-a+2,s))-μ(Ps-b+a-1)≈μ(Q(b-a+2,s)),于是μ(∞(a,s,b))-μ(∞(a-2,s,b+2))≈-μ(P1∪Q(b-a+2,s)).

        2) 若s=b-a,此時μ(P(b-a+1,s))-μ(P(b-a,s+1))=0,則μ(∞(a,s,b))-μ(∞(a-2,s,b+2))=-μ(P1)μ(Q(b-a+2,s).

        3) 若s≤b-a-1,由引理4知,此時μ(P(b-a+1,s))-μ(P(b-a,s+1))=-μ(Pb-a-s-1),則

        μ(∞(a,s,b))-μ(∞(a-2,s,b+2))=

        μ(P1)[-μ(Pb-a-s-1) -μ(Q(b-a+2,s)].

        圖Q(b-a+2,s)的點(diǎn)數(shù)N=b-a+s+3,路Pb-a-s-1的點(diǎn)數(shù)N2=b-a-s-1,N-N2=2s+4,即從圖Q(b-a+2,s)中刪去一條路P2s+4后便得到路Pb-a-s-1.路P2s+4上有一個完美匹配,于是路Pb-a-s-1上的任何一個k匹配,并上路P2s+4的完美匹配后便得到圖Q(b-a+2,s)上的一個k+s+2匹配,故m(Pb-a-s-1,k)≤m(Q(b-a+2,s),k+s+2).

        由于

        2)xN2-2k,

        (3)

        所以

        μ(Q(b-a+2,s))+μ(Pb-a-s-1)=

        2)+m(Pb-a-s-1,k)]xN2-2k.

        (4)

        結(jié)合不等式m(Pb-a-s-1,k)≤m(Q(b-a+2,s),k+s+2),與1)類似,得到μ(Q(b-a+2,s)+μ(Pb-a-s-1)≈μ(Q(b-a+2,s),于是μ(∞(a,s,b))-μ(∞(a-2,s,b+2))≈-μ(P1∪Q(b-a+2,s)).

        引理9(i)μ(P2k∪Q(2k,s))-μ(P2k-1∪Q(2k+1,s))=μ(Ps+1);

        (ii)μ(P2k-1∪Q(2k,s))-μ(P2k-2∪Q(2k+1,s))=μ(Ps+2)-μ(Ps);

        (iii)μ(∞(2k,s,2k))-μ(∞(2k-1,s,2k+1))≈-μ(Cs+2).

        證明(i) 由引理2(ii),μ(P2k∪Q(2k,s))=μ(P2k∪P2k+s+1)-μ(P2k∪P2k-1∪Ps),μ(P2k-1∪Q(2k+1,s))=μ(P2k-1∪P2k+s+2)-μ(P2k-1∪P2k∪Ps),由引理4,μ(P2k∪Q(2k,s))-μ(P2k-1∪Q(2k+1,s))=μ(Ps+1).

        (ii) 由引理2(ii),μ(P2k-1∪Q(2k,s))=μ(P2k-1∪P2k+s+1)-μ(P2k-1∪P2k-1∪Ps),μ(P2k-2∪Q(2k+1,s))=μ(P2k-2∪P2k+s+2)-μ(P2k-2∪P2k∪Ps),由引理4,μ(P2k-1∪Q(2k,s))-μ(P2k-2∪Q(2k+1,s))=μ(Ps+2)-μ(Ps).

        (iii) 由引理2(i),μ(∞(2k,s,2k))=xμ(P2k∪Q(2k,s))-2μ(P2k-1∪Q(2k,s))-μ(P2k∪Q(2k,s-1)),μ(∞(2k-1,s,2k+1))=xμ(P2k-1∪Q(2k+1,s))-2μ(P2k-2∪Q(2k+1,s))-μ(P2k-1∪Q(2k+1,s-1)).

        由(i)和(ii)知,μ(∞(2k,s,2k))-μ(∞(2k-1,s,2k+1))=xμ(Ps+1)-2(μ(Ps+2)-μ(Ps))-μ(Ps)=-μ(Ps+2)+2μ(Ps)=-μ(Cs+2)+μ(Ps).

        圈Cs+2上刪去一個P2便得到路Ps,而P2有完美匹配,同引理8的證明類似,得到-μ(Cs+2)+μ(Ps)≈-μ(Cs+2).

        引理10(i)μ(P2k+1∪Q(2k+1,s))-μ(P2k∪Q(2k+2,s))=μ(Ps+1);

        (ii)μ(P2k∪Q(2k+1,s))-μ(P2k-1∪Q(2k+2,s))=μ(Ps+2)-μ(Ps);

        (iii)μ(∞(2k+1,s, 2k+1))-μ(∞(2k,s,2k+2))≈-μ(Cs+2).

        證明與引理9類似,略.

        定理1設(shè)s是一個固定的非負(fù)整數(shù),對圖∞(a,s,b),有:

        (i) 當(dāng)a+b=4k,∞(3,s, 4k-3)?∞(5,s,4k-5)?…?∞(2k-1,s,2k+1)?∞(2k,s,2k)?∞(2k-2,s,2k+2)?…?∞(4,s,4k-4)?∞(2,s,4k-2);

        (ii) 當(dāng)a+b=4k+1,∞(3,s,4k-2)?∞(5,s,4k-4)?…?∞(2k-1,s,2k+2)?∞(2k+1,s,2k)=∞(2k,s,2k+1)?∞(2k-2,s,2k+3)?…?∞(4,s,4k-3)?∞(2,s,4k-1);

        (iii) 當(dāng)a+b=4k+2,∞(3,s,4k-1)?∞(5,s,4k-3)?…?∞(2k-1,s,2k+3)?∞(2k+1,s,2k+1)?∞(2k,s,2k+2)?…?∞(4,s,4k-2)?∞(2,s,4k);

        (iv) 當(dāng)a+b=4k+3,∞(3,s,4k)?∞(5,s,4k-2)?…?∞(2k+1,s,2k+2)?∞(2k+3,s,2k)=∞(2k,s,2k+3)?∞(2k-2,s,2k+5)?…?∞(4,s,4k-1)?∞(2,s,4k+1).

        證明由引理8(ii),當(dāng)4≤a≤b,有

        μ(∞(a,s,b))-μ(∞(a-2,s,b+2))≈

        -μ(P1∪Q(b-a+2,s)).

        (5)

        等式(5)左端的每個圖的點(diǎn)數(shù)為a+b+s+2,右端的圖的點(diǎn)數(shù)為b+s-a+4,它們的差為2a-2.于是由引理7知,當(dāng)a為奇數(shù)時有∞(a-2,s,b+2))?∞(a,s,b),當(dāng)a為偶數(shù)時有∞(a-2,s,b+2))∞(a,s,b),由此便得到(i)~(iv)中的不等式的前半段和后半段.

        由引理9(iii)知,

        μ(∞(2k,s,2k))-μ(∞(2k-1,s,2k+1))≈

        -μ(Cs+2).

        (6)

        等式(6)左端的每個圖的點(diǎn)數(shù)為4k+s+2,右端圖的點(diǎn)數(shù)為s+2,它們的差為4k.于是由引理7,得到定理1(i)中間的偏序關(guān)系∞(2k-1,s,2k+1)?∞(2k,s,2k).

        類似地,由引理10(iii)知,

        μ(∞(2k+1,s,2k+1))-μ(∞(2k,s,2k+2))≈

        -μ(Cs+2).

        (7)

        等式(7)左端的每個圖的點(diǎn)數(shù)為4k+s+4,右端的圖的點(diǎn)數(shù)為s+2,它們的差為4k+2.于是由引理7,得到定理1(iii)中間的偏序關(guān)系∞(2k+1,s,2k+1)?∞(2k,s,2k+2).定理證畢.

        下面的3個推論是定理1的直接推論.

        推論1設(shè)s是一個固定的非負(fù)整數(shù),對圖∞(a,s,b),有:

        (i) 當(dāng)a+b=4k,EM(∞(3,s,4k-3))>EM(∞(5,s,4k-5))> …>EM(∞(2k-1,s,2k+1))>EM(∞(2k,s,2k))>EM(∞(2k-2,s,2k+2))>…>EM(∞(4,s,4k-4))>EM(∞(2,s,4k-2));

        (ii) 當(dāng)a+b=4k+1,EM(∞(3,s,4k-2))>EM(∞(5,s,4k-4))>…>EM(∞(2k-1,s,2k+2))>EM(∞(2k+1,s,2k))=EM(∞(2k,s,2k+1))>EM(∞(2k-2,s,2k+3))>…>EM(∞(4,s,4k-3))>EM(∞(2,s,4k-1));

        (iii) 當(dāng)a+b=4k+2,EM(∞(3,s,4k-1))>EM(∞(5,s,4k-3))>…>EM(∞(2k-1,s,2k+3))>EM(∞(2k+1,s,2k+1))>EM(∞(2k,s,2k+2))>…>EM(∞(4,s,4k-2))>EM(∞(2,s,4k));

        (iv) 當(dāng)a+b=4k+3,EM(∞(3,s,4k))>EM(∞(5,s,4k-2))>…>EM(∞(2k+1,s,2k+2))>EM(∞(2k+3,s,2k))=EM(∞(2k,s,2k+3))>EM(∞(2k-2,s,2k+5))>…>EM(∞(4,s,4k-1))>EM(∞(2,s,4k+1)).

        推論2設(shè)s是一個固定的非負(fù)整數(shù),對圖∞(a,s,b),有:

        (i) 當(dāng)a+b=4k,Z(∞(3,s,4k-3))>Z(∞(5,s,4k-5))>…>Z(∞(2k-1,s,2k+1))>Z(∞(2k,s,2k))>Z(∞(2k-2,s,2k+2))>…>Z(∞(4,s,4k-4))>Z(∞(2,s,4k-2));

        (ii) 當(dāng)a+b=4k+1,Z(∞(3,s,4k-2))>Z(∞(5,s,4k-4))>…>Z(∞(2k-1,s,2k+2))>Z(∞(2k+1,s,2k))=Z(∞(2k,s,2k+1))>Z(∞(2k-2,s,2k+3))>…>Z(∞(4,s,4k-3))>Z(∞(2,s,4k-1));

        (iii) 當(dāng)a+b=4k+2,Z(∞(3,s,4k-1))>Z(∞(5,s,4k-3))>…>Z(∞(2k-1,s,2k+3))>Z(∞(2k+1,s,2k+1))>Z(∞(2k,s,2k+2))>…>Z(∞(4,s,4k-2))>Z(∞(2,s,4k));

        (iv) 當(dāng)a+b=4k+3,Z(∞(3,s,4k))>Z(∞(5,s,4k-2))>…>Z(∞(2k+1,s,2k+2))>Z(∞(2k+3,s,2k))=Z(∞(2k,s,2k+3))>Z(∞(2k-2,s,2k+5))>…>Z(∞(4,s,4k-1))>Z(∞(2,s,4k+1)).

        推論3在s和a+b=c固定的啞鈴圖∞(a,s,b)圖中,匹配能量最大的圖是∞(3,s,c-3),最小的圖是∞(2,s,c-2);Hosoya指標(biāo)最大的圖是∞(3,s,c-3),最小的圖是∞(2,s,c-2).

        注3本文給出了啞鈴圖∞(a,s,b)在s不變而a和b兩個變量變化下匹配能量的全排序和Hosoya指標(biāo)的全排序.如果讓3個變量a、s和b都變化,如何給出啞鈴圖∞(a,s,b)匹配能量的全排序?qū)⒑軓?fù)雜,有待進(jìn)一步探討.

        猜你喜歡
        偏序啞鈴偶數(shù)
        認(rèn)識奇數(shù)與偶數(shù)
        奇數(shù)與偶數(shù)
        偶數(shù)階張量core逆的性質(zhì)和應(yīng)用
        基于有限辛空間的一致偏序集和Leonard對
        相對連續(xù)偏序集及其應(yīng)用
        我給爸爸當(dāng)“啞鈴”
        可消偏序半群的可消偏序擴(kuò)張與商序同態(tài)
        橫臥啞鈴形Rathke囊腫1例
        去贅肉又強(qiáng)身的啞鈴操(上)
        去贅肉又強(qiáng)身的啞鈴操(上)
        亚洲欧洲巨乳清纯| 亚洲第一区无码专区| 亚洲在战AV极品无码| 少妇特殊按摩高潮对白| 丰满人妻一区二区三区52| 在线国人免费视频播放| 三个男吃我奶头一边一个视频| 无码吃奶揉捏奶头高潮视频| 国产二级一片内射视频插放| 精品国产制服丝袜高跟| 超碰观看| 中文字幕文字幕一区二区| 日本一区二区三区爱爱视频| 国产av自拍视频在线观看| 777米奇色8888狠狠俺去啦| 亚洲七久久之综合七久久| 女人扒开屁股爽桶30分钟| 日日碰狠狠躁久久躁| 国产喷水福利在线视频| 亚洲日产AV中文字幕无码偷拍| 最新国产av网址大全| 亚洲无人区一码二码国产内射| 国内久久婷婷六月综合欲色啪| 夫妻免费无码v看片| 亚洲中文字幕无码天然素人在线| 无码人妻丰满熟妇区五十路百度| 八区精品色欲人妻综合网| 国产精品白浆视频一区| 中文字幕无码免费久久| 一区二区三区在线日本| 男女主共患难日久生情的古言| 青青草原综合久久大伊人精品| 高h喷水荡肉爽文np肉色学校| 2020无码专区人妻系列日韩| 久久国产精品久久久久久| 特黄a级毛片免费视频| 国产成社区在线视频观看| 国产激情视频在线观看你懂的| 国产精品一区二区久久久av| 久久99精品久久久久麻豆| 337p西西人体大胆瓣开下部|