亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS?

        2021-06-17 13:58:56楊月英
        關(guān)鍵詞:張宏偉

        (楊月英)

        School of Mechanical and Electrical Engineering,Huzhou Vocational&Technical College,Huzhou 313000,China

        E-mail:yyy1008@163.com

        Weimao QIAN(錢偉茂)

        School of Continuing Education,Huzhou Vocational&Technical College,Huzhou 313000,China

        E-mail:qwm661977@126.com

        Hongwei ZHANG(張宏偉)

        School of Mathematics and Statistics,Changsha University of Science&Technology,Changsha 410014,China

        E-mail:hwzhang2018@163.com

        Yuming CHU(褚玉明)?

        Department of Mathematics,Huzhou University,Huzhou 313000,China

        E-mail:chuyuming2005@126.com;chuyuming@zjhu.edu.cn

        Abstract In the article,we prove that the double inequalities hold for all a,b>0 with ab if and only if λ1 and

        Key words Geometric mean;arithmetic mean;Toader mean;ontraharmonic mean;complete elliptic integral

        1 Introduction

        Let a,b>0 and r∈(0,1).Then the geometric mean G(a,b),arithmetic mean A(a,b),quadratic mean Q(a,b),contraharmonic mean C(a,b),Toader mean T(a,b)[1,2],complete elliptic integrals K(r)and E(r)[3–18]of the first and second kinds are given by

        respectively.

        From(1.2)and(1.3)we clearly see that

        It is well known that K(r)is strictly increasing from(0,1)onto(π/2,∞),that E(r)is strictly decreasing from(0,1)onto(1,π/2),and that they satisfy the following formulae[19]:

        Recently,the bounds for the Toader mean have attracted the attention of many researchers.Vuorinen,in[22],conjectured that

        is the p-th H?lder mean.Inequality(1.5)was proved by Barnard,Pearce and Richards in[23],and they proved that H2(a,b)is an upper H?lder mean bound for T(a,b).

        In[24],Alzer and Qiu proved that p0=log2/(logπ?log2)=1.5349...is the best possible constant such that the inequality T(a,b)<(a,b)holds for all a,b>0 with a/=b,and proposed that

        for all a,b>0 with a/=b.

        Inequality(1.6)was proved by Kazi and Neuman[25]by using the two-point Gauss-Chebyshev quadrature formula with the remainder given in[26].

        is the generalized Seiffert mean.

        In[28,29],the authors proved that the double inequalities

        hold for all a,b>0 with a/=b if and only if α1≤1/2,β1≥(4?π)/[(√2?1)π]=0.659...,α2≤1/2,β2≥4?2logπ/log2=0.697...,α3≤0 and β3≥1/4,where Lp(a,b)=(ap+1+bp+1)/(ap+bp)is the p-th Lehmer mean.

        Wang et al.[30]established the double inequality

        hold for all a,b>0 with a/=b and p∈[1/2,2].The special cases p=1 and p=1/2 of inequality(1.8)were also proved in[32]and[33],respectively.

        In[34],Chu et al.proved that the double inequalities

        Let p≥1,s≥1/2,λ∈(0,1/2)andμ∈(1/2,1).Then the two-parameter geometricarithmetic mean GAλ,p(a,b)and two-parameter contraharmonic-arithmetic mean CAμ,s(a,b)are defined by

        respectively.

        From(1.1),(1.7),(1.11)and(1.12),we clearly see that

        The aim of the article is to find the best possible parameters λ1=λ1(p),μ1=μ1(p)∈(0,1/2)and λ2=λ2(s),μ2=μ2(s)∈(1/2,1)such that the double inequalities

        hold for all p≥1,s≥1/2 and a,b>0 with a/=b.

        2 Lemmas

        In order to prove our main results,we need four lemmas,which we present in this section.

        Lemma 2.1The following statements are true:

        ProofParts(1)–(5)can be found in[19,Theorem 3.21(1)and(8),and Exercises 3.43(11),(16)and(32)].

        Part(6)follows easily from part(3)and the monotonicity of E(r)on the interval(0,1),together with the facts that

        Lemma 2.3Let u∈[0,1],r∈(0,1),p≥1 and

        Then one has that

        (1)fu,p(r)>0 for all r∈(0,1)if and only if u≤1/(2p);

        (2)fu,p(r)<0 for all r∈(0,1)if and only if u≥1?(2/π)2/p.

        ProofIt follows from(2.5)that

        From Lemma 2.1(5)and(6),together with(2.9),we know that the function r→fp(r)is strictly increasing on(0,1)and that

        It follows from Lemma 2.2 that the interval[0,1]can be expressed by

        We divide the proof into three cases.

        Case 1:u≤1/(2p).Then,from(2.8)and(2.10),together with the monotonicity of the function r→fp(r)on the interval(0,1),we get that the function r→fu,p(r)is strictly increasing on(0,1).Therefore,fu,p(r)>0 for all r∈(0,1)follows from(2.6)and the monotonicity of the function r→fu,p(r)on the interval(0,1).

        Case 2:u=1.Then equations(2.8)and(2.10),together with the monotonicity of the function r→fp(r)on the interval(0,1),lead to the conclusion that the function r→fu,p(r)is strictly decreasing on(0,1).Therefore,fu,p(r)<0 for all r∈(0,1)follows from(2.6)and the monotonicity of the function r→fu,p(r)on the interval(0,1).

        Case 3:1/(2p)

        We divide the proof into two subcases.

        Subcase 3.1:1?(2/π)2/p≤u<1.Then(2.7)leads to

        Therefore,fu,p(r)<0 for all r∈(0,1)follows from(2.6)and(2.11),together with the piecewise monotonicity of the function r→fu,p(r)on the interval(0,1).

        Subcase 3.2:1/(2p)

        Therefore,there exists u?∈(u0,1)such that fu,p(r)<0 for u∈(0,u?)and fu,p(r)>0 for u∈(u?,1)follows from(2.6)and(2.12),together with the piecewise monotonicity of the function r→fu,p(r)on the interval(0,1). □

        We divide the proof into three cases.

        3 Main Results

        Theorem 3.1Let λ1,μ1∈(0,1/2)and p≥1.Then the double inequality

        Therefore,Theorem 3.3 follows from Lemma 2.4 and(3.2). □

        Remark 3.4Let s=1/2,1.Then,from(1.14)and(1.15),we clearly see that inequalities(1.9)and(1.10)can be derived from Theorem 3.3.

        The following Corollary 3.5 also can be derived directly from(1.1),(1.4),(1.11)and(1.12),as well as Theorems 3.1 and 3.3:

        Corollary 3.5Let λ1,μ1∈(0,1/2),λ2,μ2∈(1/2,1),p≥1 and s≥1/2.Then the double inequalities

        猜你喜歡
        張宏偉
        Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
        倒立哥,換個(gè)角度看世界
        金秋(2021年12期)2021-10-06 04:07:30
        育學(xué)子之德行 潤桃李共芬芳
        交通肇事案,收留親戚惹禍
        莫愁(2018年16期)2018-11-14 06:15:41
        交通肇事案,收留親戚惹禍
        張宏偉 危難時(shí)刻顯身手
        忘不了,“流浪愛情狂人”千轉(zhuǎn)百回
        幸福(2016年16期)2016-07-25 12:03:10
        忘不了,“流浪愛情狂人”千轉(zhuǎn)百回
        遇上一個(gè)輸不起的創(chuàng)業(yè)者
        遇上一個(gè)輸不起的創(chuàng)業(yè)者
        18禁成人黄网站免费观看| 亚洲精品一区二区三区蜜臀| 亚洲人成精品久久熟女| 国产精品久久国产精品99 gif| 国产精品免费观看久久| 久久精品伊人无码二区| 久久精品一区二区三区夜夜| 亚洲精品粉嫩美女一区| 漂亮人妻被中出中文字幕久久| 久久国产精彩视频| 精品人妻一区二区三区蜜臀在线| 中文字幕精品一区久久| 久久久久波多野结衣高潮| 久久久国产精品樱花网站| 一个人看的在线播放视频| 国产内射一级一片内射视频| 国产精品_国产精品_k频道w| 97色偷偷色噜噜狠狠爱网站97| 午夜婷婷国产麻豆精品| 欧美疯狂性受xxxxx喷水| 中国a级毛片免费观看| 极品诱惑一区二区三区| 亚洲精品大全中文字幕| 99无码精品二区在线视频| 中文天堂在线www| 国产精品白浆免费观看| 亚洲av迷人一区二区三区| 久久久www成人免费精品| AV永久天堂网| 国产精品午夜福利亚洲综合网| 99国产精品99久久久久久| 久久精品国内一区二区三区| 天堂av无码大芭蕉伊人av孕妇黑人 | 青青草成人免费在线观看视频| 亚洲人成色7777在线观看| 国产自精品| 国产性感主播一区二区| 亚洲爆乳无码精品aaa片蜜桃| 内射精品无码中文字幕| 99久久久久久亚洲精品| 极品粉嫩小仙女高潮喷水操av|