亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        多點(diǎn)激勵(lì)下減震橋梁結(jié)構(gòu)抗震可靠度分析的哈密頓蒙特卡洛子集模擬法

        2021-06-10 00:56:15賈少敏王子琦陳華霆趙雷
        振動(dòng)工程學(xué)報(bào) 2021年2期

        賈少敏 王子琦 陳華霆 趙雷

        摘要: 減震橋梁結(jié)構(gòu)在地震激勵(lì)下的可靠度分析為一典型的局部非線性動(dòng)力可靠度問題。隨機(jī)模擬法對(duì)于求解非線性動(dòng)力可靠度問題具有普遍適用性,但對(duì)于實(shí)際工程問題,其應(yīng)用存在計(jì)算工作量巨大的問題。隨機(jī)模擬法計(jì)算時(shí)間主要取決于所需樣本數(shù)目及單次樣本計(jì)算效率。為提高減震橋梁結(jié)構(gòu)抗震可靠度計(jì)算效率,基于精細(xì)時(shí)程積分法、Newton迭代法建立了多點(diǎn)激勵(lì)下減震橋梁的運(yùn)動(dòng)方程及相應(yīng)的時(shí)域顯式降維迭代解格式,提高了單次樣本的計(jì)算效率;引入基于哈密頓蒙特卡洛算法的子集模擬法,減少了所需樣本個(gè)數(shù)。數(shù)值算例表明:與傳統(tǒng)隨機(jī)模擬法相比,所建立的方法可有效地提高減震橋梁結(jié)構(gòu)非線性動(dòng)力可靠度計(jì)算效率。

        關(guān)鍵詞: 減震橋梁結(jié)構(gòu); 非線性動(dòng)力可靠度; 哈密頓蒙特卡洛法; 精細(xì)時(shí)程積分法; 時(shí)域顯式降維迭代

        中圖分類號(hào): U441+.3;TU352.1 ? ?文獻(xiàn)標(biāo)志碼: A ? ?文章編號(hào): 1004-4523(2021)02-0357-07

        DOI:10.16385/j.cnki.issn.1004-4523.2021.02.016

        引 言

        減震橋梁結(jié)構(gòu)的抗震可靠度問題可表示為首次超越問題[1]。首次超越破壞問題經(jīng)過70余年的發(fā)展形成了基于過程跨越理論[2]、基于擴(kuò)散過程理論的方法[3]。由于減震橋梁結(jié)構(gòu)的隨機(jī)響應(yīng)過程不再服從高斯分布,應(yīng)用經(jīng)典動(dòng)力可靠度方法求解非線性結(jié)構(gòu)動(dòng)力可靠度問題變得異常困難。Crandall等[4]較早地將隨機(jī)模擬法引入首次超越問題,為非線性結(jié)構(gòu)動(dòng)力可靠度問題求解開辟了一個(gè)普遍適用的途徑。至今對(duì)于大型復(fù)雜非線性結(jié)構(gòu)動(dòng)力可靠度問題求解,隨機(jī)模擬法仍是一種主要方法[5?9]。

        隨機(jī)模擬法對(duì)于求解非線性動(dòng)力可靠度問題具有普遍適用性,其計(jì)算時(shí)間主要取決于所需樣本數(shù)目和單次樣本的計(jì)算效率。對(duì)于抽樣效率的改善,研究人員基于方差縮減技術(shù)提出了重要性抽樣法[5]、正交平面重要性抽樣法[6]、子集模擬法(序列蒙特卡洛法)[7]、球面子集模擬法[8]、漸進(jìn)抽樣法[9]等不同抽樣方法,以減少達(dá)到給定計(jì)算精度所需的樣本數(shù)目。其中子集模擬法需采用馬爾科夫蒙特卡洛模擬法在劃分的各條件域內(nèi)進(jìn)行抽樣,常用的抽樣算法有基于隨機(jī)行走理論的Metropolis?Hastings法和Gibbs法[10?12]。近年來提出的基于哈密頓體系的一類非隨機(jī)行走抽樣算法,其相對(duì)隨機(jī)行走法更加高效[13?14]。另外,在提高單次樣本計(jì)算效率方面也取得了一些重要進(jìn)展,其中針對(duì)具有局部非線性特征結(jié)構(gòu)的動(dòng)力響應(yīng)分析問題,Wilson[15]提出了FNA法(Fast Nonlinear Analysis)、蘇成等[16]提出了時(shí)域顯式降維迭代法、李鋼等[17]提出了擬力法,這些方法通過不同手段改善了具有局部非線性結(jié)構(gòu)的動(dòng)力分析效率。

        本文針對(duì)地震激勵(lì)下,減震橋梁具有局部非線性的特點(diǎn),將時(shí)域顯式降維迭代法、基于哈密頓蒙特卡洛的子集模擬法相結(jié)合,從減少所需樣本數(shù)目和提高單次樣本計(jì)算效率兩方面著手,建立多點(diǎn)激勵(lì)下減震橋梁隨機(jī)抗震可靠度求解的高效方法。

        1 多點(diǎn)激勵(lì)下減震橋梁響應(yīng)的時(shí)域顯式降維迭代求解格式

        1.1 多點(diǎn)地震激勵(lì)下減震橋梁運(yùn)動(dòng)方程

        黏滯阻尼器在橋梁結(jié)構(gòu)減震設(shè)計(jì)中已被廣泛使用,常將其布置于塔?梁、墩?梁、橋臺(tái)?梁等連接部位,以達(dá)到耗散能量、實(shí)現(xiàn)減震的目的。黏滯阻尼器的恢復(fù)力可表示為[18]

        對(duì)于圖1所示有n個(gè)自由節(jié)點(diǎn)、m個(gè)支承節(jié)點(diǎn)、m^'個(gè)黏滯阻尼器的減震橋梁結(jié)構(gòu)系統(tǒng),在多點(diǎn)地震激勵(lì)下,其運(yùn)動(dòng)方程可表示為[19]

        從圖4中可以看出,Soil1對(duì)應(yīng)的位移時(shí)程與Soil2對(duì)應(yīng)的位移時(shí)程由于局部場(chǎng)地效應(yīng)、相干效應(yīng)的影響,無(wú)論是峰值還是隨時(shí)間的變化情況都有顯著不同。

        3.3 計(jì)算結(jié)果

        定義E2地震作用下圖2所示橋梁①號(hào)橋臺(tái)處梁端位移超越界限值b=0.18 m時(shí)該減震橋梁失效(本次計(jì)算時(shí)界限值b的選取依據(jù)位移失效準(zhǔn)則、3σ原則確定為此值,實(shí)際計(jì)算時(shí)可根據(jù)相應(yīng)的失效準(zhǔn)則選取相應(yīng)問題合適的界限值)。表4為采用傳統(tǒng)的直接迭代法與本文方法對(duì)同一組位移激勵(lì)樣本進(jìn)行動(dòng)力時(shí)程分析所需時(shí)間對(duì)比,圖5為相應(yīng)三種計(jì)算方法的結(jié)果對(duì)比;表5給出了采用本文方法與傳統(tǒng)隨機(jī)模擬法求得的失效概率及需要的計(jì)算時(shí)間。需注意的是,表5中兩種算法各自需要的樣本數(shù)是在保證兩種算法求解的結(jié)果的變異系數(shù)處于一致水平下確定的。具體樣本數(shù)的確定方法見文獻(xiàn)[14]。

        由圖5可見,本文建立的時(shí)域顯式迭代算法的計(jì)算結(jié)果與基于直接迭代求解格式利用OPENSEES和ANSYS進(jìn)行非線性時(shí)程積分法的計(jì)算結(jié)果基本一致。表4數(shù)據(jù)顯示本文方法耗時(shí)最短,雖然由于三種方法各自預(yù)處理及存儲(chǔ)結(jié)果耗時(shí)不同,使得這種比較不具有普遍意義,但仍從側(cè)面反映了本文方法在求解當(dāng)前問題的高效性。

        由表5可見,在計(jì)算精度方面兩種計(jì)算方法相近,驗(yàn)證了本文方法的正確性。在抽樣次數(shù)方面,由于本文采用了基于哈密頓蒙特卡洛法的子集模擬法,樣本數(shù)明顯降低;在計(jì)算耗時(shí)方面,由于本文方法所需樣本數(shù)較少,且單次樣本計(jì)算時(shí)間短,計(jì)算效率得到了極大提高。特別是,對(duì)于失效概率較低的情況,傳統(tǒng)隨機(jī)模擬法所需樣本數(shù)目將急劇上升,而子集模擬法所需樣本數(shù)目增加相對(duì)緩慢。例如,當(dāng)失效概率為0.002左右時(shí),傳統(tǒng)隨機(jī)模擬法所需抽樣次數(shù)約為40000次,而子集模擬法只需3000次左右,此時(shí)本文方法的計(jì)算效率將高出25倍以上。

        4 結(jié) 論

        為了提高多點(diǎn)激勵(lì)下減震橋梁結(jié)構(gòu)非線性隨機(jī)抗震可靠度的計(jì)算效率,本文建立了基于哈密頓蒙特卡洛法的時(shí)域顯式降維隨機(jī)模擬法,主要研究結(jié)論如下:

        (1) 針對(duì)減震橋梁結(jié)構(gòu)具有局部非線性特征,建立了多點(diǎn)激勵(lì)下減震橋梁運(yùn)動(dòng)方程的時(shí)域顯式降維迭代求解格式,可極大地提高單次地震響應(yīng)計(jì)算效率;

        (2) 引入基于哈密頓蒙特卡洛法的子集模擬法,改善了在失效域中抽取樣本點(diǎn)的效率,使需要的樣本數(shù)大大降低,特別是對(duì)于低失效概率時(shí)改進(jìn)效果更為顯著;

        (3) 與傳統(tǒng)蒙特卡洛法模擬法相比,所建立的方法對(duì)于多點(diǎn)激勵(lì)下減震橋梁結(jié)構(gòu)非線性動(dòng)力可靠度問題求解具有更高的效率。

        參考文獻(xiàn):

        [1] 歐進(jìn)萍,王光遠(yuǎn). 結(jié)構(gòu)隨機(jī)振動(dòng)理論[M]. 北京:高等教育出版社,1998.

        JinpingOu, Wang Guangyuan. Structural Random Vibration Theory [M]. Beijing: Higher Education Press, 1998.

        [2] Rice S O. Mathematical analysis of random noise [J]. Bell System Technical Journal, 1944, 23(3): 282-332

        [3] 陳建兵, 李 杰. 結(jié)構(gòu)隨機(jī)地震反應(yīng)與可靠度的概率密度演化分析研究進(jìn)展[J]. 工程力學(xué), 2014, 31 (4) :1-10.

        Chen Jianbing, Li Jie. Probability density evolution method for stochastic seismic response and reliability of structure[J]. Engineering Mechanics, 2014, 31 (4):1-10.

        [4] Crandall S H, Chandiramani K L, Cook R G. Some first passage problems in random vibration[J]. Journal of Applied Mechanics, 1966, 33(3):532-538.

        [5] Rubinstein R Y, Kroese D P. Simulation and the Monte Carlo Method [M].John Wiley & Sons, 2017.

        [6] Hohenbichler R, Rackwirtz R. Improvement of second-order reliability estimates by importance sampling[J]. ASCE Journal of Engineering Mechanics, 1988, 114: 2195-2199.

        [7] Au S K, Beck J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277.

        [8] Katafygiotis L S, Cheung S H. Application of the spherical subset simulation method and auxiliary domain method on a benchmark reliability study[J]. Structural Safety, 2007, 29: 194-207.

        [9] Bucher C. Asymptotic sampling for high-dimensional reliability analysis[J]. Probabilistic Engineering Mechanics, 2009, 24: 504-510.

        [10] Ching J, Au S K, Beck J L. Reliability estimation for dynamical systems subject to stochastic excitation using subset simulation with splitting[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(3): 1557- 1579.

        [11] Au S K, Ching J, Beck J L. Application of subset simulation methods to reliability benchmark problems[J]. Structural Safety, 2007, 29(3): 183-193.

        [12] Au S K. On MCMC algorithm for subset simulation [J]. Probabilistic Engineering Mechanics, 2016, 130(2):180-191.

        [13] Neal R M. MCMC using Hamiltonian dynamics[Z]. E-print ArXiv.

        [14] Wang Z, Broccardo M, Song J. Hamiltonian Monte Carlo Methods for subset simulation in reliability analysis [J]. Structure Safety, 2019, 76: 51-67.

        [15] Wilson E L. Three-Dimensional Static and Dynamics Analysis of Structures[M]. Berkeley: Computers and Structures, Inc., 2010.

        [16] 蘇 成, 李保木, 陳太聰, 等. 黏滯阻尼器減震結(jié)構(gòu)非線性隨機(jī)振動(dòng)的時(shí)域顯式降維迭代隨機(jī)模擬法[J]. 計(jì)算力學(xué)學(xué)報(bào), 2016, 33(4): 556-563.

        Su Cheng, Li Baomu, Chen Taicong, et al. Nonlinear random vibration analysis of energy-dissipation structures with viscous dampers by random simulation method based on explicit time-domain dimension-reduced iteration scheme[J]. Chinese Journal of Computational Mechanics, 2016, 33(4): 556-563.

        [17] 李 鋼, 李宏男, 李 瀛. 基于擬力法的消能減震結(jié)構(gòu)地震反應(yīng)分析[J]. 土木工程學(xué)報(bào), 2009, 42(4): 55-63.

        Li Gang, Li Hongnan, Li Ying, et al. Analysis of seismic response of structures with dissipation devices by using fictitious force method [J]. China Civil Engineering Journal, 2009, 42(4): 55-63.

        [18] 沈聚敏, 周錫元, 高小旺, 等. 抗震工程學(xué)[M]. 北京: 中國(guó)建筑工業(yè)出版社, 2000.

        Shen Jumin, Zhou Xiyuan, Gao Xiaowang, et al. Aseismic Engineering [M]. Beijing: China Architecture and Building Press, 2000.

        [19] Chopra A K. Dynamics of structures: Theory and applications to earthquake engineering [M]. New Jersey: Prentice-Hall, 2001.

        [20] Hu Z, Su C, Chen T, et al. An explicit time-domain approach for sensitivity analysis of non-stationary random vibration problems[J]. Journal of Sound and Vibration, 2016, 382: 122-139.

        [21] Avriel M. Nonlinear Programming: Analysis and Methods [M]. New York: Dover Publishing Inc., 2003.

        [22] 李慶揚(yáng), 王能超, 易大義. 數(shù)值分析[M]. 北京: 清華大學(xué)出版社, 2001.

        Li Qingyang, Wang Nengchao, Yi Dayi. Numerical Analysis[M]. Beijing: Tsinghua University Press, 2001.

        [23] Koo H, Der Kiureghian A. FORM, SORM and simulation techniques for nonlinear random vibrations[R]. Report No. UCB/SEMM-2003/1,Department of Civil and Environmental Engineering, University of California, Berkeley. 2003.

        [24] Wang Z, Der Kiureghian A. Tail-equivalent linearization of inelastic multi-support structures subjected to spatially varying stochastic ground motion[J]. Journal of Engineering Mechanics, 2016, 142(8):04016053.

        Hamiltonian Monte Carlo based subset simulation for reliability analysis of energy-dissipation bridge structures with viscous dampers under multi-support seismic excitations

        JIA Shao-min1, WANG Zi-qi2, CHEN Hua-ting2, ZHAO Lei3

        (1. College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China;

        2. Earthquake Engineering Research and Test Center, Guangzhou University, Guangzhou 510405, China;

        3. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China)

        Abstract: The reliability analysis of energy-dissipation bridge structures with viscous dampers under multi-support seismic excitations is a typical local nonlinear dynamic problem. The Monte Carlo simulation method has the general applicability to solve the nonlinear dynamic reliability problem, but with the problem of huge computational cost for engineering practice. The computational cost is determined by the number of samples and the efficiency of a single run of deterministic structural dynamic analysis. In order to improve the efficiency of the seismic reliability analysis of the energy-dissipation bridge structures with viscous dampers, an explicit time-domain dimension-reduced iteration scheme is established using precise time-integration method and Newton-Raphson method, so that the efficiency of dynamic analysis is improved. A subset simulation method using Hamiltonian Monte Carlo is introduced to improve the sampling efficiency of random ground motion in failure domain. Numerical results show that the high efficiency of the present approach for solving nonlinear dynamic reliability problems of energy-dissipation bridge structures with viscous dampers.

        Key words: energy-dissipation bridge structures with viscous dampers;nonlinear dynamic reliability; Hamiltonian Monte Carlo;precise time-integration method; explicit time-domain dimension-reduced iteration

        作者簡(jiǎn)介: 賈少敏(1985-),男,博士,講師,碩士生導(dǎo)師。電話:13688416160;E-mail: jiashaomin1@163.com

        通訊作者: 王子琦(1989-),男,博士,講師,碩士生導(dǎo)師。電話:13826496018;E-mail: ziqidwang@yahoo.com

        日本系列有码字幕中文字幕| 日本大片一区二区三区| 欧美性受xxxx黑人xyx性爽| 7m精品福利视频导航| 丰满少妇被啪啪到高潮迷轩| 日本中文字幕av网址| 香蕉色香蕉在线视频| 久久综合狠狠色综合伊人| 二区三区三区视频在线观看 | 日日摸日日碰夜夜爽无码| 国产午夜在线视频观看| 国产成人高清亚洲一区二区| 国产成人av在线影院无毒| 国外亚洲成av人片在线观看| 成年丰满熟妇午夜免费视频| 宅男天堂亚洲一区二区三区| 国产高清在线91福利| 极品粉嫩嫩模大尺度无码| 亚洲欧美精品suv| 国产欧美综合一区二区三区| 午夜桃色视频在线观看| 中文人妻av大区中文不卡| 国内精品大秀视频日韩精品| 97久久精品亚洲中文字幕无码| 国产人妖乱国产精品人妖| 国产一级内射一片视频免费| 国产精品亚洲美女av网站| 日韩第四页| 疯狂做受xxxx高潮欧美日本| 欧洲vat一区二区三区| 日韩乱码人妻无码系列中文字幕 | 熟女性饥渴一区二区三区| 国产无遮挡无码视频免费软件| 凹凸国产熟女精品视频app| av免费在线免费观看| 亚洲偷自拍国综合第一页国模| 丝袜人妻无码中文字幕综合网| 久久国产亚洲高清观看5388| 国产自偷亚洲精品页65页| 成人欧美一区二区三区1314| 欧美人与动性xxxxx杂性|