亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        雙向非均質(zhì)黏性阻尼土中樁基扭轉(zhuǎn)振動頻域阻抗解答與分析

        2021-06-10 00:29:09崔春義梁志孟王本龍許成順姚怡亦
        振動工程學報 2021年2期
        關鍵詞:樁基

        崔春義 梁志孟 王本龍 許成順 姚怡亦

        摘要: 基于三維連續(xù)黏性阻尼介質(zhì)理論和徑向多圈層復剛度傳遞模型,綜合考慮樁周土徑向非均質(zhì)效應和縱向成層性,建立雙向非均質(zhì)土體中樁基扭轉(zhuǎn)振動簡化分析模型。采用拉普拉斯變換和復剛度傳遞法求解得出土體位移形式解,進而利用樁?土耦合條件將該形式解耦合進樁身動力平衡方程中,并通過扭轉(zhuǎn)阻抗傳遞法推導得出樁頂扭轉(zhuǎn)阻抗解析解答。將該解退化并分別與均質(zhì)土及徑向非均質(zhì)土中的解答進行對比驗證其合理性。在此基礎上,通過參數(shù)化分析探討了樁周土施工擾動程度和擾動范圍、擴頸及縮頸缺陷對樁頂扭轉(zhuǎn)阻抗的影響規(guī)律,可為具體工程實踐提供理論指導和參考作用。

        關鍵詞: 樁基; 扭轉(zhuǎn)振動; 雙向非均質(zhì); 復剛度傳遞模型; 施工擾動

        中圖分類號: TU473.1 ? ?文獻標志碼: A ? ?文章編號: 1004-4523(2021)02-0311-10

        DOI:10.16385/j.cnki.issn.1004-4523.2021.02.011

        引 言

        針對動力機器基礎和海上鉆井平臺等工程環(huán)境,樁基礎除受豎向、水平荷載外,往往還承受不可忽視的扭轉(zhuǎn)動載作用。在樁基打樁過程中,受其打樁擠土效應的影響,迫使樁周土體產(chǎn)生一定的不均勻性,即徑向非均質(zhì)效應[1?2]。為深入探究非均質(zhì)效應對樁基振動特性產(chǎn)生的影響,近些年來,國內(nèi)外諸多學者針對樁基扭轉(zhuǎn)振動專題開展了一系列工作,取得了較為豐富的研究成果。

        首先,Veletsos等[3?4]基于平面應變假定,求解出了徑向非均質(zhì)土中樁基扭轉(zhuǎn)阻抗解析表達式。初步探討了施工擾動效應對樁基扭轉(zhuǎn)振動特性的影響規(guī)律。Doston等[5]假定內(nèi)部區(qū)域土體的剪切模量為指數(shù)變化函數(shù),進一步推導得出徑向非均質(zhì)土中樁基受縱向和扭轉(zhuǎn)荷載作用下的解析表達式。在此基礎上,Novak等[6?7]將地基劃分為內(nèi)外兩部分區(qū)域,進而發(fā)展求解了能夠簡化考慮樁側(cè)土軟化效應的樁基扭轉(zhuǎn)阻抗解析表達式。Ei Naggar[8]嚴格將內(nèi)部擾動區(qū)域劃分為無數(shù)個圈層,通過圈層間復剛度遞推得出了考慮樁周土徑向非均質(zhì)性的樁土耦合扭轉(zhuǎn)振動頻域解析解答。尚守平等[9]將樁周土劃分為非線性黏彈性內(nèi)域和線彈性外域,并考慮土層應力、位移沿深度變化,采用等效線性方法推導出了考慮樁周土非線性的樁基扭轉(zhuǎn)動力阻抗函數(shù)。Wu等[10]提出環(huán)向剪切復雜剛度傳遞模型,利用剪切復合剛度傳遞法和阻抗函數(shù)傳遞法,給出了徑向非均質(zhì)滯回阻尼土中楔形樁在受扭轉(zhuǎn)振動頻域解析表達式。Zhang等[11]則基于三維連續(xù)介質(zhì)模型,通過圈層間復剛度遞推求得樁周土體對樁體作用的復剛度,進而利用樁土間的連續(xù)條件推導得出了樁基扭轉(zhuǎn)振動的扭轉(zhuǎn)阻抗解析解答。

        以上研究均圍繞樁周土體的徑向非均質(zhì)效應模型展開,而對于縱向成層土體中樁基扭轉(zhuǎn)振動問題,國內(nèi)外學者也進行了相關性研究。Guo和Randolph[12]將樁周土體視為縱向非均質(zhì)土層,采用荷載傳遞法,求解得出縱向成層土中樁基扭轉(zhuǎn)阻抗解析解答。Militano和Rajapakse[13]利用阻抗矩陣法,研究了層狀地基中樁在扭轉(zhuǎn)和軸向荷載作用下的動力響應問題。陳勝立等[14]通過Hankel積分變換和傳遞矩陣法,推導出了成層土在扭轉(zhuǎn)荷載作用下單樁振動力阻抗解析解答。鄒新軍等[15?16]將樁周非均質(zhì)土看作隨深度呈指數(shù)和冪函數(shù)兩種分布模式,基于平衡原理和剪切位移法,推導出了樁周土彈塑性狀態(tài)下的樁基扭轉(zhuǎn)阻抗解析解答。靳建明等[17]考慮樁周土體縱向成層性,基于阻抗函數(shù)傳遞法,遞推得出樁基扭轉(zhuǎn)阻抗解析表達式。Wu等[18]同時考慮樁周土縱向成層性及樁端虛擬土樁效應,基于三維連續(xù)介質(zhì)理論,利用拉普拉斯變換和阻抗函數(shù)傳遞法,推導出了任意扭轉(zhuǎn)激振下樁基扭轉(zhuǎn)阻抗解析解答。

        不難看出,多數(shù)已有研究成果僅從縱向或徑向分別考慮樁周土非均質(zhì)性對樁基扭轉(zhuǎn)振動的影響,且土體阻尼考量上大多采用滯回阻尼模型。而對于樁基受瞬態(tài)激振作用下的時域響應問題,其土體阻尼力與振幅和應變率有關,此時宜用黏性阻尼模型更為合理[19?27]。因此,本文基于彈性連續(xù)介質(zhì)動力學理論,綜合考慮施工擾動效應和縱向成層性,采用黏性阻尼土體模型和阻抗函數(shù)傳遞法,針對徑向非均質(zhì)、縱向成層黏性阻尼土中受任意激振扭矩作用下樁基扭轉(zhuǎn)振動進行頻域阻抗求解與分析。

        1 定解問題力學模型建立

        1.1 簡化力學模型及基本假設

        樁?土耦合系統(tǒng)力學模型簡圖如圖1所示。其中,樁?土耦合扭轉(zhuǎn)振動系統(tǒng)根據(jù)樁體和土層性質(zhì)的不同沿縱向共分為m層,自系統(tǒng)底部由下往上依次編號為1,2,…,i,…,m段,各層段厚度分別為l1, l2,…,li,…,lm,且各層段頂部距樁頂距離分別為h1,h2,…,hi,…,hm。第i層段樁半徑、截面面積、扭轉(zhuǎn)慣量和彈性模量分別為r_i1,A_i^p,J_i^p和E_i^p,樁端黏彈性支承系數(shù)為k^p,δ^p。

        同時,將第i層段樁周土體劃分為兩部分區(qū)域,一部分是厚度為b_i的內(nèi)部區(qū)域,且沿徑向劃分m^'個圈層;另一部分為徑向無限大的均質(zhì)介質(zhì)外部區(qū)域。內(nèi)部區(qū)域第j圈層土體密度、黏性阻尼系數(shù)、剪切模量以及土層底部黏彈性支承常數(shù)分別為ρ_ij^s,c_ij^s,G_ij^s和k_1j^s,δ_1j^s,圈層間界面處的半徑為r_ij。樁頂受任意激振扭矩m_0 (t)的作用,第i層段樁周土對樁身的摩阻力為f_i^s,各縱向?qū)佣蜗嗷プ饔煤喕癁榉植际金椥訴oigt體,第i-1層段與第i層段間的Voigt體彈簧系數(shù)和阻尼系數(shù)分別為k_ij^s,δ_ij^s;第i+1層與第i層段間的Voigt體彈簧系數(shù)和阻尼系數(shù)分別為k_((i+1)j)^s,δ_((i+1)j)^s。

        假設條件如下:

        (1)各段樁身假定為均質(zhì)等截面彈性體,樁體底部為黏彈性支承;

        (2)內(nèi)部擾動區(qū)域土體各圈層為均質(zhì)、各向同性黏彈性體;

        (3)樁?土耦合系統(tǒng)滿足線彈性和小變形條件,樁土界面完全接觸且無脫開滑移現(xiàn)象。

        3.1 解答合理性驗證

        為了驗證本文推導求解所得樁基扭轉(zhuǎn)振動頻域解析解的合理性,首先,將本文徑、縱雙向非均質(zhì)黏性阻尼土體模型退化成均質(zhì)黏性阻尼土體模型(m→0,ξ_i^s=1),然后將本文雙向非均質(zhì)黏性阻尼土退化至徑向非均質(zhì)滯回阻尼土情況(m→0、黏性阻尼系數(shù)取為0),最后分別與已有相關解答進行退化驗證分析。具體地,胡昌斌等[23]基于黏性阻尼模型和三維連續(xù)介質(zhì)模型,給出了均質(zhì)地基中樁基扭轉(zhuǎn)阻抗解析解,本文均質(zhì)退化解與胡昌斌等[23]對比驗證結(jié)果如圖2所示。Zhang等[11]則考慮樁周土體徑向非均質(zhì)性,基于滯回阻尼模型求解得到樁基扭轉(zhuǎn)阻抗解析解,本文徑向非均質(zhì)退化解與Zhang等[11](滯回阻尼比取為0)對比驗證情況如圖3所示。綜合圖2和3不難看出,本文推導所得扭轉(zhuǎn)阻抗退化解答曲線分別與胡昌斌解[23]和Zhang解[11]中的解析解答曲線吻合良好。

        3.2 樁頂扭轉(zhuǎn)阻抗影響因素分析

        為了探究樁側(cè)土徑向施工擾動對樁頂扭轉(zhuǎn)阻抗的影響規(guī)律,選取施工軟化程度和硬化程度工況如表1所示。

        圖4所示為土體內(nèi)部區(qū)域軟化程度對樁頂扭轉(zhuǎn)動剛度和扭轉(zhuǎn)動阻尼的影響。由圖可見,樁頂扭轉(zhuǎn)阻抗曲線振幅隨土體內(nèi)部區(qū)域軟化程度升高而增大,且扭轉(zhuǎn)阻抗曲線共振頻率隨軟化程度的加大僅產(chǎn)生微小的影響。

        圖5所示為土體內(nèi)部區(qū)域硬化程度對樁頂扭轉(zhuǎn)動剛度和扭轉(zhuǎn)動阻尼的影響情況。不難看出,土體內(nèi)部區(qū)域硬化程度越高,樁頂扭轉(zhuǎn)阻抗曲線振幅越小。同樣地,與土體內(nèi)部區(qū)域軟化程度影響規(guī)律相似,土體內(nèi)部區(qū)域硬化程度對樁頂扭轉(zhuǎn)阻抗的共振頻率影響甚微。

        圖6所示為土體內(nèi)部軟化區(qū)域范圍對樁頂扭轉(zhuǎn)動剛度和扭轉(zhuǎn)動阻尼的影響情況。由圖可見,隨著樁周土軟化區(qū)域范圍的擴大,樁頂扭轉(zhuǎn)阻抗振幅幅值水平逐漸增大,而幅值水平隨著軟化區(qū)域范圍增大出現(xiàn)明顯衰減現(xiàn)象,當軟化范圍達到一定數(shù)值后(本文中當b_i=0.5r_i1時),軟化范圍再增加則對樁頂扭轉(zhuǎn)阻抗曲線的影響基本無影響。特別地,土體內(nèi)部軟化區(qū)域范圍對樁頂扭轉(zhuǎn)阻抗共振頻率的影響可忽略。

        圖7所示為土體內(nèi)部硬化區(qū)域范圍對樁頂扭轉(zhuǎn)動剛度和扭轉(zhuǎn)動阻尼的影響情況。不難看出,隨著土體內(nèi)部硬化區(qū)域范圍的擴大,樁頂轉(zhuǎn)動剛度和扭轉(zhuǎn)動阻尼振幅幅值水平逐漸減小。同樣地,幅值水平隨著硬化區(qū)域范圍增大出現(xiàn)明顯衰減現(xiàn)象,當硬化范圍達到一定數(shù)值后(本文中當b_i=0.5r_i1時),硬化范圍再增加則對樁頂轉(zhuǎn)動剛度和扭轉(zhuǎn)動阻尼的影響基本可以忽略。此外,土體內(nèi)部硬化區(qū)域范圍對樁頂扭轉(zhuǎn)阻抗共振頻率也可忽略。

        為進一步探究樁身縮頸和擴頸對樁頂扭轉(zhuǎn)動剛度和扭轉(zhuǎn)動阻尼的影響規(guī)律,本文假定在距樁頂9 m處存在一段長為2 m的樁頸突變段,并定義該突變段樁身半徑與相鄰段樁身半徑的比值為樁頸突變系數(shù)λ_R(λ_R<1代表縮頸,λ_R>1代表擴頸)。

        圖8所示為樁身縮頸程度對樁頂扭轉(zhuǎn)阻抗的影響情況。由圖可見,相對于等截面樁而言,縮頸樁樁頂扭轉(zhuǎn)動剛度和扭轉(zhuǎn)動阻尼曲線均呈現(xiàn)出大、小峰值交替情況。隨著樁頸突變系數(shù)λ_R的增大,即縮頸程度降低,大、小峰幅值差和峰值幅值水平均變小。

        圖9所示為樁身擴頸程度對樁頂扭轉(zhuǎn)動剛度和扭轉(zhuǎn)動阻尼的影響情況。由圖可見,相對于等截面樁而言,擴頸樁樁頂扭轉(zhuǎn)動剛度和扭轉(zhuǎn)動阻尼曲線均呈現(xiàn)出大、小峰值交替特征。并且,隨著樁頸突變系數(shù)λ_R的增大,即擴頸程度增高,大、小峰幅值差和峰值幅值水平均變大。

        4 結(jié) 論

        本文基于土體三維連續(xù)介質(zhì)理論和黏性阻尼模型,綜合考慮樁周土徑向施工擾動效應和縱向成層性,采用徑向多圈層復剛度傳遞法,針對徑向非均質(zhì)、縱向成層黏性阻尼土中受任意激振扭矩作用下的樁基進行頻域阻抗求解與分析,計算分析結(jié)果表明:

        (1) 通過將所得雙向非均質(zhì)黏性阻尼土中樁基扭轉(zhuǎn)解答與已有解進行對比分析,多因素退化驗證了其合理性和精度;

        (2) 隨著內(nèi)部區(qū)域土體軟(硬)化程度的加大,扭轉(zhuǎn)阻抗曲線振幅明顯增大(減?。?,但內(nèi)部區(qū)域土體軟(硬)化程度對扭轉(zhuǎn)阻抗曲線共振頻率的影響可以忽略;

        (3) 隨著內(nèi)部區(qū)域土體軟(硬)化范圍擴大,樁頂扭轉(zhuǎn)阻抗曲線振幅逐漸增大(減?。斳洠ㄓ玻┗秶黾拥揭欢〝?shù)值(本文中當b_i=0.5r_i1時)后,此種影響效應趨于穩(wěn)定;

        (4) 縮(擴)頸樁樁頂扭轉(zhuǎn)阻抗曲線均呈現(xiàn)大、小峰值交替現(xiàn)象,且樁頸突變系數(shù)越大,樁頂扭轉(zhuǎn)阻抗曲線大、小峰的幅值差也越?。ù螅?。

        參考文獻:

        [1] Novak M, Han Y C. Impedances of soil layer with boundary zone[J]. Journal of Geotechnical Engineering, 1990, 116(6):1008-1014.

        [2] Han Y C, Sabin G C W. Impedances for radially inhomogeneous viscoelastic soil media[J]. Journal of Engineering Mechanics, 1995, 121(9):939-947.

        [3] Veletsos A S, Dotson K W. Impedances of soil layer with disturbed boundary zone[J]. Journal of Geotechnical Engineering, 1986, 112(3):363-368.

        [4] Veletsos A S,Dotson K W. Vertical and torsional vibration of foundations in inhomogeneous media[J]. Journal of Geotechnical Engineering,1988,114(9):1002-1021.

        [5] Dotson K W, Veletsos A S. Vertical and torsional impedances for radially inhomogeneous viscoelastic soil layers[J]. Soil Dynamics & Earthquake Engineering, 1990, 9(3):110-119.

        [6] Novak M, Howell J F. Torsional vibrations of pile foundations[J]. Journal of the Geotechnical Engineering Division, 1977, 103:271-285.

        [7] Novak M, Sheta M. Approximate approach to contact problems of piles [C]. Proceedings of the Geotechnical Engineering Division, American Society of Civil Engineering National Convention, Florida, 1980: 53-79.

        [8] Ei Naggar M H. Vertical and torsional soil reactions for radially inhomogeneous soil layer[J]. Structural Engineering & Mechanics, 2000, 10(4):299-312.

        [9] 尚守平, 任 慧, 曾裕林,等. 樁與土非線性耦合扭轉(zhuǎn)振動特性分析[J]. 中國公路學報, 2009, 22(5):41-47.

        Shang Shouping, Ren Hui, Zeng Yulin, et al. Analysis of dynamic behaviors of pile-soil nonlinear coupling torsional vibration[J]. China Journal of Highway and Transport, 2009,22(5):41-47.

        [10] Wu W B, Jiang G S, Lü S H, et al. Torsional dynamic impedance of a tapered pile considering its construction disturbance effect[J]. Marine Georesources & Geotechnology, 2016, 34(4):321-330.

        [11] Zhang Z, Pan E. Dynamic torsional response of an elastic pile in a radially inhomogeneous soil[J]. Soil Dynamics & Earthquake Engineering, 2017, 99:35-43.

        [12] Guo W, Randolph M F. Torsional piles in non-homogeneous media[J]. Computers and Geotechnics, 1996,19(4):265-287.

        [13] Militano G, Rajapakse R K N D. Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading[J]. Geotechnique, 1999,49(1): 91-109.

        [14] 陳勝立, 壽漢平. 傳遞矩陣法分析層狀地基中樁的扭轉(zhuǎn)變形[J]. 巖土力學, 2004, 25(A2): 178-180+186.

        Cheng Shengli, Shou Hanping. Analysis of torsional response of a single pile embedded in layered soil with transfer matrix method[J].Rock and Soil Mechanics, 2004, 25(A2): 178-180+186.

        [15] 鄒新軍, 徐洞斌, 王亞雄,等. 非均質(zhì)地基中單樁受扭彈塑性分析[J]. 土木工程學報, 2015,48(11):103-110.

        Zou Xinjun, Xu Dongbin, Wang Yaxiong, et al. Torsional elasto-plastic analysis of single piles in heterogeneous ground[J]. China Civil Engineering Journal, 2015,48(11):103-110.

        [16] 鄒新軍, 趙靈杰, 徐洞斌,等. 雙層非均質(zhì)地基中單樁受扭彈塑性分析[J]. 巖土工程學報, 2016, 38(5):828-836.

        Zou Xinjun, Zhao Lingjie, Xu Dongbin, et al. Elastic-plastic torsional behavior of single pile in double-layered non-homogeneous subsoil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5):828-836.

        [17] 靳建明, 張智卿. 成層土中管樁的扭轉(zhuǎn)振動特性研究[J]. 應用基礎與工程科學學報, 2015, 23(4): 782-791.

        Jin Jianming, Zhang Zhiqing. Dynamic torsional response of a pipe pile embedded in layered soil[J].Journal of Basic Science and Engineering, 2015,23(4):782-791.

        [18] Wu W, Liu H, Naggar M H E, et al. Torsional dynamic response of a pile embedded in layered soil based on the fictitious soil pile model[J]. Computers and Geotechnics, 2016, 80:190-198.

        [19] 胡海巖. 結(jié)構(gòu)阻尼模型及系統(tǒng)時域動響應[J]. 振動工程學報, 1992,6(1):8-16.

        Hu Haiyan. Structural damping model and system dynamic response at time domain[J]. Journal of Vibration Engineering, 1992,6(1):8-16.

        [20] 廖振鵬. 工程波動理論導論[M].北京:科學出版社, 2002.

        Liao Zhenpeng. Introduction to Wave Motion Theories in Engineering[M]. Beijing: Science Press, 2002.

        [21] 胡昌斌, 張 濤. 樁與粘性阻尼土耦合扭轉(zhuǎn)振動時域響應研究[J]. 振動工程學報, 2006, 19(3):404-410.

        Hu Changbin, Zhang Tao. Time domain torsional response of dynamically loaded pile in viscous damping soil layer[J].Journal of Vibration Engineering, 2006, 19(3):404-410.

        [22] 張 濤, 胡昌斌. 樁土相互作用時端承樁樁頂扭轉(zhuǎn)復剛度特性研究[J]. 福州大學學報, 2006, 34(3):409-414.

        Zhang Tao, Hu Changbin. Study on torsional complex stiffness at the top of end bearing pile considering the effect of soil-pile interaction[J]. Journal of Fuzhou University, 2006, 34(3):409-414.

        [23] 胡昌斌, 張 濤. 考慮樁土耦合作用時樁基扭轉(zhuǎn)振動特性研究[J]. 工程力學, 2007, 24(3):147-153.

        Hu Changbin, Zhang Tao. Soil-pile interaction in torsional vibrations of a pile in viscious damping soil layer[J].Engineering Mechanics, 2007, 24(3):147-153.

        [24] 崔春義,孟 坤,武亞軍,等.考慮豎向波動效應的徑向非均質(zhì)黏性阻尼土中管樁縱向振動響應研究[J].巖土工程學報, 2018, 48(8): 1434-1443.

        Cui Chunyi, Meng Kun, Wu Yajun, et al. Dynamic response of vertical vibration of pipe piles in soils with radial inhomogeneousity and viscous damping considering vertical wave effect[J]. Chinese Journal of Geotechnical Engineering, 2018, 48(8): 1434-1443.

        [25] Cui Chunyi, Meng Kun,Xu Chengshun, et al. Effect of radial homogeneity on low-strain integrity detection of a pipe pile in a viscoelastic soil layer[J].International Journal of Distributed Sensor Networks, 2018,14(10):1-7.

        [26] CUI Chunyi, MENG Kun, WU Yajun, et al. Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation[J]. Geomechanics and Engineering, 2018, 16(6): 609-618.

        [27] 崔春義, 孟 坤, 武亞軍, 等. 非均質(zhì)土中不同缺陷管樁縱向振動特性研究[J]. 振動工程學報, 2018,31(4):707-717.

        Cui Chunyi, Meng Kun, Wu Yajun, et al.Vertical ?dynamic response of differ-defective pipe pile embedded in inhomogeneous soil[J]. Journal of Vibration Engineering, 2018, 31(4):707-717.

        Frequency-domain analysis and solution of torsional impedance of piles in viscous damping soil with both radial and longtudinal inhomogeinety

        CUI Chun-yi1, LIANG Zhi-meng1, WANG Ben-long1, XU Cheng-shun2, YAO Yi-yi1

        (1. Department of Civil Engineering, Dalian Maritime University, Dalian 116026, China; 2. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China)

        Abstract: Based on the three-dimensional continuum theory of viscous damping soil and the radial annular complex stiffness transfer model, a simplified analytical model for torsional vibration of piles in viscoelastic soil is established by considering the effects of both radial and longtudinal inhomogeinety of surrounding soil. The solution of torsional vibration displacement of surrounding soil is obtained by using Laplace transform and complex stiffness transfer method, then the form is coupled into the dynamic balance equation of the pile by using the complete coupling condition of pile-soil, and the analytical solution of torsion impedance of pile top is derived by the method of torsional impedance transfer. Furthermore, the obtained analytical solution for torsional impedance at the top of pile is degraded and compared with the existing solutions to verify its rationality. Based on that, an extensive parametric analysis is also conducted to discuss the influence of the disturbance degree, disturbance range of surrounding soil, necking and expanding of pile on the torsional impedance at the top of pile, which can provide reference and guide to related engineering practice.

        Key words: pile foundation; torsional vibration;bidirectional heterogeneous;complex stiffness transfer model;construction disturbance

        作者簡介: 崔春義(1978-),男,教授,博士生導師。電話:(0411)84723186; E-mail:cuichunyi@dlmu.edu.cn

        猜你喜歡
        樁基
        樁筏基礎在處理樁基質(zhì)量問題中的應用
        橋梁樁基處理泥漿固化技術(shù)應用
        采用樁基托換進行既有鐵路橋加固分析
        河南科技(2022年9期)2022-05-31 00:42:40
        樁基的土建施工技術(shù)
        基于差異沉降控制的樁基優(yōu)化設計
        建筑樁基檢測及質(zhì)量控制
        建筑工程中樁基施工工藝的應用分析
        樁基托換在鄂爾多斯大道橋擴建工程中的應用
        讓橋梁樁基病害“一覽無余”
        中國公路(2017年11期)2017-07-31 17:56:30
        建筑施工中樁基施工技術(shù)
        国产福利酱国产一区二区| 国产特黄级aaaaa片免| 欧洲精品免费一区二区三区| 久久综合成人网| 亚洲精品精品日本日本| 日韩亚洲一区二区三区四区| 免费国产黄网站在线观看可以下载| 国产乱子伦露脸在线| 日韩精品有码中文字幕在线| 户外精品一区二区三区| 97精品国产97久久久久久免费| 亚洲成a人片在线观看久| 日本成人免费一区二区三区| 麻豆最新国产av原创| 日韩欧美人妻一区二区三区| 狠狠躁夜夜躁人人爽天天 | 国语对白做受xxxxx在线中国| 东京热无码人妻中文字幕| 亚洲乱码中文字幕一线区| 大地资源网高清在线播放| 国偷自产av一区二区三区| 网红极品女神精品视频在线| 国产精品对白一区二区三区| 男人激烈吮乳吃奶视频免费| 国产精品亚洲午夜不卡| 国产日产高清一区二区三区| 又紧又大又爽精品一区二区| 亚洲精品永久在线观看| 久久熟女乱一区二区三区四区| 国产一级一片内射视频播放 | 国产人妻鲁鲁一区二区| 欧美孕妇xxxx做受欧美88| 日韩在线视频不卡一区二区三区| 亚洲不卡免费观看av一区二区| 国产av旡码专区亚洲av苍井空| 国产精品三级在线观看| 92自拍视频爽啪在线观看| 国产精品永久在线观看| 丰满少妇被猛烈进入无码| 黑人一区二区三区啪啪网站| 亚洲欧美中文日韩在线v日本|