陳良驥 趙 波 馬龍飛 高 飛
(天津工業(yè)大學(xué)機(jī)械工程學(xué)院,天津 300387)
應(yīng)用計(jì)算機(jī)輔助設(shè)計(jì)與制造(CAD/CAM)和計(jì)算機(jī)數(shù)控(CNC)技術(shù)加工復(fù)雜零件時(shí),需獲得零件待加工曲面的精準(zhǔn)數(shù)學(xué)模型,在此基礎(chǔ)上還需生成高效、高精度的加工刀具路徑。在各種曲面數(shù)學(xué)模型中,參數(shù)化樣條曲面已較早地被應(yīng)用于產(chǎn)品的數(shù)字建模領(lǐng)域。參數(shù)曲面數(shù)控加工刀具路徑生成方法存在以下共性問題:涉及主曲率、法曲率等諸多數(shù)學(xué)計(jì)算,這其中又涉及參數(shù)曲面的多階偏導(dǎo)運(yùn)算,使這類方法的計(jì)算任務(wù)量較大;在切觸區(qū)域以外的較遠(yuǎn)端區(qū)域不能較好地研究刀具與參數(shù)曲面間的干涉與碰撞問題。
近年來,隨著精密測量儀器及圖形處理器技術(shù)(GPU)的發(fā)展,對(duì)零件待加工表面進(jìn)行精密測量及快速逆向數(shù)據(jù)處理后,可將其表達(dá)為三維點(diǎn)云數(shù)據(jù)集的形式,并可按一定的規(guī)則最終形成零件表面的三角網(wǎng)格曲面[1-3],由此產(chǎn)生面向三角網(wǎng)格曲面的刀具路徑生成方法。現(xiàn)行三角網(wǎng)格曲面數(shù)控加工刀具路徑生成方法主要包括平行截面法(截平面法)、改進(jìn)的截平面法、擬合參數(shù)曲面法[4-5]。陳甜甜等[6]基于三角網(wǎng)格的Loop細(xì)分,使用截平面法獲得球頭刀的刀具軌跡,但這種方法獲得的刀具軌跡的總長度較大,加工效率較低,且僅適用于三軸數(shù)控加工。ZHANG等[7]提出了基于局部剖分的三角網(wǎng)格刀具路徑生成算法,但該算法不能對(duì)刀具進(jìn)行傾斜調(diào)整,無法計(jì)算出刀具姿態(tài)角,因此只能用于三軸數(shù)控加工。黃琴[8]提出了一種適用于三軸數(shù)控加工的等誤差參數(shù)法,可生成三角網(wǎng)格曲面的刀具路徑,但同樣存在加工效率較低、不能調(diào)整刀具傾斜角等問題。在三角網(wǎng)格曲面五軸數(shù)控加工刀具路徑生成方面,已有不少研究成果[9-15]。
目前,基于三角網(wǎng)格曲面的刀具路徑生成較多采用了球頭刀截平面法,該方法雖可將刀觸點(diǎn)路徑的生成計(jì)算簡化為求取平面與三角面片交線的計(jì)算,也可簡化球頭刀刀具路徑的計(jì)算過程,但由于球頭刀刀具姿態(tài)的調(diào)整與加工行距的改變并不密切,導(dǎo)致無法實(shí)現(xiàn)變行距的刀具路徑生成,生成的刀具路徑加工行距較小、加工路徑總長度較大,直接影響了曲面的數(shù)控加工效率。
針對(duì)現(xiàn)行方法存在的問題,本文提出一種面向環(huán)形刀的變行距刀具路徑生成方法,以加工殘留高度為約束條件,以刀觸點(diǎn)處獲得最大切削寬度為優(yōu)化目標(biāo),對(duì)三角網(wǎng)格曲面與刀具接觸的局部進(jìn)行分析,以期實(shí)現(xiàn)對(duì)環(huán)形刀刀具姿態(tài)角的優(yōu)化調(diào)整,提高三角網(wǎng)格曲面的數(shù)控加工效率。
標(biāo)準(zhǔn)的STL文件輸出的信息為每個(gè)三角面片的3個(gè)頂點(diǎn)坐標(biāo)值以及每個(gè)面片所對(duì)應(yīng)的單位法矢。但由于STL文件中三角網(wǎng)格的存儲(chǔ)信息是紊亂無序隨機(jī)排列的,而后續(xù)工作需要頻繁利用到各信息間的關(guān)系,所以需重新建立三角網(wǎng)格信息的拓?fù)潢P(guān)系。
建立點(diǎn)表(Vertex)。保證無重復(fù)地將每個(gè)點(diǎn)的信息都儲(chǔ)存在點(diǎn)表中,其中點(diǎn)表中每個(gè)點(diǎn)的信息包含有此點(diǎn)的序號(hào)及其坐標(biāo)值,點(diǎn)的序號(hào)即所建立點(diǎn)表的行號(hào)。
建立面表(Face)。保證無重復(fù)地將每個(gè)三角面片信息儲(chǔ)存在面表中,面表中每個(gè)三角面片的信息包含有構(gòu)成該三角面片的3個(gè)頂點(diǎn)序號(hào)和該面片的序號(hào),面的序號(hào)即所建立面表的行號(hào)。
建立面法矢表(Normalf)。保證每個(gè)三角面片的法矢量都無重復(fù)地儲(chǔ)存在面法矢表中,法矢表的行號(hào)即其所對(duì)應(yīng)的面的序號(hào)。
假定以點(diǎn)V1為公共頂點(diǎn)的三角面片有A、B、C、D、E,每個(gè)三角面片的3個(gè)頂點(diǎn)和法矢量如圖1所示,據(jù)此可分別建立用于存放面片、頂點(diǎn)、法矢量數(shù)據(jù)信息的面表、點(diǎn)表和面法矢表數(shù)據(jù)信息存放模式。
對(duì)于三角網(wǎng)格曲面的五軸數(shù)控加工而言,刀具路徑的生成始于刀具與曲面切削接觸點(diǎn)(即刀觸(CC)點(diǎn))坐標(biāo)的計(jì)算。曲面的三角網(wǎng)格上CC點(diǎn)坐標(biāo)的計(jì)算通常采用求交計(jì)算的方法,如圖2所示。
為確定某條刀觸點(diǎn)軌跡在整個(gè)三角網(wǎng)格上的具體位置,需鎖定該軌跡上每個(gè)刀觸點(diǎn)所對(duì)應(yīng)三角面片的具體索引位置,提出一種合理有效的求交算法,以便可以在無序排列的三角網(wǎng)格表面上求得所需的交點(diǎn)坐標(biāo)。
在進(jìn)行求交計(jì)算時(shí),由于三角網(wǎng)格數(shù)據(jù)無序的特性,簡單使用遍歷的索引方式其搜尋計(jì)算速率必然緩慢。使用高維空間索引結(jié)構(gòu)KdTree來對(duì)拓?fù)渲亟ê蟮娜蔷W(wǎng)格數(shù)據(jù)進(jìn)行分割。
沿模型Y方向?qū)⑵鋭澐譃閚個(gè)矩形區(qū)域,得到分割網(wǎng)格參數(shù)Face_divide、Vertex_divide。X方向與之同理,即X方向?qū)⑵鋭澐謓個(gè)矩形區(qū)域。劃分區(qū)域數(shù)量n依照以下分割網(wǎng)格原則:對(duì)網(wǎng)格頂點(diǎn)數(shù)據(jù)進(jìn)行Kd空間樹劃分。從模型邊界開始,使用垂直于水平面的截平面與網(wǎng)格模型求交(求交時(shí)使用的面表與點(diǎn)表為包含模型所有數(shù)據(jù)的Face、Vertex表),得到一系列三角網(wǎng)格曲面上的交點(diǎn),以2倍刀具直徑為搜索半徑對(duì)這些點(diǎn)使用Kd范圍搜索,尋找此范圍內(nèi)的所有三角網(wǎng)格頂點(diǎn)坐標(biāo),剔除重復(fù)點(diǎn)后得出一組分割網(wǎng)格參數(shù)Face_divide、Vertex_divide。以此類推直至將整個(gè)模型覆蓋,得到n個(gè)網(wǎng)格分割區(qū)域。
求交計(jì)算步驟為:
(4)由于三角形的每條邊被2個(gè)三角形所共用,因此會(huì)造成數(shù)據(jù)冗余。此時(shí)進(jìn)行重復(fù)性判斷,若產(chǎn)生重復(fù)交點(diǎn),則舍去。
(5)得到交點(diǎn),并建立求交三角形索引表,此時(shí)可以由面法矢表(Normalf)獲取其所對(duì)應(yīng)的面法矢。
在三角網(wǎng)格曲面中,獲取刀觸點(diǎn)處沿各方向上曲面的曲率信息對(duì)刀具路徑的生成有著至關(guān)重要的作用,其中本文涉及計(jì)算的曲率為與刀觸點(diǎn)軌跡線垂直方向(即行距方向)上的曲面曲率。
由1.2節(jié)中的求交算法可知,刀觸點(diǎn)可能正好是網(wǎng)格頂點(diǎn)或位于三角面片的某條邊上。網(wǎng)格頂點(diǎn)即為刀觸點(diǎn)的情形計(jì)算過程比較簡單,若刀觸點(diǎn)位于網(wǎng)格頂點(diǎn),此時(shí)可以直接輸出此點(diǎn)坐標(biāo),而其單位法矢量可由公式直接求得。但刀觸點(diǎn)位于三角面片某邊上的計(jì)算過程卻比較復(fù)雜,本文將主要分析刀觸點(diǎn)落在三角面片邊上時(shí)的情形。
如圖3所示,設(shè)CCi+1,j和CCi-1,j為CCi,j前后相鄰的刀觸點(diǎn),3點(diǎn)共同構(gòu)成局部刀觸點(diǎn)軌跡線,Ti,j為通過刀觸點(diǎn)CCi,j并垂直于CCi-1,j與CCi+1,j連接線的垂平面,平面Ti,j的單位法矢量為
(1)
設(shè)矢量d為當(dāng)前刀觸點(diǎn)軌跡線Si,j={CCi,j|i=1,2,…,n}相對(duì)于下一條相鄰刀觸點(diǎn)軌跡線Si,j+1={CCi,j+1|i=1,2,…,n}的行距方向的單位法矢量,則d計(jì)算式為
d=zl/|zl|
(2)
式中z——工件坐標(biāo)系Z軸方向的單位矢量
由于三角網(wǎng)格曲面僅直接給出所有三角面片的法矢量,而所有頂點(diǎn)處不直接給出法矢量,只能通過間接方式近似求得。在計(jì)算機(jī)圖形學(xué)中,通常是以頂點(diǎn)相關(guān)聯(lián)的方向矢量來替代幾何表面的真實(shí)幾何法線。據(jù)此,可通過計(jì)算與頂點(diǎn)有關(guān)的所有三角面片的法矢量取平均值后再進(jìn)行歸一化處理獲得。
如圖4所示,fk為一個(gè)三角面片,Vi、Vi+1為三角面片fk的2個(gè)頂點(diǎn),Nfk為三角面片fk的面法矢量,ni為待求網(wǎng)格頂點(diǎn)Vi處曲面的單位法矢量。
可先構(gòu)建網(wǎng)格頂點(diǎn)Vi的一階鄰域,使用相關(guān)三角面片的面積進(jìn)行加權(quán)求和的方法來計(jì)算網(wǎng)格頂點(diǎn)Vi的法矢量,計(jì)算式為
(3)
式中F——三角面片表(Face)
Afk——三角面片fk的面積
三角網(wǎng)格曲面的網(wǎng)格頂點(diǎn)處曲率需構(gòu)造出該點(diǎn)的一階鄰域信息來進(jìn)行估算。主要利用Taubin提出的理論[16]計(jì)算曲面的第二基本形式,通過求解矩陣計(jì)算曲率。
由歐拉公式可知,對(duì)于曲面上任意給定的點(diǎn)vi,沿矢量Tθ方向的曲率kvi(Tθ)為
kvi(Tθ)=kmaxcos2θ+kminsin2θ
(4)
其中
Tθ=Tmaxcosθ+Tminsinθ
(5)
式中kmax、kmin——點(diǎn)vi處的最大和最小主曲率
Tmax、Tmin——點(diǎn)vi處最大和最小主曲率對(duì)應(yīng)的最大和最小主方向矢量
θ——矢量Tθ與點(diǎn)vi處kmax對(duì)應(yīng)最大主方向矢量Tmax之間的夾角
將式(4)的kvi(Tθ)從-π到π求積分,可以得到對(duì)稱矩陣Evi為
(6)
將Evi分解為
(7)
其中
(8)
由式(4)~(8)可求得最大、最小主曲率為
(9)
求解對(duì)稱矩陣Evi不為0的特征值所對(duì)應(yīng)的特征向量即為最大、最小主曲率分別對(duì)應(yīng)的最大、最小主方向矢量Tmax、Tmin。
由最大、最小主曲率求解得平均曲率HG及高斯曲率K為
(10)
(11)
(12)
再由歐拉公式,可得三角網(wǎng)格曲面在網(wǎng)格頂點(diǎn)處沿行距方向d的法曲率為
(13)
則位于線段V1V2上的點(diǎn)CCi,j處沿行距方向d的曲率可以采用線性插值方法計(jì)算,計(jì)算式為
kp(d)=μkV1(α1)+(1-μ)kV2(α2)
(14)
其中
μ=|CCi,j-V2|/|V1-V2|
以刀觸點(diǎn)C為研究對(duì)象,建立圖6所示的環(huán)形刀刀具偏轉(zhuǎn)模型。刀刃圓環(huán)面部分的半徑為r,底部平面圓部分的半徑為R;xtytzt為刀具坐標(biāo)系;以點(diǎn)C為原點(diǎn),xc軸為刀具進(jìn)給方向,zc軸為曲面在點(diǎn)C處的法向,按照右手法則建立刀觸點(diǎn)局部坐標(biāo)系xcyczc;以環(huán)形刀中心為支點(diǎn)繞yc軸旋轉(zhuǎn)的角度λ為前傾角(λ的取值范圍為[0,π/2]),再以點(diǎn)C為支點(diǎn)繞zc軸旋轉(zhuǎn)的角度ω為側(cè)傾角(ω取值范圍為[-π/2,π/2])。
環(huán)形刀的刀刃曲面在點(diǎn)C處主曲率為
(15)
式中k0——圓環(huán)面沿走刀方向曲率
kπ/2——圓環(huán)面垂直走刀方向曲率
(16)
調(diào)整好初始前傾角λ后,若λ過大,則加入側(cè)傾角ω來控制λ,此時(shí)刀具有效切削半徑計(jì)算式為
(17)
將球頭刀加工行距計(jì)算公式[8]推廣,最終可得傾斜狀態(tài)下的環(huán)形刀加工行距計(jì)算式為
L=
(18)
式中rp——刀觸點(diǎn)曲面沿行距方向的曲率半徑
h——加工表面殘留高度
當(dāng)?shù)队|點(diǎn)局部曲面為凸曲面時(shí)取“+”、凹曲面時(shí)取“-”。
設(shè)(λ,ω)為一條刀觸點(diǎn)路徑上的第i個(gè)刀觸點(diǎn)處{CCi,j|i=1,2,…,n}的刀具姿態(tài)角組合。當(dāng)給定刀具前傾角λ=λi時(shí),對(duì)每一個(gè)側(cè)傾角ω,均可相應(yīng)得到1種刀具姿態(tài)。由式(17)、(18)可知,不同刀具姿態(tài)角的組合(λ,ω)可以有不同的刀具有效切削半徑reff,進(jìn)而就有不同的加工行距。將式(17)代入式(18),以0.01°為迭代精度同時(shí)改變?chǔ)伺cω,可以得到圖7所示刀具前傾角λ和刀具側(cè)傾角ω的不同組合對(duì)加工行距L的定量影響關(guān)系,可見刀具姿態(tài)角組合對(duì)加工行距的影響關(guān)系整體呈拋物線形式,存在最佳刀具姿態(tài)角組合使得加工行距達(dá)到最大值。
對(duì)第i個(gè)刀觸點(diǎn),可以使用離散搜索的迭代方法,在實(shí)現(xiàn)加工行距最大的目標(biāo)條件下,計(jì)算出相應(yīng)的刀具前傾角與側(cè)傾角的最佳組合(λi,ωi),使得
(19)
式中Θ——刀具無干涉區(qū)域
本文加工行距的優(yōu)化調(diào)整主要采用式(16)~(18)迭代計(jì)算的方法,選取迭代精度為0.01°,每次迭代減小λ的同時(shí)增大ω,以此搜尋求解刀具前傾角與側(cè)傾角的最佳組合(λi,ωi)。具體迭代求解過程如圖8所示。
在下一條相鄰刀具路徑生成過程中,施加加工行距約束條件后,可能會(huì)產(chǎn)生一些位于三角面片內(nèi)部的刀觸點(diǎn)。由三角網(wǎng)格曲面特性可知,每個(gè)三角面片內(nèi)的點(diǎn)所包含幾何信息一致,所以為了去除冗余刀觸點(diǎn)并減少計(jì)算量,需要對(duì)這些內(nèi)部點(diǎn){C′i,j+1|i=1,2,…,n}進(jìn)行修正,如圖9所示。最終選用位于網(wǎng)格線上的點(diǎn){Ci,j+1|i=1,2,…,n}作為下一條相鄰刀觸點(diǎn)路徑上的數(shù)據(jù)點(diǎn)。
當(dāng)?shù)毒咦藨B(tài)角確定后,其在工件坐標(biāo)系下的刀位點(diǎn)CL和刀軸單位矢量zt計(jì)算式為
(20)
五軸數(shù)控加工的干涉分為局部干涉和全局干涉,局部干涉包括由于刀具有效切削半徑大于待加工曲面曲率半徑引起的局部曲率干涉以及待加工曲面局部曲率變化較大而引起的局部刀底干涉;全局干涉則是刀桿與待加工曲面間的干涉。局部曲率干涉問題已在第2節(jié)中得以解決,而局部刀底干涉和全局干涉則需建立一種新的環(huán)形刀刀具離散模型進(jìn)行干涉的檢測與修正。
如圖10所示,CL表示環(huán)形刀的刀心點(diǎn),基于刀心點(diǎn)建立環(huán)形刀刀具坐標(biāo)系CLxtytzt。在CLxtyt平面內(nèi),設(shè)任意方向與xt軸的轉(zhuǎn)角參數(shù)為φ;在刀刃圓環(huán)面的一個(gè)截平面CLztxt內(nèi),設(shè)任意方向與zt軸的轉(zhuǎn)角參數(shù)為τ。建立環(huán)形刀刀刃圓環(huán)面部分在刀具坐標(biāo)系CLxtytzt關(guān)于φ與τ的參數(shù)方程為
(φ∈[0,2π],τ∈[0,π/2])
(21)
由于刀觸點(diǎn)一側(cè)為切削區(qū)域,所以取遠(yuǎn)離刀觸點(diǎn)一側(cè)φ∈[π/2,3π/4],τ∈[0,π/2]區(qū)域?yàn)殡x散區(qū)域,記為{qi∈D3,1≤i≤n}。
如圖11所示,刀桿部位離散建模時(shí),為了提高干涉檢測效率,以zt方向?yàn)殡x散軸,離散精度ε=0.1 mm,獲得{Om|O1,O2,…,On}一系列離散點(diǎn),離散點(diǎn)的個(gè)數(shù)n為
(22)
式中H——刀桿總長度
round()——取整函數(shù)
刀桿離散點(diǎn)的第1個(gè)點(diǎn)O1位于距刀刃圓環(huán)面頂端Δh=R+r處、最后一個(gè)點(diǎn)On位于刀桿頂端。因干涉檢測是在以每個(gè)離散點(diǎn)Om為球心,刀桿半徑R+r為搜索半徑的球狀區(qū)域內(nèi)檢測,所以與第1個(gè)離散點(diǎn)O1相對(duì)應(yīng)的部分(即圖10中刀桿Δh部分)則會(huì)檢測不到,需要進(jìn)行單獨(dú)離散。這里對(duì)Δh所對(duì)應(yīng)的刀桿圓環(huán)面部分仍按精度ε進(jìn)行離散,可獲得離散點(diǎn)集為{repm|rep1,rep2,…,repn},如圖12所示的紅色點(diǎn)云所示。
干涉檢測時(shí),可通過待加工曲面的網(wǎng)格頂點(diǎn)是否落在刀具體內(nèi)來判斷當(dāng)前位置是否發(fā)生干涉。
對(duì)刀刃圓環(huán)面部分的局部刀底干涉,本文提出干涉檢測離散搜索算法為:
(1)首先以圓環(huán)刀點(diǎn)O為查詢點(diǎn),以長度R+r為查詢距離閾值,從構(gòu)建的曲面KdTree數(shù)據(jù)集中使用范圍搜索(Radius searches)查找所有與查詢點(diǎn)距離小于閾值R+r的數(shù)據(jù)點(diǎn),記為{pi∈R3,1≤i≤n}。
(2)設(shè)點(diǎn)CL坐標(biāo)為(x0,y0,z0),對(duì)所有pi(a,b,c)選取滿足條件a≤x0的點(diǎn)為刀刃圓環(huán)面干涉?zhèn)鹊目臻g數(shù)據(jù)點(diǎn)集,記為Γ,其空間表示如圖13所示。
(3)取點(diǎn)集Γ中的一個(gè)點(diǎn)Q(a1,b1,c1),搜尋{qi(x,y,z)∈D3,1≤i≤n}中滿足z-c1≤δ(δ可以設(shè)置為給定值0.1 mm),確定{qi(x,y,z)∈D3,1≤i≤n}中z值與Q(a1,b1,c1)的c1值最接近的所有點(diǎn),這些點(diǎn)將與Q(a1,b1,c1)處于同一水平高度,形成如圖14中紅色橢圓線所示的點(diǎn)集Ω。
若Ω中存在點(diǎn)滿足x≤c1且同時(shí)有b∈(ymin,ymax)(ymax、ymin分別為{qi(x,y,z)∈D3,1≤i≤n}中y值的最大和最小值),則該點(diǎn)Q(a1,b1,c1)可判定為一個(gè)干涉點(diǎn)。
(4)重復(fù)執(zhí)行步驟(1)~(3),最終可得到所有發(fā)生干涉的點(diǎn)的集合Λ。
對(duì)刀桿部分的全局干涉檢測,首先使用Kd范圍搜索,以O(shè)m為查詢點(diǎn),R+r為閾值,則小于閾值的點(diǎn)應(yīng)為干涉點(diǎn)。由于每一搜索區(qū)域?yàn)榍驙?,所以需要?duì)刀桿未檢測到的Δh部分進(jìn)行補(bǔ)充干涉檢測,對(duì)該部分離散點(diǎn)集{repm|rep1,rep2,…,repn}進(jìn)行干涉檢測的方法可參照局部刀底干涉檢測方法。
關(guān)于干涉發(fā)生時(shí)修正處理的總體思路為:當(dāng)存在干涉點(diǎn)集Λ時(shí),先確定其中干涉量最大的點(diǎn)pi及對(duì)應(yīng)于Ω中的刀具離散點(diǎn)qi,調(diào)整此時(shí)刀具前傾角λ和側(cè)傾角ω,使該點(diǎn)的干涉量為0時(shí)為止,以此避免刀具干涉的產(chǎn)生。記干涉點(diǎn){pj}(j=0,1,2,…,n)∈Λ,刀具離散點(diǎn){qj}(j=0,1,2,…,n)∈Ω,其中最大干涉量為εr,則有
(23)
設(shè)刀具干涉修正后的刀具前傾角和側(cè)傾角修正增量角分別為λ′和ω′。如圖15所示,黑實(shí)線刀具表示未進(jìn)行干涉修正時(shí)的刀具姿態(tài),藍(lán)實(shí)線刀具表示干涉修正之后的刀具姿態(tài),φ為矢量Cpi與矢量Cqi的夾角,表示為避免干涉時(shí)刀具應(yīng)繞刀觸點(diǎn)C轉(zhuǎn)過的增量角度。增量角φ計(jì)算式為
(24)
圖15中刀具在空間中的姿態(tài)由兩個(gè)傾角λ與ω共同表示,所以需要將增量角φ轉(zhuǎn)換為刀具的兩個(gè)增量傾角。依據(jù)為將增量角φ投影至刀具坐標(biāo)系,分別計(jì)算其在xtzt平面內(nèi)的分量λ′與xtyt平面內(nèi)的分量ω′。采用將構(gòu)成增量角φ的邊矢量Cpi與矢量Cqi直接投影到刀具坐標(biāo)系的方法求取λ′與ω′。投影分解的計(jì)算過程為
yt=xtzt
(25)
(26)
(27)
(28)
(29)
三角網(wǎng)格曲面環(huán)形刀五軸加工寬行距刀具路徑生成及刀具干涉檢測與修正方法技術(shù)路線如圖16所示。
為了驗(yàn)證提出算法的有效性,使用如圖17a所示50 mm×50 mm的復(fù)雜曲面模型進(jìn)行驗(yàn)證計(jì)算??梢钥闯鲈撉婺P屯瑫r(shí)具有凹面及凸面且曲率變化較大。通過編制的Matlab程序讀取曲面模型的STL文件,經(jīng)本文的拓?fù)潢P(guān)系重建算法建立的三角網(wǎng)格曲面模型如圖17b所示,此三角網(wǎng)格模型一共包含1 567個(gè)頂點(diǎn)、2 994個(gè)三角面片。
選取刀具參數(shù)為R=1 mm、r=1 mm的環(huán)形刀,及刀具參數(shù)為R=2 mm的球頭刀,規(guī)定殘留高度為0.003 mm。
圖18為部分相鄰的幾條刀觸點(diǎn)路徑,取其中一條刀軌,其加工行距曲線如圖19所示。由圖19可以看出,本文方法獲得的加工行距優(yōu)化前后都優(yōu)于球頭刀加工時(shí)的行距,相比于截平面法,本文提出的加工行距優(yōu)化方法,為了保證曲面每一處皆可加工到而選取當(dāng)前刀軌上所有刀觸點(diǎn)對(duì)應(yīng)行距的最小值作為生成下一條刀軌的方法,可使原有的加工行距得以進(jìn)一步增大,優(yōu)化后行距最大提高了約0.5 mm。圖20為加工行距優(yōu)化前后前傾角和側(cè)傾角的變化趨勢,可以看出,在行距優(yōu)化前沒有側(cè)傾角,僅根據(jù)無曲率干涉的約束條件設(shè)置了前傾角不大于某個(gè)臨界角,結(jié)合圖19可以發(fā)現(xiàn),在加工行距較窄的區(qū)域,通過降低前傾角,相應(yīng)的加大側(cè)傾角使刀具有效切削半徑增大,進(jìn)而達(dá)到加工行距變寬的目的。同時(shí)由圖18的各刀觸點(diǎn)路徑可以看出,刀觸點(diǎn)路徑的連續(xù)性較好,可實(shí)現(xiàn)預(yù)期加工行距變寬的目標(biāo),能提高復(fù)雜曲面的加工效率。
使用本文方法生成的加工行距優(yōu)化后的刀觸點(diǎn)路徑如圖21a所示,使用改進(jìn)的環(huán)形刀截平面法[9]所生成的刀觸點(diǎn)路徑如圖21b所示,而使用球頭刀截平面法所生成的刀觸點(diǎn)路徑如圖21c所示,可以看出本文方法所生成的刀觸點(diǎn)路徑的加工行距明顯變寬。
3種方法得到的刀觸點(diǎn)路徑的刀軌數(shù)量和刀軌總長度如表1所示。由表1可知,與加工三角網(wǎng)格曲面廣泛使用的截平面法相比,本文方法加工效率有大幅度提升,而對(duì)比最常用的球頭刀加工三角網(wǎng)格曲面的方法其加工效率更是達(dá)到了數(shù)倍的提升。
表1 3種方法的計(jì)算結(jié)果比較
針對(duì)圖21a的刀觸點(diǎn)路徑,通過本文的干涉檢測方法,檢測到該路徑存在的部分干涉區(qū)域如圖22中的紅色區(qū)域所示。通過對(duì)此區(qū)域的一條刀觸點(diǎn)路徑(圖22中的綠色路徑)進(jìn)行干涉修正處理,分別獲得干涉修正后的刀具前傾角增量λ′及側(cè)傾角增量ω′,如圖23所示。干涉處理前后的前傾角及側(cè)傾角曲線變化如圖24所示。
修正前后該路徑上一個(gè)點(diǎn)位修正效果如圖25所示。由圖25a可以看出,刀具與三角網(wǎng)格曲面發(fā)生了局部刀底干涉的情況,直接導(dǎo)致遠(yuǎn)離刀觸點(diǎn)的刀具底部和已加工表面產(chǎn)生了切削接觸;由圖25b可以看出,遠(yuǎn)離刀觸點(diǎn)的刀具底部已與曲面脫離了切削接觸,進(jìn)而避免了刀底干涉的發(fā)生。
為了驗(yàn)證本文算法的有效性,在相同條件下,使用截平面法及本文方法通過精雕公司JDGR400 A-C型雙擺臺(tái)結(jié)構(gòu)五軸機(jī)床對(duì)硬鋁合金材料進(jìn)行加工(圖26)。加工完成后,使用雷尼紹OMP60型測頭對(duì)工件表面粗糙度進(jìn)行檢測(圖27)。采用截平面法加工獲得曲面加工件及其局部行距放大效果圖(圖28),經(jīng)檢測,該工件最大加工殘高為0.003 9 mm,局部行距為0.56 mm。圖29為使用本文方法加工獲得的曲面加工件其局部行距放大效果圖,其表面最大加工殘高為0.004 2 mm,局部行距為1.03 mm。由此可見,在獲得相近加工殘高(表面粗糙度)的前提下,相對(duì)傳統(tǒng)的截平面加工方法,本文方法明顯增加了加工行距,有利于縮短工件曲面五軸加工路徑的總長度,可有效提高曲面五軸加工效率。
(1)針對(duì)三角網(wǎng)格文件生成的大量無序狀離散數(shù)據(jù),對(duì)其進(jìn)行了拓?fù)潢P(guān)系重建,同時(shí)提出了一種新的三角網(wǎng)格求交算法,該方法邏輯清晰、易于實(shí)現(xiàn),且具有較易去除冗余數(shù)據(jù)的特點(diǎn)。
(2)針對(duì)三角網(wǎng)格曲面不連續(xù)的特點(diǎn),提出了一種基于KdTree搜索的刀具干涉檢測及其修正的方法。
(3)針對(duì)環(huán)形刀的五軸加工,提出了一種可變行距的寬行加工刀具路徑生成方法,該方法在保證表面粗糙度、無刀具干涉的前提下,使加工行距變寬,進(jìn)而提高了曲面五軸加工效率。