謝春芳 于瑞嵩 董世娟 陳冰清
摘? 要:非洲豬瘟病毒(African Swine Fever Virus,ASFV)主要感染豬單核細(xì)胞和巨噬細(xì)胞等免疫淋巴細(xì)胞,通常會(huì)導(dǎo)致豬出現(xiàn)急性出血癥狀,體溫升高,死亡率達(dá)100%。豬在人類食物鏈中的地位不可替代,而且豬的生理結(jié)構(gòu)、免疫特性與人類相似,因此非洲豬瘟的免疫防控問題與人類社會(huì)環(huán)境和疾病控制密切相關(guān)。本文綜述了宿主細(xì)胞對(duì)ASFV侵染做出的免疫應(yīng)答,以及ASFV如何抑制宿主細(xì)胞的免疫應(yīng)答,希望對(duì)非洲豬瘟的免疫防控提供一些理論參考。
關(guān)鍵詞:非洲豬瘟病毒;免疫應(yīng)答;免疫逃逸;細(xì)胞凋亡;自噬抑制
中圖分類號(hào):S855 文獻(xiàn)標(biāo)志碼:C 文章編號(hào):1001-0769(2021)01-0031-04
非洲豬瘟病毒(African Swine Fever Virus,ASFV)侵染細(xì)胞后,進(jìn)入細(xì)胞內(nèi)泡小體,內(nèi)泡小體內(nèi)的酸性環(huán)境可以破壞ASFV的外膜和蛋白衣殼,暴露內(nèi)膜,使ASFV內(nèi)膜上的跨膜肽得以與細(xì)胞膜上的受體結(jié)合,待病毒內(nèi)膜與細(xì)胞膜融合后,病毒核質(zhì)進(jìn)入細(xì)胞質(zhì)內(nèi),從而感染宿主細(xì)胞,啟動(dòng)病毒復(fù)制周期[1-4]。
被ASFV感染的細(xì)胞通過模式識(shí)別受體(Pattern Recognition Receptors,PRRs)檢測(cè)病原體相關(guān)分子模式(Pathogen-associated Molecular Patterns,PAMPs),啟動(dòng)先天性免疫,分泌細(xì)胞免疫因子。為了逃避宿主細(xì)胞的免疫應(yīng)答,ASFV編碼相應(yīng)的病毒蛋白用于免疫逃逸或抑制[5-6]。
ASFV很難清除,目前非洲豬瘟的滅活苗、亞單位苗和弱毒苗都不能誘導(dǎo)豬產(chǎn)生足夠安全且有效的抗體來控制非洲豬瘟[7-8]。
1? 宿主細(xì)胞感染ASFV后的免疫應(yīng)答
ASFV主要侵染單核細(xì)胞、巨噬細(xì)胞和樹突狀細(xì)胞等免疫細(xì)胞。免疫細(xì)胞感染ASFV后,迅速產(chǎn)生免疫應(yīng)答,在被ASFV刺激的免疫細(xì)胞外周血單核細(xì)胞( Peripheral Blood Mononuclear Cells,PBMC)中,干擾素(Interferon,IFN)陽性淋巴細(xì)胞群以CD4+/CD8+ T細(xì)胞表型為主,還有一部分為記憶輔助性T細(xì)胞。體外試驗(yàn)證明,豬IFN可降低豬巨噬細(xì)胞中ASFV的復(fù)制,在病毒感染早期IFN可能直接影響感染ASFV宿主細(xì)胞的相互作用[9-10]。
細(xì)胞毒性T淋巴細(xì)胞(Cytotoxic T Lymphocytes,CTL)對(duì)抵御細(xì)胞內(nèi)病原體,特別是病毒起重要作用。ASFV強(qiáng)毒株與弱毒株或無毒株的發(fā)病機(jī)制和免疫誘導(dǎo)不同。感染弱毒或無毒的ASFV時(shí),被感染豬體內(nèi)T細(xì)胞、自然殺傷(Natural Killer,NK)細(xì)胞的活性增強(qiáng),NK細(xì)胞可以通過直接與被病毒感染的細(xì)胞結(jié)合殺死病毒,也可以通過分泌細(xì)胞因子如干擾素和趨化因子等抵抗病毒感染,感染細(xì)胞分泌的干擾素還可以增強(qiáng)NK細(xì)胞的活性;弱毒或無毒的ASFV會(huì)誘導(dǎo)表達(dá)穿孔素的T細(xì)胞分化增殖為CD4+ T細(xì)胞或CD4+/CD8+ T細(xì)胞。弱毒或無毒的ASFV感染能誘導(dǎo)記憶性T細(xì)胞的增殖,抵抗再次感染同源性病毒株[11-15]。
哺乳動(dòng)物巨噬細(xì)胞至少有13種不同的Toll樣受體(Toll-like Receptor,TLR),病毒的脂類或糖蛋白與TLR的胞外域結(jié)合后會(huì)誘導(dǎo)巨噬細(xì)胞炎癥細(xì)胞因子、趨化因子的共同效應(yīng),還能誘導(dǎo)產(chǎn)生具有增強(qiáng)抗病毒作用的IFN-β,并參與細(xì)胞先天性免疫應(yīng)答中TLR依賴和非依賴途徑,誘導(dǎo)抗病毒作用[16-18]。
2? ASFV抑制細(xì)胞免疫應(yīng)答
當(dāng)ASFV侵染細(xì)胞后,為了避免被細(xì)胞的免疫因子降解,ASFV會(huì)編碼多種病毒蛋白用于逃避宿主細(xì)胞的免疫應(yīng)答。ASFV主要通過抑制TLR、干擾素調(diào)節(jié)因子3 (Interferon Regulation Factor 3,IRF3)和核因子?B (Nuclear Factor ?B,NF-?B)等細(xì)胞免疫因子逃避細(xì)胞免疫,從而在細(xì)胞內(nèi)環(huán)境中生存。
ASFV抑制TLR免疫信號(hào)途徑的蛋白目前只發(fā)現(xiàn)一種,即ASFV pI329L。該蛋白高度糖基化,是一種跨膜蛋白,具有與TLR3-Toll/Interleukin-1受體(TLR3-TIR)結(jié)構(gòu)域同源的區(qū)域,通過作用于β-干擾素TIR結(jié)構(gòu)域銜接蛋白(TIR-domain-containing Adaptor Inducing Interferon-β,TRIF)抑制TLR3信號(hào)途徑,抑制雙鏈RNA刺激的NF-?B和IRF3的激活,從而抑制細(xì)胞免疫反應(yīng)[19-20]。
ASFV多基因家族蛋白(Multiogenes Family,MGF)中的MGF360和MGF505/530也可以通過抑制IRF3和NF-?B轉(zhuǎn)錄因子抑制誘導(dǎo)和影響Ⅰ型干擾素的作用,阻斷感染細(xì)胞Ⅰ型干擾素的免疫應(yīng)答。ASFV pDP96R有4段10個(gè)氨基酸串聯(lián)重復(fù)序列(10-amino acid tandem repeats),C-末端有結(jié)構(gòu)域,可以抑制TANK結(jié)合酶1(TANK Binding Kinase 1,TBK1)的磷酸化,從而抑制下游干擾素調(diào)節(jié)因子3(Interferon Regulation Factor 3,IRF3)的活性,阻斷干擾素刺激基因(Stimulator of Interferon Gene,STING)參與的STING-TBK1-IRF3或STING-TBK1-IKKβ信號(hào)途徑,抑制干擾素的表達(dá),而干擾素是恒定自然殺傷T? ? ? ? ? ? ? ? ? ? ? ? ? ? ?(Invariant Nature Killer T,iNKT)細(xì)胞激活的有效電感器,干擾素的阻斷可能會(huì)影響iNKT細(xì)胞的活化[21-24]。
ASFV pA238L可以抑制NF-?B和活化T細(xì)胞核因子(Nuclear Factor of Activated T Cells,NFAT)免疫途徑。pA238L與細(xì)胞組氨酸酰基轉(zhuǎn)移酶p300/CBP共作用,通過直接結(jié)合鈣調(diào)神經(jīng)磷酸酶抑制NF-?B轉(zhuǎn)錄因子,從而抑制宿主鈣調(diào)神經(jīng)磷酸酶依賴途徑,抑制宿主免疫調(diào)節(jié)基因的轉(zhuǎn)錄活性[6]。
3? ASFV抑制細(xì)胞凋亡和自噬
自噬和凋亡是細(xì)胞重要的生物學(xué)特征,破壞程序性細(xì)胞死亡的宿主防御系統(tǒng)是大DNA病毒感染的一個(gè)顯著特征。為了在宿主細(xì)胞中有足夠的時(shí)間復(fù)制增殖,ASFV會(huì)抑制細(xì)胞的過早凋亡。
ASFV pA179L定位于細(xì)胞線粒體或內(nèi)質(zhì)網(wǎng)中,能夠與B細(xì)胞淋巴瘤2 (B-cell Lymphoma-2,Bcl-2)或Bcl-2同源物包括促凋亡的Bcl-2蛋白家族成員和自噬調(diào)節(jié)因子Beclin相結(jié)合。pA179L與Beclin結(jié)合時(shí)使用的是與促凋亡Bcl-2結(jié)合的同一典型配體結(jié)合槽,pA179L具有與促凋亡的Bcl-2蛋白相似的α螺旋結(jié)構(gòu)配體結(jié)合槽,Beclin BH3肽與pA179L的α螺旋2~5形成的表面凹槽結(jié)合,Beclin BH3基序與pA179L配體結(jié)合槽的結(jié)合模式和Bid BH3基序與pA179L配體結(jié)合槽的結(jié)合模式非常相似,Beclin利用3個(gè)典型的疏水殘基L110、L114和F121以及T117來結(jié)合pA179L配體結(jié)合槽,pA179L配體結(jié)合槽與Bcl-2促凋亡蛋白家族成員及自噬調(diào)節(jié)因子Beclin BH3基序結(jié)合:pA179L D80和pA179L與Beclin K115之間的離子相互作用以及pA179L N83與Beclin D119之間的氫鍵、pA179L G85與Beclin D122之間的氫鍵和pA179L Y46與Beclin L114主鏈之間的氫鍵相互作用,抑制細(xì)胞自噬;pA179L的α螺旋2~5形成配體結(jié)合槽,與Bcl-2 BH3基序配體結(jié)合,從而與促凋亡蛋白Bcl-2競(jìng)爭(zhēng)性結(jié)合促凋亡蛋白,抑制細(xì)胞凋亡[25-27]。
DP71L作用于宿主蛋白磷酸化酶1 (Protein Phosphatase 1,PP1)的去磷酸化,從而防止通過雙鏈RNA依賴性蛋白激酶R (Double-stranded RNA-dependent Protein Kinase,PKR)或內(nèi)質(zhì)網(wǎng)應(yīng)激蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶(Protein Kinase R-like ER Kinase,PERK)磷酸化誘導(dǎo)的蛋白合成關(guān)閉[28]。
入侵的ASFV可以抑制細(xì)胞自噬和凋亡的發(fā)生或過早發(fā)生,從而為ASFV的復(fù)制和表達(dá)裝配爭(zhēng)取足夠的時(shí)間,傳播并繁殖下一代病毒。
4? 小結(jié)
ASFV抗原多樣性是阻礙ASFV疫苗發(fā)展的關(guān)鍵因素,天然和基因缺失的減毒活毒株可抵御同源的毒株,誘導(dǎo)抗體起保護(hù)作用。誘導(dǎo)細(xì)胞毒性T淋巴細(xì)胞(Cytotoxic T Lymphocyte,CTL)可能是完全保護(hù)的關(guān)鍵,依賴于CTL靶點(diǎn)識(shí)別的亞單位疫苗可誘導(dǎo)商品豬ASFV抗原特異性CTL反應(yīng),但仍需要進(jìn)一步的評(píng)估[29-30]。
ASFV在家豬上可引起致命的出血病,死亡率高達(dá)100%。ASFV可以在蜱蟲體內(nèi)存活,在環(huán)境中的耐受力強(qiáng),一系列預(yù)防和控制非洲豬瘟的措施是提高飼養(yǎng)技術(shù)、改善飼養(yǎng)環(huán)境、改善生態(tài)環(huán)境和控制豬肉安全的首要條件。同時(shí),研究ASFV與細(xì)胞的相互作用可以為人類相似病毒的免疫防控提供一些啟示,但是關(guān)于非洲豬瘟疫苗的研究仍然存在許多問題,需要去克服、去完善。
參考文獻(xiàn)
[1] GREEGG D A,MEBUS C A,SCHLAFER D H. Early infection of interdigitating cells in the pig lymph node with African swine fever viruses of high and low virulence: immunohistochemical and ultrastructural studies[J]. Journal of Veterinary Diagnostic Investigation,1995,7(1):23-30.
[2] GREEGG D A,SCHLAFER D H,MEBUS C A. African swine fever virus infection of skin-derived dendritic cells in vitro causes interference with subsequent foot-and-mouth disease virus infection[J]. Journal of Veterinary Diagnostic Investigation,1995,7(1):44-51.
[3] SANCHEZ P J,ROMERO J L,PEDRERA M,et al. Role of hepatic macrophages during the viral haemorrhagic fever induced by African swine fever virus[J]. Histology and Histopathology 2008,23(6):683-691.
[4] HERNAEZ B,GUERRA M,SALAS M L,et al. African swine fever virus undergoes outer envelope disruption, capsid disassembly and inner envelope fusion before core release from multivesicular endosomes[J]. PloS Pathogenes,2016,12(4):e1005595.
[5] OURA C A,POWELL P P,ANDERSON E,et al. The pathogenesis of African swine fever in the resistant bushpig[J]. Journal of General Virology,1998,79(6):1439-1443.
[6] GRANJA A G,NOGAL M L,HURTADO C,et al. The viral protein A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional coactivators pathway[J]. Journal of Immunology,2006,176(1):451-462.
[7] SANCHEZ P J,MONTOYA M,REIS A L,et al. African swine fever: A re-emerging viral disease threatening the global pig industry[J]. Veterinary Journal (London,England:1997),2018,233:41-48.
[8] GALLARDO C,NURMOJA I,SOLER A,et al. Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent[J]. Veterinary Microbiology,2018,219:70-79.
[9] DIXON L K,CHAPMAN D A,NETHERTON C L,et al. African swine fever virus replication and genomics[J]. Virus Research,2013,173:3-14.
[10] ESPARZA L,GONZALEZ J C,VINUELA E.Effect of interferon-alpha, interferon-gamma and tumour necrosis factor on African swine fever virus replication in porcine monocytes and macrophages[J]. The Journal of General Virology,1988,69 (Pt 12):2973-2980.
[11] BARRY M,BLEACKLEY R C. Cytotoxic T lymphocytes: all roads lead to death[J]. Nature Reviews Immunology,2002,2(6):401-409.
[12] TAKAMATSU H,DENYER M S,LACASTA A,et al. Cellular immunity in ASFV responses[J]. Virus Research,2013,173 (1):110-121.
[13] PAUST S,GILL H S,WANG B Z,et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specifific memory of haptens and viruses[J]. Nature Immunology,2010,11:1127-1136.
[14] PAUST S,VON ANDRIAN U H. Natural killer cell memory[J]. Nature Immunology,2011,12(6):500-508.
[15] ALONSO F,DOMINGUEZ J,VINUELA E,et al. African swine fever virus-specifific cytotoxic T lymphocytes recognize the 32 kDa immediate early protein (vp32)[J]. Virus Research,1997,49(2):123-130.
[16] TAKEDA K,AKIRA S. Toll-like receptors[J]. Current Protocols in Immunology,2015,109:14.12.1-14.12.10.
[17] JIN M S,LEE J O. Structures of TLR-ligand complexes[J]. Current Opinion in Immunology,2008,20(4):414-419.
[18] YAMAMOTO M,SATO S,MORI K,et al. Cutting edge: a novel Toll/IL-1 receptor domaincontaining adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling[J]. Journal of Immunology (Baltimore,Md. :1950),2002,169(12):6668-6672.
[19] HISCOTT J. Convergence of the NF-?B and IRF pathways in the regulation of the innate antiviral response[J]. Cytokine and Growth Factor Reviews,2007,18(5-6):483-490.
[20] OLIVEIRA V L,ALMEIDA S C,SOARES H R,et al. A novel TLR3 inhibitor encoded by African swine fever virus (ASFV)[J]. Archives of Virology,2011,156(4):597-609.
[21] AFONSO C L,PICCONE M E,ZAFFUTO K M,et al. African swine fever virus multigene family 360 and 530 genes affect host interferon response[J]. Journal of Virology,2004,78(4):1858-1864.
[22] CORREIA S,VENTURA S,PARKHOUSE R M. Identification and utility of innate immune system evasion mechanisms of ASFV[J]. Virus Research,2013,173(1):87-100.
[23] XIXI W,JING W,YINGTONG W,et al. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1[J]. Biochemical and Biophysical Research Communications,2018,506(3):437-443.
[24] ALEXANDER S,JANE H,THERESA S,et al. Porcine invariant natural killer T cells: functional profiling and dynamics in steady state and viral infections[J]. Frontiers in Immunology,2019,10:1380.
[25] BANJARA S,SHIMMON G L,DIXON L K,et al. Crystal structure of African swine fever virus A179L with the autophagy regulator Beclin[J]. Virus,2019,11:789.
[26] BANJARA S,CARIA S,DIXON L K,et al. Structural insight into African swine fever virus A1791L-mediated inhibition of apoptosis[J]. Journal of Virology,2017,91(6):e02228-16.
[27] JINLING L,GEN L,YUESONG C,et al. An insight into the transmission role of insect vectors based on the examination of gene characteristics of African swine fever virus originated from non-blood sucking flies in pig farm environments[J]. BMC Veterinary Research,2020,16(1):227.
[28] SCAPIN C,F(xiàn)ERRI C,PETTINATO E,et al. Phosphorylation of eIF2ɑ promotes schwann cell differentiation and myelination in CMT1B mice with activated UPR[J]. The Journal of Neuroscience: the Officcial Journal of the Society for Neuroscience,2020,40(42):8174-8187.
[29] LOKHANDWALA S,WAGHELA S D,BRAY J,et al. Induction of robust immune responses in swine by using a cocktail of adenovirus-vectored african swine fever virus antigens[J]. Clinical and Vaccine Immunology,2016,23(11):888-900.
[30] KRUG P W,HOLINKA L G,ODONNELL V,et al. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome[J]. Journal of Virology,2015,89(4):2324-2332.