亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        例談解析幾何中的非對稱問題

        2021-05-30 10:44:00李文東
        數理化解題研究·高中版 2021年12期
        關鍵詞:非對稱

        摘 要:文章探討了解析幾何中的非對稱結構問題的處理策略,所謂非對稱結構,是指結構中的x1,x2的系數或次數不一致,無法直接運用韋達定理求解.

        關鍵詞:非對稱;齊次化;定點定值

        中圖分類號:G632文獻標識碼:A文章編號:1008-0333(2021)34-0060-02

        收稿日期:2021-09-05

        作者簡介:李文東(1981-),男,湖北省咸寧人,碩士,中學一級教師,從事高中數學教學研究.[FQ)]

        解析幾何問題主要考查學生的轉化與化歸思想、推理論證能力、運算求解能力,體現了數學運算、邏輯推理等核心素養(yǎng),其中尤其對于運算求解能力要求較高,因此怎樣計算以及怎樣優(yōu)化解析幾何的運算是一個很重要的問題,下面我們談談解析幾何中非對稱問題的處理策略.

        (2019年廣東省一模理科數學第20題)已知點

        1,2,22,-3都在橢圓C:x2a2+y2b2=1(a>b>0)上.

        (1)求橢圓C的方程;

        (2)過點M(0,1)的直線l與橢圓C交于不同兩點P,Q(異于頂點),記橢圓與y軸的兩個交點分別為A1,A2,若直線A1P與A2Q交于點S,證明:點S恒在直線y=4上.

        解 (1)橢圓C的方程為y24+x22=1;

        (2)由題意可設直線l的方程為y=kx+1,Px1,y1,Qx2,y2,由y=kx+1y24+x22=1,消去y得2+k2x2+2kx-3=0,且x1+x2=-2k2+k2,x1x2=-32+k2.

        由題意不妨設A1(0,2),A2(0,-2),則直線A1P的方程為y-2=y1-2x1x,直線A2Q的方程為y+2=y2+2x2x ,聯立y-2=y1-2x1x,y+2=y2+2x2x,

        結合目標,消去x得:y2+2x1y-2=y1-2x2y+2,此表達式中左右結構不對稱,想要直接運用韋達定理比較困難.對此問題,我們有以下求解策略:

        一、利用韋達定理進行齊次化

        進一步將y2+2x1y-2=y1-2x2y+2整理得:3x1+x2y=4kx1x2+6x1-2x2,結合韋達定理知2kx1x2=3x1+x2,代入前式可得:3x1+x2y=4kx1x2+6x1-2x2=6x1+x2+6x1-2x2=43x1+x2,依題意:3x1+x2≠0,否則此時A1P∥A2Q,故得y=4,即點S恒在直線y=4上.

        評注 本題的目標很明確,就是要證明交點S的縱坐標為定值,因此首先聯立直線A1P和A2Q的方程,消去x,得到3x1+x2y=4kx1x2+6x1-2x2,但是此式中的x1,x2不對稱,無法直接運用韋達定理.這里的想法是利用韋達定理得到2kx1x2=3x1+x2,其本質是將二次表達式x1x2化為一次表達式x1+x2,從而實現齊次化的目的.

        二、利用韋達定理進行消元

        接法一有:3x1+x2y=4kx1x2+6x1-2x2,由于x1+x2=-2k2+k2,x1x2=-32+k2,故3x1+x2y=-12k2+k2+6x1-2x2,將x2=-2k2+k2-x1代入可得

        2x1-2k2+k2y=8x1-8k2+k2,故得y=4,即點S恒在直線y=4上.

        評注 這里的想法是先將已有的x1x2=-32+k2代入,然后再利用兩根之和x2=-2k2+k2-x1進行化簡,其本質是消元,這也是我們計算化簡的基本原則!

        三、利用橢圓方程實現對稱化

        將y2+2x1y-2=y1-2x2y+2整理得:y+2y-2=y2+2x1y1-2x2,

        因為y214+x212=1,所以x212=(2-y1)(2+y1)4,故x1y1-2=-2+y12x1.

        于是y+2y-2=y2+2x1y1-2x2=-y1+2y2+22x1x2=-kx1+3kx2+32x1x2=-k2x1x2+3kx1+x2+92x1x2將韋達定理代入得:y+2y-2=--3k22+k2-6k22+k2+9-62+k2=3,從而y=4,即點S恒在直線y=4上.

        評注 考慮到式中y+2y-2=y2+2x1y1-2x2變量不對稱,無法直接運用韋達定理,因為利用曲線進行代換得到x1y1-2=-2+y12x1,化為對稱y+2y-2=-y1+2y2+22x1x2實現可以運用韋達理的目的,這是一個很重要的技巧,它在很多考題中都有出現,值得我們關注!

        下面我們給出這類問題的幾個變式題.

        圖1

        變式1 已知橢圓x2a2+y2b2=1(a>b>0)的離心率為12,過點P(0,1)的動直線l與橢圓交于A、B兩點,當l∥x軸時,|AB|=463,

        (1)求橢圓的方程;

        (2)當|AP|=2|PB|,如圖1,求直線l的方程.

        解 (1)x24+y23=1.

        (2)由題意可設直線l的方程為y=kx+1, Ax1,y1,Bx2,y2,由y=kx+1x24+y23=1,消去y得3+4k2x2+8kx-8=0,且x1+x2=-8k3+4k2,x1x2=-83+4k2.由|AP|=2|PB|,可得AP=2PB,有x1=-2x2.首先將它與x1+x2=-8k3+4k2聯立可得x2=8k3+4k2,x1=-16k3+4k2, 代入x1x2=-83+4k2,得-128k23+4k22=-83+4k2,解得k=±12, 直線l的方程為y=±12x+1.

        評注 一般若x1=λx2,這也是一個非對稱問題,我們可以采取如下策略:

        (1)將x1=λx2與韋達定理中的x1+x2聯立求出x1,x2,然后代入x1x2求解;

        (2)構造韋達定理的表達式x1x2+x2x1=x1+x22-2x1x2x1x2.

        變式2 直線y=kx+m與橢圓x2+y24=1交于A、B兩點,與y軸相交與點P,且AP=3PB,求m的取值范圍.

        解 設Ax1,y1,Bx2,y2,由y=kx+mx2+y24=1,消去y得4+k2x2+2mkx+m2-4=0,Δ=k2-m2+4>0,且x1+x2=-2mk4+k2,x1x2=m2-44+k2.由AP=3PB,有x1=-3x2.

        故有3x1+x22+4x1x2=0,得 12m2k24+k22+4(m2-4)4+k2=0,即k2=4-m2m2-1,因為Δ=k2-m2+4>0,故4-m2m2-1-m2+4>0,解得m∈(-2,-1)∪(1,2).

        評注 這里將轉化x1=-3x2為3x1+x22+4x1x2=0,便于利用韋達定理.

        變式2 設A,B是橢圓x29+y2=1的左右頂點,過點M32,0作斜率為k(k≠0)的直線l交橢圓于C,D兩點,其中點C在x軸的上方,設k1=kBD,k2=kAC,證明:k1k2為定值.

        解 設Cx1,y1,Dx2,y2,直線CD的方程為:y=

        kx-32,k1k2=y2x1+3y1x2-3,因為x219+y21=1,所以9y21=(3-x1)(3+x1),故x1+3y1=9y13-x1.于是k1k2=y2x1+3y1x2-3=-9y1y2x1-3x2-3=

        -9k2x1x2-32x1+x2+94x1x2-3x1+x2+9,聯立y=kx-32x29+y2=1,消去y得:36k2+4x2-108k2x+81k2-36=0,于是x1+x2=108k236k2+4,x1x2=81k2-3636k2+4.

        故k1k2=-9k2x1x2-32x1+x2+94x1x2-3x1+x2+9

        =-9k281k2-3636k2+4-32·108k236k2+4+9481k2-3636k2+4-3·108k236k2+4+9=3.

        點評 一般地,設A,B是橢圓x2a2+y2b2=1(a>b>0)的左右頂點,過點Mt,0-a

        參考文獻:

        [1]劉紫陽.解析幾何中的非對稱問題的處理策略[J].中學生理科應試,2019(11):16-18..

        [責任編輯:李 璟]

        猜你喜歡
        非對稱
        圓錐曲線中非對稱問題的破解方法
        例談解析幾何中的非對稱形式
        閥控非對稱缸電液伺服系統(tǒng)線性自抗擾控制
        非對稱干涉儀技術及工程實現
        非對稱Orlicz差體
        非對稱二次損失下位置參數的貝葉斯估計
        點數不超過20的旗傳遞非對稱2-設計
        光伏發(fā)電最大功率跟蹤的非對稱模糊控制
        非對稱負載下矩陣變換器改進型PI重復控制
        電測與儀表(2015年4期)2015-04-12 00:43:04
        簡化的雙線性法求(2+1)維非對稱Nizhnik-Novikov-Veselov系統(tǒng)的多孤子解
        日韩网红少妇无码视频香港| 日本中文字幕av网址| 国产一区二区三区18p| 日韩人妻无码精品一专区二区三区| 亚洲av熟女少妇久久| 中文字幕人妻无码一夲道| 国产成人午夜福利在线观看者| 精品无码AV无码免费专区| 免费观看在线视频一区| 国产嫩草av一区二区三区| 国产一区二区女内射| 日韩在线看片| av二区三区在线观看| 亚洲国产精品高清一区| 久久久久女人精品毛片| 亚洲a级片在线观看| 丝袜人妻中文字幕首页| 亚洲一区二区三区尿失禁| 精品国产一区二区三区久久狼 | 亚洲综合国产精品一区二区| www夜插内射视频网站| 激情内射亚州一区二区三区爱妻| 国产精品无码一区二区在线国| 尤物AV无码色AV无码麻豆| 亚洲国产最新免费av| 色欲综合一区二区三区| 国产免费久久精品国产传媒| 国产激情视频免费观看| 中国人在线观看免费的视频播放| 高潮潮喷奶水飞溅视频无码| 人妻无码中文专区久久五月婷| 国产精品久久久久免费a∨不卡| 国内偷拍第一视频第一视频区| 久久免费看的少妇一级特黄片| 人妻 偷拍 无码 中文字幕| 国产精品99久久免费| 久久久婷婷综合亚洲av| 国产在线播放一区二区不卡| 中国a级毛片免费观看| 欧美日本国产亚洲网站免费一区二区| 亚洲综合新区一区二区|