亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        General Bounds for Maximum Mean Discrepancy Statistics

        2021-04-16 08:19:48HEYulin何玉林HUANGDefa黃德發(fā)DAIDexin戴德鑫HUANGZhexue黃哲學(xué)
        應(yīng)用數(shù)學(xué) 2021年2期
        關(guān)鍵詞:玉林哲學(xué)

        HE Yulin(何玉林),HUANG Defa(黃德發(fā))DAI Dexin(戴德鑫),HUANG Zhexue(黃哲學(xué))

        (College of Computer Science & Software Engineering,Shenzhen University,Shenzhen 518060,China)

        Abstract: The classical maximum mean discrepancy statistics,i.e.,MMDb(F,X,Y)and MMD2u(F,X,Y),to test whether two samples X = {x1,x2,··· ,xm} and Y = {y1,y2,··· ,yn} are drawn from the different distributions p and q.MMDb and MMD2u are two very useful and effective statistics of which the bounds are derived based on the assumption of m = n.This paper relaxes this assumption and provides the general bounds for these two statistics statistics MMDb and MMD2u.The derived results show that the traditional bounds derived in previous study are the special cases of our general bounds.

        Key words: Two-sample test;Maximum mean discrepancy (MMD);Reproducing kernel Hilbert space (RKHS);McDiarmid’s inequality

        1.Two MMD Statistics MMDb and MMD2u

        In order to determine how to test the difference between two distributionspandqbased on the independent and identical samplesX={x1,x2,··· ,xm}andY={y1,y2,··· ,yn}drawn from them,wheremandnare the numbers of sample belonging toXandY,respectively.Gretton,et al.[1]designed two MMDband MMD2ubased on the maximum mean discrepancy(MMD)principle,whereFis a class of smooth functions in a characteristic reproducing kernel Hilbert space (RKHS)[2].MMDband MMD2uare the generalizations ofL2statistic[3].The calculations of MMDband MMD2uwere provided as follows in [1],respectively:

        and

        wherek(,)is a RKHS kernel function.

        2.Traditional Bounds of MMDb and MMD2u When m=n

        Assume 0≤k(·,·)≤K,whereKis the upper bound of kernel function.Corollary 9 and Corollary 11 in [1] gave the bounds of MMDband MMD2ubased on the assumption ofm=n.

        Corollary 1[1]A hypothesis test of levelαfor the null hypothesis has the acceptance region

        Corollary 2[1]A hypothesis test of levelαfor the null hypothesis has the acceptance region

        3.General Bounds of MMDb and MMD2u When mn

        Eq.(2.1)and Eq.(2.2)provide the useful and effective statistics for testingp=q.However,the above-mentioned bounds of MMDband MMD2uare derived based on the assumptionm=n.In this section,we relax this assumption and derive the more general bounds for MMDband MMD2u.

        Corollary 3When,a hypothesis test of levelαfor the null hypothesisp=qhas the acceptance region

        ProofWhenp=qandmn,we get

        According to Theorem 7 in [1],we let

        Combining Eq.(3.2)and Eq.(3.3),the McDiarmid’s inequality[4]

        formnis yielded.In Eq.(3.3),we derive

        and then the bound

        is obtained.This completes the proof.

        Corollary 4Whenmn,a hypothesis test of levelαfor the null hypothesisp=qhas the acceptance region

        ProofAccording to the definition of MMD2u(F,X,Y)in Eq.(1.2),we calculate

        Then,we derive

        and

        Based on the McDiarmid’s inequality[4],we get

        and then the bound of MMD2u(F,X,Y)is obtained for the null hypothesisp=q.This completes the proof.

        We can find that the bounds of MMDb(F,X,Y)and MMD2u(F,X,Y)whenm=nare the special cases of Eq.(3.1)and Eq.(3.7),i.e.,

        4.Conclusions and Future Works

        This paper relaxes the assumption ofm=nfor the classical bounds of two statistics MMDband MMD2uand derives the general bounds based onmn.The yielded results show that the classical bounds derived in [1] are the special cases of our general bounds.The random sample partition (RSP)[5]is a new big data representation model.In future,we will use the MMD statistics with general bounds to determine RSP for big data management and analysis.In addition,we will evaluate the complexity of RSP data block based on these general bounds.

        猜你喜歡
        玉林哲學(xué)
        王玉林作品
        馬玉林書法作品選(2幅)
        菱的哲學(xué)
        文苑(2020年6期)2020-06-22 08:41:58
        邱玉林藝術(shù)作品欣賞
        Unit 6 Travelling around Asia Listening and speaking
        趙玉林藏石欣賞
        寶藏(2017年10期)2018-01-03 01:53:27
        讀懂哲學(xué)書是件很酷的事
        大健康觀的哲學(xué)思考
        哲學(xué)
        新校長(2016年5期)2016-02-26 09:28:48
        瞻云寄興
        岷峨詩稿(2014年2期)2014-11-15 03:21:29
        少妇高潮精品正在线播放| 人人狠狠综合久久亚洲婷婷| 日韩五十路| 一区二区三区av资源网| 亚洲中文久久精品字幕| 亚洲人成影院在线观看| 国产一区a| 一区二区日本影院在线观看| 午夜福利影院成人影院| 久久99精品九九九久久婷婷 | 日本高清无卡一区二区三区| 亚洲综合色区一区二区三区| 人人妻人人澡人人爽精品欧美| 国产精品99久久久精品免费观看| 操老熟妇老女人一区二区| 日本精品一区二区高清| 亚洲乱码中文字幕综合| 国产亚洲欧美精品一区| 中文字幕中文字幕三区| 高清毛茸茸的中国少妇| 亚洲欧美日韩国产精品专区 | 综合图区亚洲另类偷窥| 国产人妻久久精品二区三区特黄| 视频国产精品| 男男做h嗯啊高潮涩涩| 日韩精品专区av无码| 国产做无码视频在线观看浪潮| 亚洲成片在线看一区二区| 99精品国产一区二区三区| 午夜福利院电影| 97SE亚洲国产综合自在线不卡| 国产一区在线视频不卡| 午夜精品久久久久久久无码| 国内露脸中年夫妇交换| 九色精品国产亚洲av麻豆一| 蜜桃视频免费进入观看| 成人区人妻精品一熟女| 国内精品久久久久久久久蜜桃| 亚洲天堂av一区二区| 无码人妻久久一区二区三区免费| 久久99国产亚洲高清|