亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        General Bounds for Maximum Mean Discrepancy Statistics

        2021-04-16 08:19:48HEYulin何玉林HUANGDefa黃德發(fā)DAIDexin戴德鑫HUANGZhexue黃哲學(xué)
        應(yīng)用數(shù)學(xué) 2021年2期
        關(guān)鍵詞:玉林哲學(xué)

        HE Yulin(何玉林),HUANG Defa(黃德發(fā))DAI Dexin(戴德鑫),HUANG Zhexue(黃哲學(xué))

        (College of Computer Science & Software Engineering,Shenzhen University,Shenzhen 518060,China)

        Abstract: The classical maximum mean discrepancy statistics,i.e.,MMDb(F,X,Y)and MMD2u(F,X,Y),to test whether two samples X = {x1,x2,··· ,xm} and Y = {y1,y2,··· ,yn} are drawn from the different distributions p and q.MMDb and MMD2u are two very useful and effective statistics of which the bounds are derived based on the assumption of m = n.This paper relaxes this assumption and provides the general bounds for these two statistics statistics MMDb and MMD2u.The derived results show that the traditional bounds derived in previous study are the special cases of our general bounds.

        Key words: Two-sample test;Maximum mean discrepancy (MMD);Reproducing kernel Hilbert space (RKHS);McDiarmid’s inequality

        1.Two MMD Statistics MMDb and MMD2u

        In order to determine how to test the difference between two distributionspandqbased on the independent and identical samplesX={x1,x2,··· ,xm}andY={y1,y2,··· ,yn}drawn from them,wheremandnare the numbers of sample belonging toXandY,respectively.Gretton,et al.[1]designed two MMDband MMD2ubased on the maximum mean discrepancy(MMD)principle,whereFis a class of smooth functions in a characteristic reproducing kernel Hilbert space (RKHS)[2].MMDband MMD2uare the generalizations ofL2statistic[3].The calculations of MMDband MMD2uwere provided as follows in [1],respectively:

        and

        wherek(,)is a RKHS kernel function.

        2.Traditional Bounds of MMDb and MMD2u When m=n

        Assume 0≤k(·,·)≤K,whereKis the upper bound of kernel function.Corollary 9 and Corollary 11 in [1] gave the bounds of MMDband MMD2ubased on the assumption ofm=n.

        Corollary 1[1]A hypothesis test of levelαfor the null hypothesis has the acceptance region

        Corollary 2[1]A hypothesis test of levelαfor the null hypothesis has the acceptance region

        3.General Bounds of MMDb and MMD2u When mn

        Eq.(2.1)and Eq.(2.2)provide the useful and effective statistics for testingp=q.However,the above-mentioned bounds of MMDband MMD2uare derived based on the assumptionm=n.In this section,we relax this assumption and derive the more general bounds for MMDband MMD2u.

        Corollary 3When,a hypothesis test of levelαfor the null hypothesisp=qhas the acceptance region

        ProofWhenp=qandmn,we get

        According to Theorem 7 in [1],we let

        Combining Eq.(3.2)and Eq.(3.3),the McDiarmid’s inequality[4]

        formnis yielded.In Eq.(3.3),we derive

        and then the bound

        is obtained.This completes the proof.

        Corollary 4Whenmn,a hypothesis test of levelαfor the null hypothesisp=qhas the acceptance region

        ProofAccording to the definition of MMD2u(F,X,Y)in Eq.(1.2),we calculate

        Then,we derive

        and

        Based on the McDiarmid’s inequality[4],we get

        and then the bound of MMD2u(F,X,Y)is obtained for the null hypothesisp=q.This completes the proof.

        We can find that the bounds of MMDb(F,X,Y)and MMD2u(F,X,Y)whenm=nare the special cases of Eq.(3.1)and Eq.(3.7),i.e.,

        4.Conclusions and Future Works

        This paper relaxes the assumption ofm=nfor the classical bounds of two statistics MMDband MMD2uand derives the general bounds based onmn.The yielded results show that the classical bounds derived in [1] are the special cases of our general bounds.The random sample partition (RSP)[5]is a new big data representation model.In future,we will use the MMD statistics with general bounds to determine RSP for big data management and analysis.In addition,we will evaluate the complexity of RSP data block based on these general bounds.

        猜你喜歡
        玉林哲學(xué)
        王玉林作品
        馬玉林書法作品選(2幅)
        菱的哲學(xué)
        文苑(2020年6期)2020-06-22 08:41:58
        邱玉林藝術(shù)作品欣賞
        Unit 6 Travelling around Asia Listening and speaking
        趙玉林藏石欣賞
        寶藏(2017年10期)2018-01-03 01:53:27
        讀懂哲學(xué)書是件很酷的事
        大健康觀的哲學(xué)思考
        哲學(xué)
        新校長(2016年5期)2016-02-26 09:28:48
        瞻云寄興
        岷峨詩稿(2014年2期)2014-11-15 03:21:29
        亚洲精品tv久久久久久久久久| 丝袜欧美视频首页在线| 国产精品爆乳在线播放| 国内视频偷拍一区,二区,三区| 一区二区三区夜夜久久| 69精品国产乱码久久久| 日本人妖熟女另类二区| 国产成人无码a区在线观看导航 | 亚洲一级无码片一区二区三区| 日本视频一区二区二区| 日本在线综合一区二区| 亚洲一区二区国产一区| 欧美日韩精品久久久免费观看| 国产一卡2卡3卡四卡国色天香| 欧美日韩不卡视频合集| 亚洲成人欧美| 无码啪啪熟妇人妻区| 久久精品国产亚洲av成人网| 西川结衣中文字幕在线| 中文字幕日本人妻久久久免费| 最近中文av字幕在线中文| 美女污污网站| 国产一区二区三区在线av| 青青草免费手机视频在线观看| 插b内射18免费视频| 欧美老妇与禽交| 中文字幕无码免费久久99| 白色白色白色在线观看视频| 少妇高潮太爽了在线视频| 欧美大屁股xxxx| 久久久AV无码精品免费 | 亚洲va中文字幕无码毛片| 真正免费一级毛片在线播放| 中文亚洲AV片在线观看无码| 少妇特殊按摩高潮对白| 欧美男生射精高潮视频网站| 欧美人妻精品一区二区三区| 久久精品国产一区二区蜜芽| 亚洲最黄视频一区二区| 26uuu在线亚洲欧美| 女人被狂躁高潮啊的视频在线看 |