亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        General Bounds for Maximum Mean Discrepancy Statistics

        2021-04-16 08:19:48HEYulin何玉林HUANGDefa黃德發(fā)DAIDexin戴德鑫HUANGZhexue黃哲學(xué)
        應(yīng)用數(shù)學(xué) 2021年2期
        關(guān)鍵詞:玉林哲學(xué)

        HE Yulin(何玉林),HUANG Defa(黃德發(fā))DAI Dexin(戴德鑫),HUANG Zhexue(黃哲學(xué))

        (College of Computer Science & Software Engineering,Shenzhen University,Shenzhen 518060,China)

        Abstract: The classical maximum mean discrepancy statistics,i.e.,MMDb(F,X,Y)and MMD2u(F,X,Y),to test whether two samples X = {x1,x2,··· ,xm} and Y = {y1,y2,··· ,yn} are drawn from the different distributions p and q.MMDb and MMD2u are two very useful and effective statistics of which the bounds are derived based on the assumption of m = n.This paper relaxes this assumption and provides the general bounds for these two statistics statistics MMDb and MMD2u.The derived results show that the traditional bounds derived in previous study are the special cases of our general bounds.

        Key words: Two-sample test;Maximum mean discrepancy (MMD);Reproducing kernel Hilbert space (RKHS);McDiarmid’s inequality

        1.Two MMD Statistics MMDb and MMD2u

        In order to determine how to test the difference between two distributionspandqbased on the independent and identical samplesX={x1,x2,··· ,xm}andY={y1,y2,··· ,yn}drawn from them,wheremandnare the numbers of sample belonging toXandY,respectively.Gretton,et al.[1]designed two MMDband MMD2ubased on the maximum mean discrepancy(MMD)principle,whereFis a class of smooth functions in a characteristic reproducing kernel Hilbert space (RKHS)[2].MMDband MMD2uare the generalizations ofL2statistic[3].The calculations of MMDband MMD2uwere provided as follows in [1],respectively:

        and

        wherek(,)is a RKHS kernel function.

        2.Traditional Bounds of MMDb and MMD2u When m=n

        Assume 0≤k(·,·)≤K,whereKis the upper bound of kernel function.Corollary 9 and Corollary 11 in [1] gave the bounds of MMDband MMD2ubased on the assumption ofm=n.

        Corollary 1[1]A hypothesis test of levelαfor the null hypothesis has the acceptance region

        Corollary 2[1]A hypothesis test of levelαfor the null hypothesis has the acceptance region

        3.General Bounds of MMDb and MMD2u When mn

        Eq.(2.1)and Eq.(2.2)provide the useful and effective statistics for testingp=q.However,the above-mentioned bounds of MMDband MMD2uare derived based on the assumptionm=n.In this section,we relax this assumption and derive the more general bounds for MMDband MMD2u.

        Corollary 3When,a hypothesis test of levelαfor the null hypothesisp=qhas the acceptance region

        ProofWhenp=qandmn,we get

        According to Theorem 7 in [1],we let

        Combining Eq.(3.2)and Eq.(3.3),the McDiarmid’s inequality[4]

        formnis yielded.In Eq.(3.3),we derive

        and then the bound

        is obtained.This completes the proof.

        Corollary 4Whenmn,a hypothesis test of levelαfor the null hypothesisp=qhas the acceptance region

        ProofAccording to the definition of MMD2u(F,X,Y)in Eq.(1.2),we calculate

        Then,we derive

        and

        Based on the McDiarmid’s inequality[4],we get

        and then the bound of MMD2u(F,X,Y)is obtained for the null hypothesisp=q.This completes the proof.

        We can find that the bounds of MMDb(F,X,Y)and MMD2u(F,X,Y)whenm=nare the special cases of Eq.(3.1)and Eq.(3.7),i.e.,

        4.Conclusions and Future Works

        This paper relaxes the assumption ofm=nfor the classical bounds of two statistics MMDband MMD2uand derives the general bounds based onmn.The yielded results show that the classical bounds derived in [1] are the special cases of our general bounds.The random sample partition (RSP)[5]is a new big data representation model.In future,we will use the MMD statistics with general bounds to determine RSP for big data management and analysis.In addition,we will evaluate the complexity of RSP data block based on these general bounds.

        猜你喜歡
        玉林哲學(xué)
        王玉林作品
        馬玉林書法作品選(2幅)
        菱的哲學(xué)
        文苑(2020年6期)2020-06-22 08:41:58
        邱玉林藝術(shù)作品欣賞
        Unit 6 Travelling around Asia Listening and speaking
        趙玉林藏石欣賞
        寶藏(2017年10期)2018-01-03 01:53:27
        讀懂哲學(xué)書是件很酷的事
        大健康觀的哲學(xué)思考
        哲學(xué)
        新校長(2016年5期)2016-02-26 09:28:48
        瞻云寄興
        岷峨詩稿(2014年2期)2014-11-15 03:21:29
        日本亚洲系列中文字幕| 无码国产精品一区二区免费网曝| 国产精品亚洲专区无码不卡 | 日本不卡高字幕在线2019| 性色av浪潮av色欲av| 热久久网站| 大又黄又粗又爽少妇毛片| 二区三区三区视频在线观看| a级毛片免费完整视频| 天天爽夜夜爽人人爽曰喷水| 国产成人夜色在线视频观看| 免费av网站大全亚洲一区| 在线播放免费播放av片| 国产av成人精品播放| 97激情在线视频五月天视频| 一本到在线观看视频| 99精品国产综合久久久久五月天| 亚洲精品成人国产av| 国产内射一级一片内射高清视频1| 亚洲 欧美 国产 制服 动漫| 成年在线观看免费视频| 日本女优一区二区在线免费观看| 国产精品福利高清在线| 性欧美老人牲交xxxxx视频| 国产爆乳无码一区二区在线 | 国产精品夜色视频久久| 专干老熟女视频在线观看| 人妻无码中文专区久久五月婷 | 五月天国产成人av免费观看| 国产亚洲日韩欧美一区二区三区 | 97久久国产亚洲精品超碰热| 三上悠亚av影院在线看| 国产精品久久久久久久y| 日本人妻精品有码字幕| 消息称老熟妇乱视频一区二区 | 国产亚洲午夜精品| 快射视频网站在线观看| 女人脱了内裤趴开腿让男躁| 欧美日韩亚洲成人| 国产精品日本中文在线| 亚洲av无码码潮喷在线观看 |