亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        誘集植物在農(nóng)業(yè)中的應(yīng)用研究進(jìn)展與展望

        2021-04-13 02:57:28盧雪凝章家恩向慧敏王家新藍(lán)妮秦鐘
        生態(tài)科學(xué) 2021年2期
        關(guān)鍵詞:主栽靶標(biāo)土豆

        盧雪凝, 章家恩,*, 向慧敏, 王家新, 藍(lán)妮, 秦鐘

        誘集植物在農(nóng)業(yè)中的應(yīng)用研究進(jìn)展與展望

        盧雪凝1,2, 章家恩1,2,*, 向慧敏1,2, 王家新1,2, 藍(lán)妮1,2, 秦鐘1,2

        1. 華南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院生態(tài)學(xué)系, 廣州 510642; 2. 廣東省生態(tài)循環(huán)農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室/農(nóng)業(yè)部華南熱帶農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室/廣東省現(xiàn)代生態(tài)農(nóng)業(yè)與循環(huán)農(nóng)業(yè)工程技術(shù)研究中心/廣東省高等學(xué)校農(nóng)業(yè)生態(tài)與農(nóng)村環(huán)境重點(diǎn)實(shí)驗(yàn)室, 廣州 510642

        全世界每年因病蟲害導(dǎo)致嚴(yán)重的農(nóng)業(yè)經(jīng)濟(jì)損失, 為了減少病蟲害的發(fā)生, 實(shí)際生產(chǎn)中通常使用大量化學(xué)農(nóng)藥, 然而農(nóng)藥的大量施用, 不僅造成環(huán)境污染和農(nóng)產(chǎn)品安全問題, 還會(huì)使病蟲害產(chǎn)生抗藥性, 天敵種群受損, 從而導(dǎo)致病蟲害爆發(fā)日益嚴(yán)重。種植誘集植物是一種環(huán)境友好型病蟲害防控方法, 該方法主要是通過誘集植物吸引蟲害和降低病害, 從而減少病蟲害對(duì)主栽作物的危害, 達(dá)到保護(hù)主栽作物的目的, 最終減少農(nóng)業(yè)上化學(xué)農(nóng)藥的使用。根據(jù)誘集植物自身特性, 將其分為五種主導(dǎo)作用類型: 傳統(tǒng)誘集植物、致死型誘集植物、基因工程型誘集植物、生物輔助控制型誘集植物、化學(xué)信息素輔助作用型誘集植物等, 根據(jù)種植和利用方式, 將其分為: 圍種誘集、間種誘集、連作誘集、與其它方式結(jié)合等。盡管關(guān)于誘集植物的研究已有近160年歷史, 但有關(guān)高效誘集植物的篩選、誘集植物與主栽作物的優(yōu)化配置模式與配套種植技術(shù)、誘集植物對(duì)靶標(biāo)病蟲害的作用機(jī)理、誘集植物在農(nóng)業(yè)生產(chǎn)中的生態(tài)風(fēng)險(xiǎn)評(píng)估等仍不清楚, 且誘集植物仍具有較大開發(fā)潛力和應(yīng)用價(jià)值, 如(1)開發(fā)應(yīng)用誘集植物的環(huán)境污染修復(fù)功能及相關(guān)技術(shù); (2)開發(fā)應(yīng)用誘集植物的景觀生態(tài)與休閑旅游功能及相關(guān)技術(shù); (3)開發(fā)利用誘集植物對(duì)土壤的養(yǎng)分轉(zhuǎn)化與固持提升功能(如固氮、固碳、固土功能等)、生物質(zhì)能源功能、節(jié)能減排功能及相關(guān)技術(shù); (4)開發(fā)應(yīng)用誘集植物及其廢棄物的經(jīng)濟(jì)產(chǎn)品功能及其可持續(xù)生產(chǎn)技術(shù)。論文綜述了近年來(lái)國(guó)內(nèi)外有關(guān)誘集植物的相關(guān)研究與實(shí)踐應(yīng)用, 旨在為誘集植物在農(nóng)業(yè)生產(chǎn)中進(jìn)行病蟲害防治研究和應(yīng)用提供相關(guān)參考。

        誘集植物; 病蟲害綜合治理(IPM); 農(nóng)業(yè)生態(tài)系統(tǒng); 種植方式; 生物質(zhì)能源

        0 前言

        農(nóng)藥以其方便、快捷、高效的特點(diǎn), 在農(nóng)業(yè)生產(chǎn)上被廣泛應(yīng)用。然而, 不合理的農(nóng)藥施用會(huì)導(dǎo)致農(nóng)業(yè)害蟲抗性增加、天敵數(shù)量減少、農(nóng)藥殘留嚴(yán)重、食品安全等問題[1-3]。為了減少農(nóng)業(yè)生產(chǎn)對(duì)化學(xué)農(nóng)藥的依賴, 誘集植物被逐漸開發(fā)和應(yīng)用。誘集植物是指相對(duì)于目標(biāo)作物對(duì)害蟲有更強(qiáng)的吸引作用而誘集大量病蟲在其植株上取食、產(chǎn)卵, 從而減少害蟲對(duì)目標(biāo)作物的損害, 保護(hù)主栽作物, 實(shí)現(xiàn)穩(wěn)產(chǎn)或高產(chǎn)目的的一類植物[4-5]。早在幾個(gè)世紀(jì)以前, 誘集植物被用來(lái)防治昆蟲的理論已經(jīng)產(chǎn)生, 但直到20世紀(jì)60年代以來(lái)才被廣泛應(yīng)用于實(shí)踐中。誘集植物作為低成本、環(huán)境友好型病蟲害防治手段已被開發(fā)和應(yīng)用于農(nóng)業(yè)生產(chǎn), 如糧食作物和經(jīng)濟(jì)作物。誘集植物的開發(fā)應(yīng)用不僅能減少病蟲害的發(fā)生, 吸引昆蟲天敵, 增加農(nóng)田生物多樣性, 而且能夠減少農(nóng)業(yè)生產(chǎn)對(duì)化學(xué)殺蟲劑的使用, 減少環(huán)境污染降低生產(chǎn)管理成本。Curtis于1860年研究發(fā)現(xiàn)傘形花織蛾更傾向于在廉價(jià)的歐洲防風(fēng)草()上產(chǎn)卵, 該方法可有效防治危害胡蘿卜傘形花織蛾()[5]; 又如, 使用玉米作為誘集植物可防治棉花中的棉鈴象甲[6]。近年來(lái)關(guān)于誘集植物在病蟲害綜合治理中的研究多集中在其對(duì)有害昆蟲的誘集, 尤其在防治棉花、豆類、花椰菜、芥菜等病蟲害方面[4]。隨著人們對(duì)食品安全問題的日益關(guān)注及農(nóng)業(yè)綠色安全生產(chǎn)的迫切需求, 誘集植物在農(nóng)業(yè)生產(chǎn)中的開發(fā)和利用, 將愈發(fā)顯示出廣闊的應(yīng)用前景。鑒于此, 本文綜述近年來(lái)國(guó)內(nèi)外有關(guān)誘集植物在農(nóng)業(yè)生產(chǎn)中的應(yīng)用及研究進(jìn)展, 根據(jù)誘集植物自身特性及其種植和作用方式, 對(duì)誘集植物進(jìn)行分類, 并結(jié)合生態(tài)旅游、碳氮固定、植物修復(fù)等領(lǐng)域?qū)φT集植物的開發(fā)應(yīng)用提出建議, 旨在更好地為該領(lǐng)域的相關(guān)研究與應(yīng)用提供參考。

        1 誘集植物研究概述

        1.1 誘集植物的主導(dǎo)作用類型

        國(guó)內(nèi)外有關(guān)誘集植物在病蟲害綜合治理的應(yīng)用實(shí)踐已有大量研究, 2005年Shelton 等[4]綜述了誘集植物在病蟲害治理中的應(yīng)用, 并對(duì)誘集植物給出了更為寬泛的定義, 認(rèn)為誘集植物是一類通過吸引、轉(zhuǎn)移、攔截或保留靶標(biāo)昆蟲或病原體, 來(lái)減少其對(duì)主栽作物危害的植物。根據(jù)誘集植物的具體特性, 可將誘集植物分為如下五種主導(dǎo)作用類型:

        1.1.1 傳統(tǒng)誘集植物

        傳統(tǒng)誘集植物或陷阱作物(conventional trap crops)是指將靶標(biāo)害蟲更青睞的寄主植物種植于主栽作物鄰近(圖1A), 吸引害蟲侵染和產(chǎn)卵, 進(jìn)而減少害蟲對(duì)主栽作物的危害[5]。20世紀(jì)60年代以來(lái)開展了傳統(tǒng)誘集植物的廣泛研究和應(yīng)用, 如利用苜蓿作為誘集植物防治棉花害蟲綠盲蝽[8]; 利用高粱控制棉鈴蟲(corn earworm)[9]; 利用印度芥菜防治小菜蛾(Diamondback moth)[10]; 利用油菜、油蘿卜、白芥等(oil radish, oil rape and white mustard)防治卷心菜椿象(cabbage stink bugs)等[11]。

        1.1.2 致死型誘集植物

        致死型誘集植物(dead-end trap crops)是指一類能夠?qū)袠?biāo)害蟲吸引到自身取食或產(chǎn)卵, 卻不提供足夠的能量和營(yíng)養(yǎng)物質(zhì), 致靶標(biāo)害蟲死亡, 或使其不可繁殖后代, 減少靶標(biāo)害蟲種群, 進(jìn)而保護(hù)主栽作物的植物[12-13]。這類植物通常具有較為鮮艷的色彩、獨(dú)特的氣味, 但營(yíng)養(yǎng)物質(zhì)較少且有一定的毒性, 如利用香根草()作為誘集植物誘集玉米害蟲禾螟()時(shí)(圖1B), 香根草能夠有效地降低玉米禾螟對(duì)玉米的危害[14]; 另外, 香根草還可用于防治水稻二化螟(), 相關(guān)研究表明, 二化螟雌蟲在香根草上的產(chǎn)卵量是水稻上的4倍, 在水稻田間種植香根草可使水稻的枯心率較對(duì)照區(qū)降低50%以上[15-16]。其中香根草的作用機(jī)理是香根草中有毒物質(zhì)抑制了二化螟體內(nèi)CarE和細(xì)胞色素P450 酶的活性, 此外香根草內(nèi)營(yíng)養(yǎng)物質(zhì)的缺失, 且單寧含量較高, 影響了二化螟體內(nèi)消化酶的活性, 從而影響二化螟的生長(zhǎng)和發(fā)育,最終導(dǎo)致死亡[17]。

        1.1.3 基因工程型誘集植物

        基因工程型誘集植物 (genetically engineered trap crops)是指將某種特定的基因轉(zhuǎn)入寄主植物, 使其具有一定的特征能夠通過吸引靶標(biāo)害蟲或病原體, 或形成植物屏障, 或能夠行使傳統(tǒng)型誘集植物功能或致死型誘集植物功能, 從而減少病蟲害的植物[4]。如圖1C所示,基因工程型誘集植物的作用原理一般是將此類轉(zhuǎn)基因作物種植在非轉(zhuǎn)基因作物旁邊, 用于誘集并減少病蟲害, 如轉(zhuǎn)Cry1Ac羽衣甘藍(lán)(var.)種植在普通的羽衣甘藍(lán)周圍可大量誘集并減少鱗翅目昆蟲[18]; 轉(zhuǎn)Bt土豆可用來(lái)防治馬鈴薯甲蟲()[19]; Bt玉米與非轉(zhuǎn)基因玉米或大豆1: 10(種植面積)混作用于防控危害非轉(zhuǎn)基因玉米或大豆的棉鈴蟲和玉米螟[20]等。

        1.1.4 生物輔助控制型誘集植物

        生物輔助控制型誘集植物(biological control-assisted trap crops)是指利用其他生物(如田間雜草、寄生性天敵等)輔助, 增加誘集植物誘集能力的一種類型。常見2種輔助類型: (1)多植物輔助誘集害蟲型, 即同時(shí)種植多種植物誘集多種靶標(biāo)害蟲, 并通過結(jié)合不同誘集植物對(duì)不同靶標(biāo)害蟲在不同時(shí)期的誘集能力, 增強(qiáng)不同時(shí)期誘集植物對(duì)靶標(biāo)害蟲的防治能力[4]。例如在芬蘭的花椰菜地中混合種植中國(guó)大白菜、金盞菊、油菜、向日葵等, 成功防治油菜花露尾甲[21]; 在印度通過蓖麻、粟、大豆等混作成功防治花生斑潛蠅(groundnut leaf miner)[22]; 玉米與土豆相結(jié)合控制甘薯金針蟲[23]等, 均說(shuō)明多重誘集更具有實(shí)際應(yīng)用價(jià)值。(2)輔助誘集天敵型:誘集植物在吸引、截留、殺死或轉(zhuǎn)移靶標(biāo)害蟲的同時(shí), 也會(huì)通過顏色[24]、揮發(fā)性有機(jī)化學(xué)物和花外蜜腺分泌物等[25-26]吸引靶標(biāo)害蟲的寄生性天敵[27], 并為天敵提供食物和寄宿條件, 從而控制害蟲的發(fā)生和數(shù)量[28-29]。此種類型可增加害蟲天敵的數(shù)量, 減少化學(xué)合成農(nóng)藥輸入, 既降低了環(huán)境污染, 也提高了農(nóng)田生態(tài)系統(tǒng)的穩(wěn)定性[30], 增加農(nóng)田系統(tǒng)的功能[31]。

        1.1.5 化學(xué)信息素輔助作用型誘集植物

        化學(xué)信息素輔助作用型誘集植物(semiochemically assis-ted trap crops)是指利用化學(xué)信息素增強(qiáng)誘集植物對(duì)害蟲的吸引力來(lái)減少害蟲的一類方法。例如利用性激素誘殺雄性昆蟲[32-33], 利用有毒誘餌化學(xué)信息素[34]吸引昆蟲取食, 從而減少害蟲的種群數(shù)量。根據(jù)化學(xué)信息素的來(lái)源可分為: 植物體分泌產(chǎn)生化學(xué)信息素和人工合成信息素[35], Shelton等則認(rèn)為利用植物體表達(dá)信息素比直接噴施合成信息素的效果更好, 并且可以減少投入來(lái)降低成本等[4]。

        注: a, b分別代表誘集植物和主栽植物; A是傳統(tǒng)誘集植物示例, 所示為玉米作為誘集植物, 種植于棉花地誘集棉鈴蟲; B為致死型誘集植物示例, 在稻田邊種植香根草誘集水稻二化螟; C為基因工程型誘集植物示例, 所示為轉(zhuǎn)Bt Cry1Ac基因的紫菜甘藍(lán)種植于非轉(zhuǎn)基因紫菜甘藍(lán)的周圍, 利用其對(duì)對(duì)靶標(biāo)害蟲更強(qiáng)的吸引, 以減少主栽非轉(zhuǎn)基因紫菜甘藍(lán)上的害蟲的數(shù)量。

        Figure 1 Three main types based on the mechanisms and characters of trap crops

        1.2 誘集植物的常用種植方式

        誘集植物的種植方式會(huì)影響其對(duì)病蟲害的誘集效率, 高效的誘集植物種植方式不僅要能夠吸引更多的害蟲, 還需要能夠防止害蟲逃離。因此, 選擇誘集植物的種植方式至關(guān)重要。

        1.2.1 圍種誘集

        誘集植物的空間分布,如種植行向、行距、種植面積等對(duì)誘集效果產(chǎn)生不同的影響。多數(shù)研究表明, 圍種(border arrangement or perimeter)的效果較好[36-38]。圍種誘集植物方式可通過截留或阻止昆蟲進(jìn)入主栽作物, 或通過給靶標(biāo)害蟲提供食物, 致使靶標(biāo)害蟲中毒死亡, 或截留靶標(biāo)害蟲和病毒病害傳播體如某些傳播病毒病害的昆蟲, 使其在取食誘集植物的同時(shí)清潔其口器, 進(jìn)而阻止病毒的傳播, 達(dá)到保護(hù)主栽作物的目的。王春義等[39]研究煙草和苘麻對(duì)棉田煙粉虱和棉鈴蟲的誘集作用, 發(fā)現(xiàn)散種方式的誘集效果優(yōu)于連片種植; Boucher等通過兩年的大田試驗(yàn)證明以圍墻形式的空間布置將紅櫻桃辣椒種植在燈籠椒周圍,能夠有效降低辣椒蠅的產(chǎn)卵和侵染[40]; Cavanagh通過在黃瓜地圍種藍(lán)色哈伯德南瓜可有效地阻止成年條紋黃瓜甲蟲對(duì)黃瓜的危害[41]; Ca′rcamo等研究也發(fā)現(xiàn)圍種誘集植物能夠有效降低卷心菜心皮象鼻蟲的危害, 圍種是病蟲害綜合防治的有效空間布置方式[36-38,42-43]。

        1.2.2間種誘集

        間種誘集植物多用于“推-拉”誘集策略中的“推”, 即將具有“刺激”特性的植物與主栽作物間作, 可減少害蟲的密度。主要通過減少害蟲對(duì)主栽作物的視覺可見性, 干擾寄主對(duì)主栽作物的定位[44]。間作時(shí)如選用誘集害蟲天敵的植物, 可提高天敵在種植區(qū)的豐富度, 進(jìn)而增加害蟲的死亡率和被捕食率[45]。例如, 在非洲, 糖蜜草()和銀葉草()能夠釋放寄主誘導(dǎo)信息素[45-46], 通過與玉米間作減少玉米害蟲的發(fā)生。

        1.2.3 連作誘集

        當(dāng)誘集植物生育期短,可在主栽作物的整個(gè)生育期內(nèi)連續(xù)多次種植 (連作)該誘集植物[10]。誘集植物的連續(xù)種植可以增加對(duì)靶標(biāo)害蟲的持續(xù)誘集效果。例如, 王春義等對(duì)棉田綠盲蝽誘集植物篩選和比較的研究結(jié)果表明,誘集效果最佳的為油葵, 其次為綠豆, 且綠豆的生育期較棉花短, 因此誘集帶綠豆可分期播種作為連續(xù)型誘集植物[39]。此外, 有關(guān)研究表明,利用印度芥菜誘集小菜蛾, 種植兩次或多次的效果更佳[10]。

        1.2.4 與其他方式相結(jié)合

        誘集植物的誘集效果大部分取決于誘集植物對(duì)病蟲害的保留能力和控制效果[47-48], 因此,需要綜合利用各種手段,如粘性誘集植物、殺蟲劑、天敵, 或通過與現(xiàn)有的物理、化學(xué)、生物等方法結(jié)合來(lái)增強(qiáng)誘集植物的誘集效果[43]。如在病蟲害爆發(fā)初期誘集植物將有害昆蟲吸引并集中至植株上, 然后對(duì)誘集植物噴灑一定的殺蟲劑或?qū)⒄T集植物移除并毀滅[4], 可有效保護(hù)主栽作物。Boucher等通過噴施適量化學(xué)農(nóng)藥, 并采用粘蟲措施與誘集植物結(jié)合, 對(duì)辣椒蠅幼蟲的防治效果能夠達(dá)到91%, 甚至 100%[40]。因此, 需要在種植誘集植物的同時(shí), 充分結(jié)合其他技術(shù)和管理措施, 使其誘集效果最大化。

        2 誘集植物在農(nóng)業(yè)中應(yīng)用現(xiàn)狀

        當(dāng)前國(guó)內(nèi)外有關(guān)誘集植物的研究主要集中于糧食作物[43,49-50]和經(jīng)濟(jì)作物[37,51-52]的蟲害防治, 也有在線蟲病害[53-54]、擬寄生性植物病害[55]防控方面的研究。誘集植物防控的有害昆蟲主要以鱗翅目類昆蟲居多, 鞘翅目、雙翅目、半翅目次之。

        2. 1 誘集植物在經(jīng)濟(jì)作物生產(chǎn)中的應(yīng)用

        種植誘集植物防控病蟲害的研究主要集中在纖維作物、糖料作物、油料作物等經(jīng)濟(jì)作物中, 如棉花[52,56]、豆類[57-59]、土豆[53]、花椰菜[60]、辣椒[51]、甜菜[61]、木瓜[62]、桃子[63]、茶葉等[19]。

        目前, 利用誘集植物防治棉花病蟲害方面的研究較多[5]。Tillman等發(fā)現(xiàn)在棉花種植區(qū)域, 鄰近種植與棉花相同大小區(qū)域的高粱, 雌性棉鈴蟲更喜歡把卵產(chǎn)在高粱上, 因而能夠減少化學(xué)農(nóng)藥的施用[8]。類似的應(yīng)用也有很多, 如利用哈密瓜防治煙粉虱();利用玉米防控棉鈴象甲(Cotton boll weevil)、綠盲蝽()和稻綠蝽(L);利用煙草防治綠棉鈴蟲[煙芽夜蛾()]、螟蛉蟲(Bollworm)、粉虱(Whiteflies)、南部綠椿象(Southern green stink bug)等[64-69]。

        2.2 誘集植物在糧食作物生產(chǎn)中的應(yīng)用

        誘集植物在糧食生產(chǎn)中的應(yīng)用, 主要集中在水稻、小麥、玉米和土豆的主要蟲害和病害的防控上。

        螟蟲是我國(guó)南方主要病蟲之一, 主要危害水稻, 也侵害高粱、玉米、甘蔗等。已有研究報(bào)道, 將香根草種植于田埂作為誘集植物, 能夠誘集水稻二化螟或大螟[14-16]。

        蚜蟲(Aphididae: Homoptera)是危害小麥生長(zhǎng)的主要蟲害之一, 有關(guān)研究表明在小麥田種植一定的苜蓿(L.), 可為蚜蟲天敵提供有利條件, 減少對(duì)小麥的危害, 達(dá)到防治蚜蟲的目的[40]。麥莖蜂[Norton (Hymenoptera: Cephidae)]也是嚴(yán)重危害小麥和大麥的一類蟲害, 其幼蟲鉆蛀莖稈, 嚴(yán)重時(shí)會(huì)將整個(gè)麥苗莖稈食空, 成蟲則鉆入根莖部, 從根莖部將莖稈咬斷使小麥易倒伏。研究表明, 雌性麥莖蜂優(yōu)先選擇把卵產(chǎn)在莖稈較高的小麥上, 因此在小麥種植的周邊或間作種植適當(dāng)比例的高稈小麥, 可誘集雌性麥莖蜂產(chǎn)卵, 最后可將高稈小麥集中處理, 以達(dá)到減少對(duì)小麥的危害[70]。

        玉米螟[European corn borer(Ostrinia nubilalis Hbn.)]和蛀莖蟲[African white stemborer()]是危害玉米的重要蟲害。Derridj等的研究表明, 在玉米地條帶狀種植易感蟲害的玉米能夠有效減少主栽玉米的受害率[71]。另有研究表明, 在玉米田的邊行,種植豐富的雜草也能夠減少蛀莖蟲在玉米上的產(chǎn)卵及取食, 從而減少蛀莖蟲的危害[72]。

        誘集植物在土豆病害的綜合防治中應(yīng)用早在1957年就已有實(shí)踐[73]。在土豆種植之前種植誘集植物能有效吸引科羅拉多甲蟲(Colorado beetle), 此后適時(shí)移除或銷毀誘集植物, 能有效保護(hù)土豆生長(zhǎng), 減少其受危害。有關(guān)研究表明, 當(dāng)誘集植物/土豆按1:100比例種植時(shí), 在誘集植物上達(dá)5–10只每株科羅拉多甲蟲時(shí), 移除并無(wú)害化處理誘集植物能有效控制害蟲數(shù)量[74]。土豆胞囊線蟲是土豆生產(chǎn)的重要威脅, 世界每年因土豆胞囊線蟲帶來(lái)巨大損失[50, 75]??梢酝ㄟ^錯(cuò)開種植時(shí)期減少土豆胞囊線蟲的危害, 即在種植主栽土豆前種植少量變種土豆作為“先鋒植物”, 誘集土豆包囊線蟲以減少其對(duì)后期種植的主栽土豆的危害[76-77]。但Scholte研究表明, 盡管變種土豆能夠作為誘集植物減少土豆胞囊線蟲的危害, 但其并不是用于誘集防控土豆胞囊線蟲的理想植物, 主要是因?yàn)樵诶米兎N土豆誘集主栽土豆線蟲病害時(shí), 若不能充分誘集胞囊線蟲, 則需在新生雌蟲發(fā)育成熟前移除誘集植物體, 這在時(shí)間上要求較嚴(yán)格; 另外, 需要使用除草劑毀滅其次生塊莖, 不利于環(huán)保; 且若種植時(shí)期不合理,還會(huì)引發(fā)晚疫病[78]。Scholte的另一研究發(fā)現(xiàn),蒜芥茄()是一種防控土豆胞囊線蟲非常有效的誘集植物[79]。此后也出現(xiàn)了大量關(guān)于蒜芥茄誘集土豆胞囊線蟲的相關(guān)研究[80]。

        3 誘集植物研究與應(yīng)用展望

        3.1 誘集植物資源的篩選與優(yōu)化利用研究

        (1)加強(qiáng)高效誘集植物資源的篩選: 盡管目前生產(chǎn)上對(duì)誘集植物有一定的應(yīng)用, 但真正能用于農(nóng)業(yè)生產(chǎn)上的誘集植物種類不多,防控效果也不能達(dá)到較高的應(yīng)用水平。同時(shí), 當(dāng)前誘集植物的利用通常為“支出型”, 即誘集植物的種植只作為誘集病蟲害的“靶子”, 且在誘集植物完成其“使命”后, 通常被丟棄而損失經(jīng)濟(jì)效益, 使得誘集植物防控病蟲害的效益通常是建立在損失主栽作物種植面積的基礎(chǔ)上而獲得的。因此, 為了保證主要農(nóng)作物的產(chǎn)量和品質(zhì), 同時(shí)獲得更高的經(jīng)濟(jì)效益, 就需要篩選出既具有高效防控病蟲害效果又能獲得其自身經(jīng)濟(jì)效益的誘集植物, 這將具有更大的推廣應(yīng)用價(jià)值, 也會(huì)提高農(nóng)民在生產(chǎn)上應(yīng)用的積極性。

        (2)加強(qiáng)誘集植物對(duì)主要病蟲害的防控效應(yīng)與機(jī)理研究: 誘集植物的應(yīng)用案例大多來(lái)自于農(nóng)民的生產(chǎn)實(shí)踐嘗試與經(jīng)驗(yàn), 目前有關(guān)誘集植物-病蟲害-主栽作物之間的互作效應(yīng)、內(nèi)在機(jī)制及其生態(tài)經(jīng)濟(jì)效益的綜合評(píng)估等方面的研究十分缺乏。因缺少理論上的指導(dǎo), 相關(guān)應(yīng)用實(shí)踐技術(shù)與模式的結(jié)構(gòu)與功能優(yōu)化設(shè)計(jì)缺少科學(xué)依據(jù), 往往在生產(chǎn)中同一種誘集植物的應(yīng)用效果會(huì)因地因時(shí)而異, 應(yīng)用效果不穩(wěn)定, 因此, 今后需進(jìn)一步加強(qiáng)對(duì)誘集植物-病蟲害-主栽作物之間相互作用及其生產(chǎn)實(shí)踐應(yīng)用的理論與優(yōu)化方法研究。

        (3)加強(qiáng)誘集植物與主栽作物的優(yōu)化配置模式與配套技術(shù)集成研究: 雖然誘集植物在一定程度上能減少主栽作物病蟲害的發(fā)生, 但相關(guān)技術(shù)模式的應(yīng)用效果往往不穩(wěn)定, 且單靠誘集植物不能“包打天下”, 究其原因是, 誘集植物與主栽作物之間的結(jié)構(gòu)與功能的配置不合理, 相關(guān)的輔助技術(shù)也跟不上, 系統(tǒng)化集成缺乏。因此, 應(yīng)針對(duì)不同大宗糧食作物和經(jīng)濟(jì)作物, 優(yōu)選具有高效病蟲害防控作用的誘集植物, 開展誘集植物與主栽作物種植模式的組分配置、結(jié)構(gòu)配置、田間空間配置、時(shí)間(生育期)配置和配套技術(shù)集成, 并通過試驗(yàn)示范, 形成一系列成熟的、生態(tài)經(jīng)濟(jì)效益好、可供大面積應(yīng)用的技術(shù)模式。

        (4)加強(qiáng)誘集植物在農(nóng)業(yè)應(yīng)用中的生態(tài)風(fēng)險(xiǎn)評(píng)估研究: 在誘集植物的開發(fā)和應(yīng)用過程中, 需關(guān)注誘集植物的來(lái)源和特性, 例如, 有些誘集植物可能是外來(lái)入侵植物, 在生產(chǎn)中會(huì)造成生物入侵風(fēng)險(xiǎn)問題。又如, 誘集植物不僅對(duì)一些靶標(biāo)昆蟲產(chǎn)生影響, 也可能對(duì)一些有益昆蟲或天敵造成危害, 進(jìn)而破壞生物多樣性過程與功能。再如, 誘集植物可能會(huì)過度消耗土壤養(yǎng)分、對(duì)主栽作物的產(chǎn)量和品質(zhì)造成影響。因此, 在進(jìn)行誘集植物應(yīng)用之前, 應(yīng)開展相關(guān)的試驗(yàn)示范及生態(tài)風(fēng)險(xiǎn)評(píng)估前期研究。

        3.2 誘集植物的多功能性開發(fā)應(yīng)用前景

        大量研究和實(shí)踐業(yè)已證明, 誘集植物在農(nóng)業(yè)生產(chǎn)中具有良好的防控病蟲害作用。但隨著對(duì)誘集植物資源研究與應(yīng)用的深入, 其潛在作用和其他功能也在逐漸被開發(fā)和利用, 拓展誘集植物的多功能性和多重效益也將成為未來(lái)需要開展研究的重要方面: (1)開發(fā)應(yīng)用誘集植物的環(huán)境污染修復(fù)功能及相關(guān)技術(shù); (2)開發(fā)應(yīng)用誘集植物的景觀生態(tài)與休閑旅游功能及相關(guān)技術(shù); (3)開發(fā)利用誘集植物對(duì)土壤的養(yǎng)分轉(zhuǎn)化與固持提升功能(如固氮、固碳、固土功能等)、節(jié)能減排功能、生物質(zhì)能源功能及相關(guān)技術(shù); (4)開發(fā)應(yīng)用誘集植物及其廢棄物的經(jīng)濟(jì)產(chǎn)品功能及其可持續(xù)生產(chǎn)技術(shù)。

        [1] PIMENTEL D, MCLAUGHLIN L, ZEPP A, et alEnvironmental and economic effects of reducing pesticide use in agriculture[J]. Agriculture Ecosystems & Environment, 1993, 46(1/4): 273–288.

        [2] REGANOLD J P, PAPENDICK R I, PARR J F. Sustainable agriculture[J]. Scientific American, 1990, 262(6): 112–120.

        [3] DELONGE M S, MILES A, CARLISLE L. Investing in the transition to sustainable agriculture[J]. Environmental Science & Policy, 2015, 55: 266–273.

        [4] SHELTON A M, BADENESPEREZ F R. Concepts and applications of trap cropping in pest management[J]. Annual Review of Entomology, 2006, 51(51): 285–308.

        [5] HOKKANEN H M T. Trap Cropping in Pest Management[J]. Annual Review of Entomology, 2003, 36(1): 119–138.

        [6] EL-SAYED, A. M., SUCKLING, D. M., et al. Potential of mass trapping for long-term pest management and eradication of invasive species[J]. Journal of economic entomology, 2006, 99(5): 1550–1564.

        [7] WAY M J, VAN EMDEN H F. Integrated pest management in practice--pathways towards successful application[J]. Crop Protection,2000, 19(2): 81–103.

        [8] GODFREY L D, LEIGH T F. Alfalfa Harvest Strategy Effect on Lygus Bug (Hemiptera: Miridae) and Insect Predator Population Density: Implications for Use as Trap Crop in Cotton[J]. Environmental Entomology, 1994, 23(5): 1106–1118.

        [9] TILLMAN P G, JR B G M. Grain Sorghum as a Trap Crop for Corn Earworm (Lepidoptera: Noctuidae) in Cotton[J]. Environmental Entomology, 2004, 33(5): 1371–1380.

        [10] CHARLESTON D S, KFIR R. The possibility of using Indian mustard,, as a trap crop for the diamondback moth,, in South Africa[J]. Crop Protection, 2000, 19(7): 455–460.

        [11] BOHINC T, TRDAN S. Trap crops for reducing damage caused by cabbage stink bugs (spp.) and flea beetles (spp.) on white cabbage: fact or fantasy[J]. Journal of Food Agriculture & Environment, 2012, 10(2): 1365–1370.

        [12] VEROMANN E, KAASIK R, KOV ì CS G, et alFatal attraction: search for a dead-end trap crop for the pollen beetle ()[J]. Arthropod-Plant Interactions, 2014, 8(5): 373–381.

        [13] SHELTON A M, NAULT B A. Dead-end trap cropping: a technique to improve management of the diamondback moth,(Lepidoptera: Plutellidae)[J]. Crop Protection, 2004, 23(6): 497–503.

        [14] BERG J V D, MIDEGA C, WADHAMS L J, et al. Can Vetiver Grass be Used to Manage Insect Pests on Crops? [J]. Proc Third Interna, 2003: 254–264.

        [15] 陳先茂, 彭春瑞, 姚鋒先, 等. 利用香根草誘殺水稻螟蟲的技術(shù)及效果研究[J]. 江西農(nóng)業(yè)學(xué)報(bào), 2007, 19(12): 51– 52.

        [16] 鄭許松, 徐紅星, 陳桂華, 等. 蘇丹草和香根草作為誘蟲植物對(duì)稻田二化螟種群的抑制作用評(píng)估[J]. 中國(guó)生物防治, 2009, 25(4): 299–303.

        [17] 魯艷輝, 高廣春, 鄭許松, 等. 誘集植物香根草對(duì)二化螟幼蟲致死的作用機(jī)制[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 21(2): 1–8.

        [18] CAO J, SHELTON A M, EARLE E D. Development of transgenic collards (L. var.) expressing aorBt gene for control of the diamondback moth[J]. Crop Protection, 2005, 24(9): 804– 813.

        [19] 梁齊, 魯艷輝, 何曉嬋, 等. 誘集植物在害蟲治理中的最新研究進(jìn)展[J]. 生物安全學(xué)報(bào), 2015, 24(3): 184–193.

        [20] JAVAID I, DADSON R B, HASHEM F M, et alThe Potential of Bt Corn as a Trap Crop for the Control of Corn Earworm,Boddie, in Soybean[J]. Journal of Sustainable Agriculture, 2005, 26(1): 115–121.

        [21] HOKKANEN H M T. Biological and agrotechnical control of the rape blossom beetle(Coleoptera, Nitidulidae)[J]. Acta Entomologica Fennica, 1989, 53: 25–29.

        [22] VISSER J H, AVé D A. General green leaf volatiles in the olfactory orientation of the Colorado beetle,[J]. Entomologia Experimentalis Et Applicata, 1978, 24(3): 738–749.

        [23] SEAL D R, CHALFANT R B, HALL M R. Effects of Cultural Practices and Rotational Crops on Abundance of Wireworms (Coleoptera: Elateridae) Affecting Sweet po-tato in Georgia[J]. Environmental Entomology, 1992, 21(5): 969–974.

        [24] BAE S. Attraction of stink bugs to rocket traps with different combinations of wing and landing board color[J]. Journal of Asia-Pacific Entomology, 2019, 22(1): 243–249.

        [25] ARáOZ M C. Volatiles mediate host-selection in the corn hoppers(Hemiptera: Cicadellidae) and(Hemiptera: Delphacidae)[J]. Bulletin of entomological research, 2019, 109(5):1–10.

        [26] LAMY F. One more step toward a push-pull strategy combining both a trap crop and plant volatile organic compounds against the cabbage root fly[J]. Environmental Science and Pollution Research, 2018, 25(30): 1–12.

        [27] SHAPIRA I. Habitat use by crop pests and natural enemies in a Mediterranean vineyard agroecosystem[J]. Agriculture, Ecosystems & Environment, 2018, 267(15):109–118.

        [28] HEIL M. Indirect defence via tritrophic interactions[J]. New Phytologist, 2008, 178(1): 41–61.

        [29] DICKE M, BALDWIN I T. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’[J]. Trends in Plant Science, 2010, 15(3): 167–175.

        [30] EWE J J, SCHREEG L A, SINCLAIR T R. Resources for crop production: accessing the unavailable[J]. Trends in Plant Science, 2019, 24(2): 121–129.

        [31] HOKKANEN H M, MENZLER-HOKKANEN I. Urgent need to develop ecostacking techniques to enhance ecosystem services in cropping systems[J]. Arthropod-Plant Interactions, 2018, 12(4): 477–482.

        [32] AGELOPOULOS N. Exploiting semiochemicals in insect control[J]. Pesticide Science, 1999, 55(3): 225–235.

        [33] El-Shafie H A F, Faleiro J R. Semiochemicals and their potential use in pest management[J]. Biological Control of Pest and Vector Insects, 2017: 1–22.

        [34] BUKERO A. Management of rodents through different trap devices and poison baits in wheat stores[J]. Science International, 2016, 28(2): 221–232.

        [35] BERAN F. Chemical convergence between plants and insects: biosynthetic origins and functions of common secondary metabolites[J]. New Phytologist, 2019, 223(1): 52–67.

        [36] BLAAUW B R. Measuring host plant selection and retention ofby a trap crop[J]. Entomologia Experimentalis Et Applicata, 2017, 163(2): 97–208.

        [37] MATHEWS C R. Evaluating a polyculture trap crop for organic management ofand native stink bugs in peppers[J]. Journal of Pest Science, 2017, 90(4): 1245–1255.

        [38] OWENS B L. Perimeter Cropping As a Means of Reducing Insect Injury and Increasing Crop Yield[D]. South Dakota State University, 2017.

        [39] 王春義, 李春花, 雒珺瑜, 等. 棉田綠盲蝽誘集植物的篩選和作用效果比較[J]. 中國(guó)棉花, 2010, 37(5):15–17.

        [40] BOUCHER T J, ASHLEY R, DURGY R, et al. Managing the Pepper Maggot (Diptera: Tephritidae) Using Perimeter Trap Cropping[J]. Journal of Economic Entomology, 2003, 96(2): 420–432.

        [41] CAVANAGH A, HAZZARD R, ADLER L S, et al. Using Trap Crops for Control of(Coleoptera: Chrysomelidae) Reduces Insecticide Use in Butternut Squash[J]. Journal of Economic Entomology, 2016, 102(3): 1101–1107.

        [42] CA′RCAMO H A, DUNN R, DOSDALL L M, et al. Managing cabbage seedpod weevil in canola using a trap crop-A commercial field scale study in western Canada[J]. Crop Protection, 2007, 26(8): 1325–1334.

        [43] SARKAR S. Application of trap cropping as companion plants for the management of agricultural pests: a review[J]. Insects, 2018, 9(4): 1–16.

        [44] FINCH S, COLLIER R H. Host-plant selection by insects-a theory based on ‘a(chǎn)ppropriate/inappropriate landings’ by pest insects of cruciferous plants[J]. Entomologia Experimentalis Et Applicata, 2000, 96(2): 91–102.

        [45] KHAN Z R, AMPONG-NYARKO K, CHILISWA P, et al. Intercropping increases parasitism of pests[J]. Nature, 1997, 388(6643): 631–632.

        [46] KHAN Z R, PICKETT J A. The ‘push-pull’strategy for stemborer management: a case study in exploiting biodiversity and chemical ecology[M]. Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods, 2004: 155–164.

        [47] SMITH H A, MCSORLEY R. Potential of Field Corn as a Barrier Crop and Eggplant as a Trap Crop for Management of(Homoptera: Aleyrodidae) on Common Bean in North Florida[J]. Florida Entomologist, 2000, 83(2): 145–158.

        [48] BUTELER M, WEAVER D K, BRUCKNER P L, et al. Using agronomic traits and semiochemical production in winter wheat cultivars to identify suitable trap crops for the wheat stem sawfly[J]. Canadian Entomologist, 2011, 142(3): 222–233.

        [49] Singh B, Kaur A. Control of insect pests in crop plants and stored food grains using plant saponins: A review[J]. LWT, 2018, 87: 93–101.

        [50] SHARMA A, SHRESTHA G, REDDY G V. Trap Crops: How Far We Are From Using Them in Cereal Crops?[J]. Annals of the Entomological Society of America, 2019, 112(4): 330–339.

        [51] SOERGEL D. Sunflower as a potential trap crop of(Hemiptera: Pentatomidae) in pepper fields[J]. Environmental Entomology, 2015, 44(6): 1581– 1589.

        [52] MARSHALL M W. Influence of tillage and deep rooted cool season cover crops on soil properties, pests, and yield responses in cotton[J]. Open Journal of Soil Science, 2016, 6(10): 149–158.

        [53] DANDURAND L M, KNUDSEN G. Effect of the trap cropand two biocontrol fungi on reproduction of the potato cyst nematode,[J]. Annals of Applied Biology, 2016, 169(2): 180–189.

        [54] NAVARRETE M. A resistant pepper used as a trap cover crop in vegetable production strongly decreases root-knot nematode infestation in soil[J]. Agronomy for Sustainable Development, 2016, 36(4): 1–11.

        [55] BRIAR S S, WICHMAN D, REDDY G V. Plant- parasitic nematode problems in organic agriculture, in Organic Farming for Sustainable Agriculture[M]. Springer, 2016: 107–122.

        [56] CASTLE S. Concentration and management ofin cantaloupe as a trap crop for cotton[J]. Crop Protection, 2006, 25(6): 574–584.

        [57] JAVAID I, JOSHI J. Trap cropping in insect pest management[J]. Journal of Sustainable Agriculture, 1995, 5(1–2): 117–136.

        [58] RUST R W. Evaluation of trap crop procedures for control of Mexican bean beetle in soybeans and lima beans[J]. Journal of Economic Entomology, 1977, 70(5): 630–632.

        [59] SHARMA P K, SHARMA S, SHRIVASTAVA S. Management ofpopula-tion in soybean crop: an ecofriendly approach[J]. International Journal of Pharmacology and Biological Sciences, 2016, 10(1): 39–42.

        [60] AHUJA D. Comparison of Integrated Pest Management approaches and conventional (non-IPM) practices in late-winter-season cauliflower in Northern India[J]. Crop Protection, 2015, 78: 232–238.

        [61] HAUER M. Integrated control ofSchmidt in Central Europe by trap crop cultivation, sugar beet variety choice and nematicide application[J]. Applied Soil Ecology, 2016, 99: 62–69.

        [62] SEDLACEK J D. Potential of ripe pawpaw fruit extract as an insecticide and feeding deterrent for striped cucumber beetle (Coleoptera: Chrysomelidae) on squash[J]. Journal of Entomological Science, 2010, 45(4): 378–384.

        [63] AKOTSEN-MENSAH C. Evaluating potential trap crops for managing leaf footed (Hemiptera: Coreidae) and phytophagous stink bug (Hemiptera: Pentatomidae) species in peaches[J]. Agricultural and Forest Entomology, 2017, 19(3): 332–340.

        [64] CASTLE S J. Concentration and management ofin cantaloupe as a trap crop for cotton[J]. Crop Protection, 2006, 25(6): 574–584.

        [65] TILLMAN P G. Tobacco as a trap crop for(F.) (Lepidoptera: Noctuidae) in cotton[J]. Journal of Entomological Science, 2006, 41(4): 305–320.

        [66] HERAVI P. Investigation of Corn as a Trap Crop for Damage Decrease ofin Cotton[R]. FAO, 2012.

        [67] PIMM S L. The complexity and stability of ecosystems[J]. Nature, 1984, 307(5949): 321–326.

        [68] BOY D, LESLEY A, RIDOU T, et al. Plant–pathogen interactions: disease resistance in modern agriculture[J]. Trends in Genetics, 2013, 29(4): 233–240.

        [69] SAEED Q, ZAKA M, SAEED S, et al. Lucerne as trap crop in wheat for development of predators population against wheat aphids (Aphididae: Homoptera)[J]. Pakistan Journal of Zoology, 2013, 45(1): 193–196.

        [70] BUTELER M, WEAVER D K, PETERSON R K D. Oviposition behavior of the wheat stem sawfly when encountering plants infested with cryptic conspecifics[J]. Environmental Entomology, 2009, 38(6): 1707–1715.

        [71] DERRIDJ S, LEFER H, AUGENDRE M, et al. Use of strips ofL. to trap European corn borer (Hbn.) oviposition in maize fields[J]. Crop Protection, 1988, 7(3): 177–182.

        [72] MATAMAKAUMA T, SCHULTHESS F, MUEKE J M, et al. Effect of wild grasses planted as border rows on stemborer infestations in maize in Uganda[J]. Annales De La Société Entomologique De France, 2006, 42(3/4): 455–460.

        [73] HOKKANEN H M. Trap cropping in pest management[J]. Annual Review of Entomology, 1991, 36(1): 119–138.

        [74] HUNT D W A, WHITFIELD G. Potato trap crops for control of colorado potato beetle (Coleoptera: Chryso-melidae) in tomatoes[J]. Canadian Entomologist, 1996, 128(3): 407–412.

        [75] ATKINS S D, CLARK I M, SOSNOWSKA D, et al. Detection and Quantification of, a Potential Biological Control Agent of Potato Cyst Nematodes, by Using Conventional PCR, Real-Time PCR, Selective Media, and Baiting[J]. Applied & Environmental Microbiology, 2003, 69(8): 4788–4793.

        [76] TRUDGILL D L. Yield losses caused by potato cyst nematodes: a review of the current position in Britain and prospects for improvements[J]. Annals of Applied Biology, 2010, 108(1): 181–198.

        [77] HALFORD P D, RUSSELL M D, EVANS K. Use of resistant and susceptible potato cultivars in the trap cropping of potato cyst nematodes,and[J]. Annals of Applied Biology, 1999, 134(3): 321–327.

        [78] SCHOLTE K. Effect of potato used as a trap crop on potato cyst nematodes and other soil pathogens and on the growth of a subsequent main potato crop[J]. Annals of Applied Biology, 2000, 136(3): 229–238.

        [79] SCHOLTE K. Screening of non-tuber bearing Solanaceae for resistance to and induction of juvenile hatch of potato cyst nematodes and their potential for trap cropping[J]. Annals of Applied Biology, 2000, 136(3): 239–246.

        [80] BGH T, VOS J, VAN N J, et al. Field performance of, a trap crop for potato cyst nematodes. I. Dry matter accumulation in relation to sowing time, location, season and plant density[J]. Annals of Applied Biology, 2007, 150(1): 89–97.

        Review of research and application of trap crops in agriculture

        Lu Xuening1,2, Zhang Jiaen1,2,*, Xiang Huimin1,2, Wang Jiaxin1,2, Lan Ni1,2Qin Zhong1,2

        1.College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China 2.Guangdong Provincial Key Laboratory of Eco-circular Agriculture/Key Laboratory of Agro-environment in the Tropics, Ministry of Agriculture/Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou 510642, China

        Plant diseases and pests has resulted in serious economic loss in agriculture worldwide each year. In order to control pests and reduce damages, chemical pesticides have been applied during agricultural practices.However, inappropriate utilization of chemicals would cause environmental pollution and agro-product safety issues; in the meantime, it can also enhance pest's resistance to pesticides, and kill natural enemies, finally further result in more serious outbreak of pests and diseases. Planting trap crops is an environmentally friendly method for preventing and controlling pests, which can attract pests and insects from main crops and therefore reduces the outbreaks of the diseases, insects, and pests to main crops as well as the application of chemical pesticides. Based on the characteristics, trap crops can be classified into following five types: the conventional trap crops, lethal (dead-end) trap crops, genetic engineering trap crops, bio-assisted trap crops, and semio-chemically assisted trap crops. According to the planting and utilization methods, the trap crops can be used for the perimeter plantation, interplanting, continuous cropping, and combination with other methods. Although research on trap crops has nearly 160 years of history, the efficient screening, optimized allocation pattern, matching planting technology of trap crops and main crops, a complete set of cultivation techniques, the effect mechanism of trap crops on target pests, trap crops in ecological risk assessment of agricultural production and so on are still unclear. Trap crops have great development potential and application value in the following aspects: (1) developing and applying trap crop for environmental pollution remediation functions and related technology; (2) developing and applying the landscape eco-tourism functions and related technologies of attractant plants; (3) developing and utilizing the nutrient transformation and retention improvement functions (nitrogen sequestration, carbon sequestration, soil fixation, etc.), biomass energy function, energy saving and emission reduction function and related technologies of trap crops; (4) developing and applying economic products and sustainable production technologies of trap crops and their wastes. In this paper, the research and application of trap crops in recent years were reviewed to provide a reference for pest control in agricultural production.

        trap crop; integrated pest management (IPM); agroecosystem; cropping pattern; bioenergy

        10.14108/j.cnki.1008-8873.2021.02.024

        S972.63

        A

        1008-8873(2021)02-196-08

        2019-04-15;

        2020-06-02

        廣東省科技計(jì)劃項(xiàng)目(2015B090903077, 2016A020210094, 2017A090905030); 廣州市科技計(jì)劃項(xiàng)目(201604020062); 廣東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系創(chuàng)新團(tuán)隊(duì)建設(shè)項(xiàng)目(2018LM1100)

        盧雪凝(1994—), 女, 碩士研究生, 從事生態(tài)學(xué)研究, E-mail: xueninglu@foxmail.com

        章家恩(1968—),男, 教授, 博士, E-mail: jeanzh@scau.edu.cn

        盧雪凝, 章家恩, 向慧敏, 等. 誘集植物在農(nóng)業(yè)中的應(yīng)用研究進(jìn)展與展望[J]. 生態(tài)科學(xué), 2021, 40(2): 196–203.

        Lu Xuening, Zhang Jiaen, Xiang Huimin, et al. Review of research and application of trap crops in agriculture[J]. Ecological Science, 2021, 40(2): 196–203.

        猜你喜歡
        主栽靶標(biāo)土豆
        “百靈”一號(hào)超音速大機(jī)動(dòng)靶標(biāo)
        納米除草劑和靶標(biāo)生物的相互作用
        梨樹建園時(shí)為何要配置授粉樹
        土豆歌
        土豆喝水
        土豆愛吃糖
        童話世界(2017年14期)2017-06-05 09:13:49
        上饒?jiān)缋嬷髟云贩N病毒種類分析及其莖尖脫毒技術(shù)效率比較
        復(fù)雜場(chǎng)景中航天器靶標(biāo)的快速識(shí)別
        發(fā)芽土豆帶著毒
        前列腺特異性膜抗原為靶標(biāo)的放射免疫治療進(jìn)展
        一区二区av日韩免费| 日本中文字幕精品久久 | 亚洲精品1区2区在线观看| 日本一区二区在线免费视频| 色视频网站一区二区三区| 高潮潮喷奶水飞溅视频无码| 中文字幕欧美人妻精品一区 | 亚洲熟妇av一区二区在线观看| 亚洲精品乱码久久久久蜜桃| 精品国产综合区久久久久久| 亚洲欧美色一区二区三区| 国产成人精品日本亚洲11| 久久狠色噜噜狠狠狠狠97| 麻豆国产成人AV网| 午夜视频福利一区二区三区| 一个人看的在线播放视频| 人妻少妇精品视频专区二区三区| 日韩人妻精品中文字幕专区| 四虎影在永久在线观看| 欧美人与动牲交a精品| 国产成年女人特黄特色毛片免| 亚洲日韩∨a无码中文字幕| 亚洲中文av一区二区三区| 91精品人妻一区二区三区蜜臀| 国产成人亚洲精品91专区高清 | 亚洲av无码一区二区乱子伦| 国产精品1区2区| 中文字幕亚洲精品高清| 久久国产精品色av免费看| 久久精品亚洲成在人线av乱码| 国产自拍视频免费在线| 狠狠躁夜夜躁人人爽天天古典| 免费特级黄毛片| 免费福利视频二区三区| 午夜男女靠比视频免费| 人妻av无码一区二区三区| 国产a v无码专区亚洲av| 国产精品亚洲av网站| 男女做羞羞事的视频网站| 久久婷婷五月综合97色一本一本| 中文字幕无码家庭乱欲|