周偉,付曉峰,常耀中
深度學習在情感識別上的研究
周偉,付曉峰,常耀中
(杭州電子科技大學,浙江 杭州 310018)
針對現(xiàn)有情感分析算法在處理大量的人臉數據時未能展現(xiàn)良好魯棒性的問題,提出一種新的情感識別方法。提出Z-libface人臉檢測器,并設計出一種新的卷積神經網絡模型RT-CNN,同時使用大型表情數據集fer2013以及改良后的FER+,訓練出一個比較好的模型。使用提出的卷積神經網絡RT-CNN在fer2013、FER+兩個表情數據集上進行10倍交叉驗證,取10次驗證準確率的平均值,在fer2013及FER+上取得了66.72%與80.02%的準確率。
Z-libaface人臉檢測;fer2013數據集;FER+數據集;深度學習
情感是人類心理感受的一種重要特征[1],在人們的交流中起著非常重要的作用。情感識別就是利用計算機進行人類情感圖像的獲取、情感圖像的預處理、情感特征的提取和情感分類的過程,它通過計算機分析人的情感信息,從而推斷人的心理狀態(tài),最后實現(xiàn)人機之間的智能交互。
最近關于人臉情感識別的研究大多基于深度學習。在大多數情況下,CNN的訓練依賴大量的數據,在模型訓練中,樣本的大小會直接影響模型和網絡,當樣本有限時,模型很容易發(fā)生過擬合現(xiàn)象。因此本文直接使用數據量較大的fer2013數據集以及其改良后的FER+數據集。
本文的主要貢獻如下:提出Z-libface人臉檢測器;利用FER+對fer2013數據集進行改良和優(yōu)化,提高約14%的準確率;提出RT-CNN模型,在fer2013、FER+數據集上取得較好的效果。
目前的人臉檢測器[2]主要有Opencv自帶的Haar檢測器、Dlib人臉檢測器、libface人臉檢測器等。
本文提出的Z-libface人臉檢測器是在libface人臉檢測器的基礎上進行改良得到的,經實驗發(fā)現(xiàn),libface人臉檢測器有如下缺陷:當人臉是側臉時,截取區(qū)域不當,最后得到的人臉截取圖片有近1/5的空白區(qū)域。
針對libface人臉檢測器的缺陷,本文利用該檢測器檢測人臉時提供的信息包括人臉68個特征點的坐標、截取矩形框左上角的橫坐標、截取矩形框寬、人臉左右偏轉時人臉偏轉的角度。按照opencv的規(guī)則,圖片左上角為坐標原點,順時針旋轉為負,逆時針旋轉為正,當人臉向左偏轉時為正,向右偏轉時為負。
本文設計出一種新的卷積神經網絡模型RT-CNN,其網絡模型結構以及參數設置如表1所示。在輸入層之后加入1*1的卷積層使輸入增加非線性的表示、加深了網絡、提升了模型的表達能力,同時基本不增加計算量。為了防止過擬合問題,在最后兩個全連接層中,把全連接層之間的連接隨機丟棄50%,在卷積層3、4、5中分別進行2層、1層、2層全零填充,保證輸出特征圖的長寬不變。
表1 RT-CNN模型結構及參數設置
種類核步長輸出丟棄 輸入 48*48*1 卷積層11*1148*48*32 卷積層21*1148*48*32 卷積層35*5148*48*32 池化層13*3223*23*32 卷積層43*3123*23*32 池化層23*3211*11*32 卷積層55*5111*11*64 池化層33*325*5*64 全連接層1 1*1*2 04850% 全連接層2 1*1*1 02450% 輸出 1*1*7
在fer2013數據集中有一些圖像是黑白圖,同時有很多的圖片情感標注并不準確,這些情況對訓練造成很大的干擾,有國外學者對fer2013數據集進行重新標簽化,數據集叫FER+,圖片順序與fer2013相對應。把錯誤的標簽改成正確的標簽,剔除了fer2013數據集中的黑白圖。
為了保證實驗結果的有效性,本次實驗采取了10倍交叉驗證。將fer2013數據集平均分為10組。每次選取其中的9組作為訓練集,另外1組作為驗證集,進行10次實驗,最后取10個結果的均值作為最終的準確率。這樣保證了每個樣本都可以作為驗證集和訓練集。對FER+數據集進行了同樣的處理,本文模型與其他模型在fer2013數據集上識別率對比的結果如表2所示。
表2 本文模型與其他模型在fer2013數據集上識別率對比結果
名次模型準確率/(%) 1RBM71.16 2Unsupevised69.26 3Maxim Milakov68.82 4Radu+marius+Cristi67.49 5本文模型66.72 ……… 10sayit62.19
在實驗過程中,各參數保持不變,當訓練集設置為fer2013改良后的FER+時,最后的訓練準確率為83.30%,驗證準確率為80.02%。相比在fer2013數據集上識別率66.72%而言,本文模型在改良后的fer2013數據集 FER+上,訓練集和驗證集準確率提升約14%。
本文針對人臉檢測,提出性能更加高效的Z-libface人臉檢測器。其次,提出一種新的人臉情感識別算法在fer2013數據集上取得了66.72%的識別率,并同時利用新的分類規(guī)則對fer2013數據集進行優(yōu)化得到FER+數據集,本文算法在FER+數據集上取得了80.02%的識別率,在很大程度上改善了識別效果。雖然取得了一定的成果,但還存在一些問題,比如識別率有待進一步提高等。在接下來的工作中會繼續(xù)探索人臉檢測器的增強、網絡結構以及參數的設置等。
[1]劉錦峰.基于卷積神經網絡的學生課堂面部表情識別研究[J].高教學刊,2020(7):67-69.
[2]汪欣,吳薇,曾照.基于視頻的人臉檢測算法研究[J].電子科技,2020,33(2):25-31.
2095-6835(2021)06-0097-02
TP18;TP391.41
A
10.15913/j.cnki.kjycx.2021.06.036
周偉(1998—),男,本科,研究方向為人工智能、計算機視覺、圖像處理。付曉峰(1981—),女,博士,副教授,研究方向為人工智能、計算機視覺、圖像處理。常耀中(1997—),男,本科,研究方向為人工智能、計算機視覺、知識圖譜。
〔編輯:嚴麗琴〕